Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics

Serita D. Frey

Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, USA; email: serita.frey@unh.edu

Keywords

arbuscular mycorrhizal fungi, ectomycorrhizal fungi, fungal necromass, priming, saprotrophic fungi, soil carbon

Abstract

Inhabiting the interface between plant roots and soil, mycorrhizal fungi play a unique but underappreciated role in soil organic matter (SOM) dynamics. Their hyphae provide an efficient mechanism for distributing plant carbon throughout the soil, facilitating its deposition into soil pores and onto mineral surfaces, where it can be protected from microbial attack. Mycorrhizal exudates and dead tissues contribute to the microbial necromass pool now known to play a dominant role in SOM formation and stabilization. While mycorrhizal fungi lack the genetic capacity to act as saprotrophs, they use several strategies to access nutrients locked in SOM and thereby promote its decay, including direct enzymatic breakdown, oxidation via Fenton chemistry, and stimulation of heterotrophic microorganisms through carbon provision to the rhizosphere. An additional mechanism, competition with free-living saprotrophs, potentially suppresses SOM decomposition, leading to its accumulation. How these various nutrient acquisition strategies differentially influence SOM formation, stabilization, and loss is an area of critical research need.
1. MYCORRHIZAL FUNGI AND SOIL CARBON: AN OVERVIEW

Soil organic matter (SOM) is the primary source of plant-available nutrients in terrestrial ecosystems, and maintenance of SOM levels is critical for ecosystem sustainability. In addition to being an important nutrient reservoir, SOM represents a substantial store of carbon (C), containing twice as much C as the atmosphere and terrestrial vegetation combined. Transfers of C between soils and the atmosphere are one of the largest fluxes in the global terrestrial C budget, with soils releasing 60–75 Pg C to the atmosphere annually through microbial decomposition of organic materials (Schlesinger & Andrews 2000). This makes the study of SOM important not only to manage soils for improved fertility and ecosystem productivity but also to understand its role in climate–soil C feedbacks and its potential to mitigate greenhouse gas emissions (Paustian et al. 2016).

SOM pools and fluxes are driven by dynamic formation, stabilization, and destabilization processes, our understanding of which has fundamentally changed over the past few decades (Schmidt et al. 2011). Historically, stable SOM was thought to form via selective preservation of recalcitrant plant biopolymers coupled with abiotic synthesis of complex, highly aromatic humic substances resistant to decay. This model of SOM formation and stabilization was upset with the observation that plant components predicted to persist in soils (e.g., lignin) turn over rapidly, while more inherently labile compounds (e.g., sugars) can persist for decades (Grandy & Neff 2008, Schmidt et al. 2011). Additionally, compounds making the largest contributions to stable SOM pools are microbially derived, produced during the decomposition and assimilation of plant exudates, litter, and roots (Cotrufo et al. 2013, Simpson et al. 2007). SOM is now understood to be a continuum of organic biopolymers continuously processed by microorganisms and stabilized through interactions with soil minerals and aggregates (Keiluweit et al. 2015, Lehmann & Kleber 2015).

While saprotrophic (i.e., decomposer) microbes have received considerable attention in the emerging conceptual understanding of SOM dynamics, mycorrhizal fungi may play a unique but underappreciated role (Figure 1). Inhabiting the interface between plant roots and soil, they control a key entry point for plant C into the rhizosphere. The growth of mycorrhizal extraradical hyphae provides an efficient mechanism for distributing plant-derived C throughout the soil matrix, promoting its deposition onto mineral surfaces and within soil pores, where it can be chemically or physically protected from microbial decomposition. Given that mycorrhizal fungi account for a large proportion of the total soil microbial biomass in some systems (e.g., boreal and temperate forests), the death and turnover of mycorrhizal tissues may also contribute substantially to the pool of dead microbial biomass (necromass) thought to be a dominant factor in SOM formation and stabilization (Cotrufo et al. 2013, Schmidt et al. 2011). New genomic and biochemical insights obtained during the past decade suggest that mycorrhizal fungi also likely contribute substantially to SOM destabilization through their nutrient mining activities. In other words, while most mycorrhizal fungi appear to lack the genetic capacity to act as saprotrophs, they use several strategies in their search for nutrients that, directly or indirectly, facilitate SOM decay.

In this review, I discuss the unique position that mycorrhizal fungi hold with respect to the formation, stabilization, and destabilization of SOM. I first discuss how plant C allocation to mycorrhizal fungi in the rhizosphere contributes to SOM formation and stabilization through the production of mycorrhizal biomass, exudates, and necromass. I then explore the mechanisms by which mycorrhizal fungi alter SOM destabilization dynamics. I focus primarily on two mycorrhizal groups, the arbuscular mycorrhizal fungi (AMF) and the ectomycorrhizal fungi (EMF), which have received the most attention with regard to soil C cycling.
2. MYCORRHIZAL-ASSOCIATED PRODUCTION OF SOIL ORGANIC MATTER

Plants allocate a substantial portion of their photosynthate belowground to support their root systems, with total belowground C flux representing 30–65% of gross primary production (Gill & Finzi 2016, Vicca et al. 2012). The fate of this C includes root structures, root symbionts, autotrophic (root and root symbiont) respiration, storage compounds, exudates, volatile organic compounds, and the extraradical fungal hyphae associated with mycorrhizal roots. Belowground C allocation plays an important role in ecosystem C cycling; root-derived C, including that associated with mycorrhizal extraradical hyphae, is a dominant pathway through which C enters the SOM pool, contributing as much or more to long-term soil C storage as aboveground plant components (Clemmensen et al. 2015, Gale & Cambardella 2000, Godbold et al. 2006). As an example,
Ectomycorrhizal fungi (EMF): formed by a diverse group of fungi in symbiosis with primarily woody plants; dominant mycorrhiza in boreal and temperate forests, also common in some tropical forests

more than half (50–70%) of the soil C that accumulated in the organic horizon of a boreal forest soil originated from root-derived rather than aboveground plant litter inputs (Clemmensen et al. 2013). Furthermore, much of the accumulated C originated mostly from root-associated fungal hyphae. Although mycorrhizal fungi are critical for plant nutrient acquisition and can receive a large fraction of host net primary production (NPP), estimates of C allocation to mycorrhizal fungi are often not included in ecosystem C budgets (Ouimette et al. 2019), nor is this process well described in current models of ecosystem and global C dynamics, limiting our ability to estimate the relative contribution of mycorrhizal fungi to soil C storage and to predict ecosystem responses to environmental change. Below, I summarize what is known about the proportion of NPP allocated to mycorrhizal fungi, the factors that influence plant C allocation patterns, the fate of photosynthetic C allocated to mycorrhizal fungi, and the potential implications for SOM formation and stabilization.

2.1. Carbon Allocation to Mycorrhizal Fungi Quantified

Mycorrhizal colonization alters C allocation patterns within the host plant and changes the quantity and quality of C entering SOM pools. However, belowground C allocation to mycorrhizal fungi is challenging to measure because it is difficult to visualize diffuse mycelia in soil and to differentiate mycorrhizal hyphae from those of saprotrophic fungi. As a result, plant C allocation to mycorrhizae is one of the most uncertain parameters of ecosystem-scale C budgets and simulation models of C cycling. Available literature estimates are also sometimes difficult to compare because some refer to fungal biomass production only, whereas others include respiratory costs, a distinction that is not always clearly reported. In culture or pot studies, where mycorrhizal seedlings are grown in the lab or greenhouse, plant C allocation to mycorrhizal fungi ranges from 1% to 20% of NPP for EMF (Hobbie 2006) and from 1% to 30% for AMF (see Drigo et al. 2010, Kaiser et al. 2015, Konvalinková et al. 2017, and references therein). Results from field studies provide mycorrhizal allocation estimates of 8–17% of NPP in arctic tussock tundra (Hobbie & Hobbie 2006), 27–34% in a temperate mixed coniferous–deciduous forest (Allen & Kitajima 2014), and 4–35% across conifer- and deciduous broadleaf-dominated temperate forest stands (Ouimette et al. 2019). Plant C allocation to mycorrhizal fungi is presumably coupled to plant C assimilation as influenced by climate, ecosystem type (Gill & Finzi 2016), successional stage (Wallander et al. 2010), season (e.g., Lekberg et al. 2013), nutrient availability (Brzostek et al. 2015, Lekberg et al. 2013, Vicca et al. 2012), and global change drivers (e.g., Alberton et al. 2005, Drigo et al. 2010, Lilleskov et al. 2019). Although the relative lack of data, particularly under field conditions across a wide range of ecosystems, makes plant C transfer to mycorrhizal fungi difficult to generalize, the above estimates make clear that it is a significant and important conduit of C into the soil.

2.2. Fate of Plant Carbon Allocated to Mycorrhizal Fungi and Implications for Soil Organic Matter Storage

Plant photosynthetic carbon allocated to mycorrhizal fungi can be partitioned into three primary pools: living fungal biomass and its associated metabolic processes (e.g., respiration), fungal exudates, and dead fungal tissues (necromass). Each of these components likely has different consequences for SOM formation and stabilization, the importance of which is only beginning to be assessed and quantified.

2.2.1. Living mycorrhizal biomass. Mycorrhizal extraradical hyphae likely play a critical though understudied role in the formation and stabilization of SOM. Their size, filamentous growth habit, and foraging lifestyle facilitate transport of C and nutrients throughout the mycelial
As they forage for nutrient-rich organic matter patches, they also grow and deposit C into nutrient-deficient zones. Living hyphae produce and secrete various extracellular compounds (see Section 2.2.2) that, given their proximity to clay particles, may stabilize C and nutrients onto mineral surfaces (Jilling et al. 2018, Kleber et al. 2015). The formation of mineral–organic associations has been identified as a main control on soil C storage because of the slow turnover of mineral-associated organic matter (Kleber et al. 2015), though the relative contribution of mycorrhizal fungi to this process is largely unknown.

Most research related to mycorrhizal fungi and C storage has focused on aggregate formation. Fungal hyphae adhere to and physically entangle and enmesh soil particles, facilitating the formation of stable aggregates within which SOM is protected from decomposition (Six et al. 1998). Both AMF and EMF enhance soil aggregate formation and stabilization, and a direct link has been established between the amount of water-stable aggregates and the presence of mycorrhizal mycelium, with the extent of aggregation depending on the species involved (Lehmann et al. 2017). Mycorrhizal taxa vary widely in their production of extraradical hyphae (Weigt et al. 2012), and the extent of hyphal proliferation depends on the host plant, soil nutrient availability, pH, and moisture status (Lehmann et al. 2017).

In order to estimate the contribution of mycorrhizal fungal hyphae to soil C dynamics, it is important to quantify the amount of standing biomass, production, and turnover rates, a non-trivial task given the challenges of distinguishing mycorrhizal from saprotrophic fungal hyphae in soil. Mycorrhizal hyphal extension can be up to 8 mm or more per day under lab conditions (see Cairney 2012 and references therein). Field measurements are less common, but estimates of 0.7 mm/day have been documented (Cairney 2012). Fungal hyphal surface areas were estimated to be 16 to 90 times greater than the surface area of fine roots (Hobbie & Hobbie 2008). Annual production of EMF has been estimated to range from 2 to 200 g C/(m2·year) (Ekblad et al. 2013, Hagenbo et al. 2017, Ouimette et al. 2019, Wallander et al. 2001), representing up to 30% of NPP (Ouimette et al. 2019). Few comparable estimates are available for AMF or ericoid fungal hyphae. EMF production numbers suggest substantial C investment in extraradical hyphae, but in order to fully assess the role of mycorrhizal fungi in SOM dynamics, accurate estimates of standing biomass are needed, since standing biomass represents the balance between production and turnover. Mycorrhizal hyphal biomass can represent up to a third or more of total microbial biomass in some systems (Högberg & Högberg 2002) and as much as half of the standing mycelial biomass (Bååth et al. 2004), depending on mycorrhizal type, ecosystem, and time of year. However, few actual biomass estimates exist, and those that are available range from 5 to 14 g/m2 for EMF in the organic horizon of a pine (Högberg & Högberg 2002) or boreal (Hagenbo et al. 2017) forest and from 480 to 580 g/m2 in the upper 70 cm of the soil profile in EMF-dominated forests (Wallander et al. 2004). Estimates of hyphal turnover are also limited, though it is likely a key mechanism for root-derived C transfer to SOM pools. Available data suggest that the life span of extraradical hyphae can be short, with estimates on the order of days for AMF and up to a few months for EMF, though EMF rhizomorphs may persist for several years (reviewed by Cairney 2012, Hagenbo et al. 2017). Likewise, EMF-colonized root tips turn over on the order of a few months to several years (Cairney 2012). Recent research in EMF-dominated coniferous forests in China suggests that extraradical hyphae account for up to two-thirds of new root C inputs to soil, with estimates of ~79–153 g/m2 of mycelia-derived C stored in SOM pools annually (Zhang et al. 2019). In summary, C flux through mycorrhizal extraradical hyphae is likely large and important for SOM formation.

2.2.2. Role of mycorrhizal fungi in exudate production

The release of low-molecular-weight compounds into the rhizosphere by root or mycorrhizal fungal exudation is hypothesized...
to be a dominant route by which photosynthate C enters the soil (Kuzyakov 2002). Plant C allocation to exudation has been estimated at ∼2–17% of NPP (Nguyen 2003, Yin et al. 2014), with exudation rates varying with plant species, plant age, soil type, and nutrient availability (Dijkstra et al. 2013). These labile, energy-rich organic inputs include glucose and other sugars, amino acids, organic acids, fatty acids, phenolic compounds, sterols, vitamins, and enzymes (Dakora & Phillips 2002, Pausch & Kuzyakov 2017). Their production promotes plant nutrient acquisition by stimulating rhizosphere microorganisms and their decomposition activities (see Section 3.3). In terms of SOM formation and stabilization, exudates may be secreted into places in the soil that are inaccessible to microbes or sorbed onto mineral surfaces (Keiluweit et al. 2015). As discussed above, mycorrhizal hyphae are instrumental in aggregate formation, and if they exude extracellular products while also physically enmeshing soil particles, then those exudates are likely deposited into aggregates where they are subsequently physically protected from microbial degradation. Deposition of extracellular fungal products onto mineral surfaces also appears to be a common process (Kleber et al. 2015), providing chemical protection of exuded compounds via the formation of mineral–organic complexes.

Historically, exudates were presumed to be produced primarily by roots themselves, with roots passively leaking C from immature root zones close to the tip. However, recent research demonstrates not only that mycorrhizal fungal hyphae release exudates (Toljander et al. 2007) but also that a significant proportion of plant photosynthate is delivered through mycorrhizal hyphae rather than directly released by roots. Both AMF and EMF produce exudates. For example, a large fraction of recently fixed photosynthate was traced through AMF hyphae into soil following in situ 13C labeling of wheat plants (Kaiser et al. 2015). AMF colonize host roots upstream of the root hair zone such that a significant portion of recent photosynthate appears to be diverted by the hyphae before reaching the root tip, where passive root exudation could occur. In several recent studies, AMF exudate production triggered the growth and activity of phosphate-solubilizing bacteria in the rhizosphere, thereby enhancing organic phosphorus (P) mineralization and increasing P availability (e.g., Zhang et al. 2016). The ectomycorrhizal fungus Paxillus involutus secretes substantial amounts (>10% of new biomass C) of aromatic metabolites that subsequently enhance the adsorption of organic matter onto mineral surfaces (Wang et al. 2017). Thus, mycorrhizal fungi act as a major conduit for direct delivery of plant photosynthate to the rhizosphere. However, of the pathways through which plant photosynthate C enters the SOM pool via mycorrhizal fungi, exudation is perhaps the least well understood and quantified, representing a critical research need. The degree to which plant C allocation to exudation is mediated by mycorrhizal fungi has significant consequences for predicting SOM dynamics, particularly in a global change context (Zhang et al. 2019). Specifically, if mycorrhizal fungi are the dominant pathway by which exudation occurs, then data are needed on the types and amounts of mycorrhizal exudates produced, the exudation capacities of different mycorrhizal taxa and types (e.g., AMF versus EMF), and the environmental factors that influence exudate production (e.g., host/ecosystem type, climate, nutrient availability, edaphic properties).

2.2.3. Mycorrhizal necromass. The pool of living soil microbial biomass is small relative to the total SOM pool, typically representing 1–3% of total soil C. However, due to rapid turnover, dead microbial biomass (i.e., necromass) can make a disproportionately large contribution to total SOM relative to the amount of standing microbial biomass (Grandy & Neff 2008), and turnover of microbial residues is now considered a dominant factor in SOM formation and stabilization (Cotrufo et al. 2013, Kögel-Knabner 2002, Liang et al. 2011, Schmidt et al. 2011). Microbial necromass can represent more than half of the soluble SOM fraction and account for more than 80% of soil nitrogen (N) (Simpson et al. 2007). Since mycorrhizal biomass is generated directly
from plant C and can represent a large fraction of the total standing soil microbial biomass, it may be a particularly efficient route by which primary production becomes SOM via the turnover and stabilization of mycorrhizal necromass. Indeed, more than half of newly formed SOM has been attributed to extraradical hyphae in EMF-dominated systems (Clemmensen et al. 2013, Godbold et al. 2006), and more than half of EMF biomass added to a forest soil was converted to the nonliving SOM (i.e., necromass) fraction over a few months (Schweigert et al. 2015).

Mycorrhizal necromass can influence SOM storage either by becoming stabilized within the soil matrix itself or by serving as a C and nutrient source for heterotrophic microorganisms whose own tissues subsequently become part of the necromass SOM pool. There is evidence for both mechanisms. Like those of plants, the cell walls of fungi are composed primarily of polysaccharides, with chitin and \(\beta\)-glucans being the dominant materials (Kögel-Knabner 2002). Chitin is labile relative to other fungal necromass constituents (Fernandez & Koide 2012); chitin-enriched fungal cell wall material is readily utilized as a source of both C and N by the soil microbial community (Zeglin & Myrold 2013). Microbial degradation of labile C compounds results in the production of chemically diverse SOM (Kallenbach et al. 2016) that may be physically and/or chemically stabilized through interactions with mineral surfaces and soil aggregates (Kleber et al. 2015).

In addition to chitin, fungal tissues contain smaller quantities of lipids, melanins, proteins, and carbohydrates and various types of phenolic, indolic, and quinone monomers (Kögel-Knabner 2002). Melanin has received particular attention because, like lignin, it is a large, complex, nonhydrolyzable structure designed to protect fungal cell walls against microbial attack (Kögel-Knabner 2002), and its decomposition also requires costly oxidative enzymes. Thus, impaired decomposition of mycorrhizally derived C is hypothesized to be a key driver of necromass accumulation (Clemmensen et al. 2013). Mycorrhizal necromass decomposition is controlled by its biochemical composition, which varies across species (Fernandez & Kennedy 2018, Fernandez et al. 2016), with decay rates negatively correlated with initial melanin concentrations (Figure 2) (Fernandez & Koide 2014, Fernandez et al. 2019, Koide & Malcolm 2009). When melanin synthesis was inhibited, EMF tissues decomposed significantly faster (Fernandez & Kennedy 2018), and melanized hyphae were observed to have a higher sorption to soil minerals compared with hyaline (i.e., non-melanized) hyphae (Fomina & Gadd 2003). Additionally, the persistence of stable EMF necromass was greater than that of either plant litter or bacterial biomass (Schweigert et al. 2015). Finally,

![Figure 2](https://www.annualreviews.org/doi/10.1146/annurev-ecolsys-110618-023430)

Figure 2
Decomposition of fungal necromass (percentage of mass loss) as correlated with its (a) initial melanin concentration and (b) ratio of initial melanin to initial nitrogen (N) concentration. Figure adapted from Fernandez & Koide (2014) with permission.
estimated soil melanin content was positively correlated with total soil C and soil peroxidase activity in pine forests across North America (Siletti et al. 2017). All of these results indicate that mycorrhizal necromass plays a significant, yet largely unquantified, role in SOM formation and stabilization.

3. MYCORRHIZALLY INDUCED LOSSES OF SOIL ORGANIC MATTER

While mycorrhizal fungi likely play a substantial role in influencing the C input side of the SOM storage equation, their presence and activities can also lead to its destabilization, facilitating SOM loss. There is consensus that AMF and EMF are unlikely to act as saprotrophs by metabolizing SOM to acquire C or energy (Lindahl & Tunlid 2015, Treseder et al. 2006, Zak et al. 2019). Thus, it is presumed that the primary driver of mycorrhizally induced SOM destabilization and loss is the mining of organic matter for nutrients, particularly N and P (i.e., the nutrient-mining hypothesis). A large fraction of soil N is immobilized in polyphenolic complexes—N- and P-containing compounds (i.e., proteins, inositol phosphates, phospholipids, nucleic acids) associated with polyphenols and other degradation products of plant and microbial biopolymers—that are resistant to enzymatic degradation. There is also a potentially large organic N pool stabilized on mineral surfaces (Jilling et al. 2018). For this reason, mycorrhizal fungi would benefit from having some ability to facilitate SOM decay (see the sidebar titled Decay and Decomposition Defined) to release nutrients directly or indirectly, and indeed, this capacity has been speculated for more than a century (Read 1991).

There are at least three mechanisms by which mycorrhizal fungi are thought to access nutrients locked in SOM and thereby promote its decay (Figure 3): direct enzymatic breakdown (Section 3.1), oxidation via Fenton chemistry (Section 3.2), and stimulation of microbial activity and enzyme production by providing C subsidies to the rhizosphere (Section 3.3). A fourth mechanism, competition with free-living saprotrophs (Section 3.4), is hypothesized to suppress SOM decomposition, leading to its accumulation. There is differential support for each of these mechanisms, and the degree to which they operate under field conditions is far from clear. Below, I describe each of these mechanisms in turn and discuss what is currently known about their role in soil C loss (or accumulation).

3.1. Direct Enzymatic Breakdown

Cellulose and lignin are two of the most abundant compounds in plant material and, together with hemicellulose, form the complex structure referred to as lignocellulose (Dix & Webster 1995).
Figure 3
Mechanisms of organic matter decay. (a) Breakdown of lignocellulose via extracellular enzymes produced by microorganisms. (b) Mycorrhizally mediated soil organic matter oxidation via Fenton chemistry. (c) Mycorrhizal stimulation of microbial decomposition through carbon (C) subsidies to the rhizosphere (i.e., priming). (d) Depiction of microbially mediated decomposition before (left) and after (right) mycorrhizal fungi are removed (i.e., the Gadgil effect). Abbreviations: CNP, carbon, nitrogen, and phosphorus; NP, nitrogen and phosphorus.
Microbial necromass, now thought to constitute a large fraction of SOM (see Section 2.2.3), contains compounds that are structurally similar to cellulose and lignin (i.e., chitin and melanin, respectively). The complete decay of plant and microbial residues involves a suite of extracellular enzymes. Saprotrophic fungi are generally considered the primary producers of these enzymes (Schneider et al. 2012), and the presence of enzyme-coding genes determines whether a particular fungal species has the genetic machinery to enzymatically break down plant lignocellulose or microbial necromass. In the case of plant materials, cellulose and hemicellulose are degraded by the synergistic activities of various cellulases (Figure 3a). Lignin decay involves two main groups of lignolytic enzymes: peroxidases and phenol oxidases (Dashtban et al. 2010). Peroxidases initiate the depolymerization of lignin, while phenol oxidases catalyze the oxidation of phenolic monomers once the larger lignin structure has been broken apart. Individual fungal taxa vary considerably in their decay capacity. Some saprotrophic species possess complete lignocellulolytic enzyme capabilities (e.g., produce cellulases, hemicellulases, peroxidases, and phenol oxidases) and can completely decompose lignocellulose, while others only partially degrade lignocellulose (e.g., produce only cellulases, hemicellulases, and/or phenol oxidases).

Mycorrhizal fungi are likewise highly variable in their capacity to produce extracellular SOM-degrading enzymes, although, as noted above, these enzymes are used for nutrient acquisition, not for securing C and energy (i.e., SOM decay, not decomposition; see the sidebar titled Decay and Decomposition Defined). New genomic insights over the past decade have provided clear evidence regarding which mycorrhizal taxa have the genetic capacity to facilitate SOM decay enzymatically. AMF are a monophyletic clade (Glomeromycotina) of early-diverging fungi and represent one of the oldest fungal lineages. The inability of AMF to grow in vitro was taken as early evidence that AMF are entirely dependent on their plant host for C. The recent genomic sequencing and analysis of several AMF species (e.g., Rhizobagrus irregularis, Rhizogagus clarus, Gigapora rosea, and Gigaspora margarita) have confirmed their status as obligate biotrophs (Kamel et al. 2017, Tang et al. 2016, Tisserant et al. 2013). Of greatest relevance to soil C cycling is the finding that AMF have a decreased repertoire of genes encoding for plant cell wall–degrading enzymes, with no genes encoding cellobiohydrolases or β-1,4-glucosidase. Most gene families acting on hemicellulose and pectin are also missing (Tang et al. 2016), and no genes involved in lignin degradation, such as class II peroxidases, have been found (Tisserant et al. 2013). While AMF species other than those sequenced to date might have a greater genetic capacity for SOM decay, at present only limited genomic information is available, since AMF cannot be cultured without a host plant (Kamel et al. 2017). While AMF apparently do not have the capacity for direct enzymatic decay of SOM, there is increasing evidence that they play a significant role in the indirect mobilization of nutrients from SOM by stimulating the activities of heterotrophic microorganisms (see Section 3.3).

Unlike AMF, EMF have evolved multiple times from a diverse group of saprotrophic ancestors, including brown-rot, white-rot, and other saprotrophic fungi (Hibbett et al. 2000, Martin et al. 2016). Thus, many EMF have the genetic potential to decay SOM to some degree (Zak et al. 2019). However, their ability to enzymatically modify SOM is considerably lower than that of saprotrophic fungi (Martin et al. 2016), and the degree to which individual taxa have retained or lost genes with SOM decay function is dependent on the ancestral precursor from which they evolved. All EMF species sequenced have a much-reduced complement of genes encoding plant cell wall–degrading enzymes (cellulases, hemicellulases, pectinases) and lignin-oxidizing class II peroxidases compared with saprotrophic fungi (Martin et al. 2008, Strulu-Derrien et al. 2018, Treseder & Lennon 2015). However, because they evolved from functionally diverse saprotrophic ancestors, they have retained distinct suites of lignocellulolytic genes, indicating a diverse ability to decay SOM enzymatically. Moreover, they are similar to saprotrophs in the frequency of N metabolism genes (Figure 4), including those of amino acid permeases involved in the transport of
EMF
AMF
Brown rot
White rot

0
2.0
4.0
6.0
0.4 0.6 0.8 1.0

C metabolism (number of genes/10,000 genes)
N metabolism (number of genes/10,000 genes)

Figure 4
Frequency of carbon (C) versus nitrogen (N) metabolism genes for arbuscular mycorrhizal fungi (AMF; \(n = 9 \) genomes) and ectomycorrhizal fungi (EMF; \(n = 63 \) genomes) in comparison to saprotrophic white-rot (97 genomes) and brown-rot (29 genomes) fungi. Error bars represent \(\pm 1 \) standard error. Data and figure adapted with permission from A. Romero-Olivares.

amino acids across the cell membrane (Treseder & Lennon 2015). This finding supports previous observational research that EMF can utilize organic N (Hobbie et al. 2013, Lindahl et al. 2007, Nasholm et al. 2013).

Those EMF taxa most closely related to brown-rot fungi have lost all copies of two gene families critical for cellulose breakdown (i.e., \(GH6, \) \(GH7 \)) and lack class II peroxidase genes necessary for efficient lignin degradation. These species have lost the capacity to depolymerize SOM and grow saprotrophically on complex cellulosic substrates (Wolfe et al. 2012). However, there is evidence that they can oxidize organic matter via a nonenzymatic pathway (see Section 3.2). Although many EMF have lost much of their capacity for efficient SOM decay in comparison with saprotrophs, genes mediating SOM decay have been observed in some lineages (Bödeker et al. 2009, Kohler et al. 2015). In particular, those species more closely related to white-rot fungi have multiple class II peroxidase genes (Kohler et al. 2015) and thus have the genetic potential to modify lignocellulose. Several widespread and abundant EMF genera (e.g., Cortinarius, Russula, Lactarius) possess peroxidase genes, potentially allowing them to access N sequestered in complex polyphenolic substrates (Bödeker et al. 2009, Lindahl & Tunlid 2015). It is also well documented that EMF with enzymatic genetic capacity can produce hydrolytic and oxidative enzymes and use those enzymes to decay SOM and mobilize and assimilate organic N in culture (Bending & Read 1996, Nicolás et al. 2018, Shah et al. 2016, Talbot et al. 2015). What is less clear is whether these fungi elicit significant SOM modification under field conditions while in symbiosis, providing significant organic N resources to their host.

Pellitier & Zak (2018) presented the minimum set of conditions necessary for EMF to enzymatically access a significant amount of organic N from SOM while in symbiosis: (a) Genes for lignocellulose decay must have been retained in the genome, (b) those genes must be expressed in root tips and extraradical hyphae, (c) transcribed genes must operate to liberate N from SOM, and (d) organic N assimilation must be sufficient to significantly influence the nutrient budget of the fungus and/or host. There is evidence that at least some EMF meet most of these conditions. For example, the genomes of Cortinarius species (e.g., \(C. \) glaucopus) encode a comparable number of peroxidases as many white-rot fungi, and transcription of Cortinarius peroxidase genes under field conditions has been observed to correspond to high peroxidase enzyme activity (Bödeker et al. 2014). Additionally, oxidative enzyme activity in this system was significantly reduced when soil was amended with inorganic N. Thus, it appears that Cortinarius may play an important role in
SOM decay and organic N mobilization while in symbiosis. However, for other taxa, there appears to be a strong energetic trade-off between being a high-quality host partner (e.g., a strong root colonizer) and producing costly extracellular enzymes (Moeller & Peay 2016).

In summary, the genetic capacity for direct enzymatic SOM decay is not uniform, and there is a continuum of capacities across mycorrhizal taxa. Moreover, the extent to which this variable genetic capacity is realized under field conditions is still unclear. Host and environmental factors likely interact with taxon-specific genetic capacity to influence the degree to which direct (enzymatically catalyzed) lignocellulose and/or microbial necromass decay is significantly facilitated by mycorrhizal fungi.

3.2. Soil Organic Matter Oxidation via Fenton Chemistry

It has been hypothesized that EMF that evolved from brown-rot ancestors have adapted the brown-rot degradation system involving Fenton chemistry to degrade organic matter–protein complexes and mobilize N (Beeck et al. 2018). In brown-rot fungi, lignocellulose depolymerization is initiated extracellularly by destructive hydroxyl radicals, produced when hydrogen peroxide reacts with ferrous iron (Fe^{2+}) (Arantes & Goodell 2014). After this initial hydroxyl radical attack, hydrolytic enzymes further degrade cellulose (Figure 3). Recent research has documented that the EMF taxon *P. involutus* is able to use this mechanism to liberate and assimilate organic N from proteins (Beeck et al. 2018, Nicolás et al. 2018, Rineau et al. 2012, 2013, Wang et al. 2017). Organic matter decay by *P. involutus* is a two-step process of oxidation and hydrolysis controlled by C and N availability, with at least four conditions required to elicit organic matter oxidation and organic N assimilation—inorganic N limitation and the presence of a labile C source (e.g., glucose), a protein source, and iron in its reduced form (Fe^{2+}) (Beeck et al. 2018, Nicolás et al. 2018). Thus, it appears that the Fenton oxidation mechanism as employed by this fungus works in concert with proteolysis, enhancing N liberation from proteins. Unlike saprotrophic fungi, *P. involutus* does not exhibit expression of genes encoding extracellular enzymes needed to metabolize released C (Rineau et al. 2013), supporting the hypothesis that this mechanism is used to mobilize organic N rather than C. Thus, *P. involutus* acts as a “coincidental decomposer” (sensu Talbot et al. 2008), releasing C as a by-product of organic N acquisition. In the process, *P. involutus* secretes substantial amounts (>10% of new biomass C) of aromatic metabolites that enhance organic matter adsorption onto mineral surfaces (Wang et al. 2017), contributing not only to SOM degradation but also to its formation and potential stabilization (see Section 2.2.2). Note that this research has been done primarily in pure culture in the lab with one EMF taxon (i.e., *P. involutus*) and not while in symbiosis with a host plant. However, if this mechanism is employed by EMF during symbiosis, it could have important ecosystem-scale implications for C and N cycling.

3.3. Mycorrhizal Stimulation of Microbial Decomposition Through Carbon Subsidies to the Rhizosphere

As discussed in Section 2.2.1, mycorrhizal extraradical hyphae are a primary sink for plant photosynthate transferred belowground. Since AMF and many EMF taxa lack the genetic capacity to efficiently enzymatically mine organic materials for nutrients (see Section 3.1), an alternate strategy is to stimulate free-living saprotrophic microbes in the rhizosphere to carry out this function (Kuzyakov 2002, 2010; Phillips et al. 2012). This mechanism accelerates the mineralization of native SOM by priming the growth and extracellular enzyme production of rhizosphere microbes with plant C subsidies (i.e., mycorrhizal exudates and necromass). Release of plant C via mycorrhizal hyphae, rather than passive root exudation, may allow for greater precision in targeting photosynthate toward the saprotrophic microbial community (Dickie et al. 2015). Thus, free-living
microbial decomposers (saprotrophic bacteria and fungi) and their grazers (e.g., protozoa, collembo-
lanes, nematodes) represent the third leg of the mycorrhizal symbiosis stool, significantly influ-
encing soil C dynamics and plant nutrient availability. Priming as a mechanism for mycorrhizal
acquisition of nutrients is likely particularly important in soils where N or P availability is low or
in systems where these nutrients are bound primarily in complex organic compounds (Dijkstra
et al. 2013, Orwin et al. 2011).

The priming process seems to be especially important for AMF, since these obligate biotrophs
lack the genetic capacity to directly liberate N and P from organic sources (Tisserant et al. 2013).
AMF hyphae preferentially grow toward organic matter patches where, once in a patch, AMF hy-
phal growth significantly increases, as does plant nutrient acquisition (Hodge et al. 2001). Plant
C is rapidly transferred to AMF hyphae (Kaiser et al. 2015), followed by slower release to rhi-
zosphere bacterial and fungal populations (Drigo et al. 2010). This process suggests that AMF
hyphae growing in organic matter patches may control C release similarly to a slow-release fertil-
izer, making labile C available to associated microbes in the rhizosphere as nutrients are needed
by the AMF fungus or plant. AMF colonization induces changes in rhizosphere bacterial popula-
tions, promotes bacterial growth, and stimulates the activities of microbial extracellular enzymes
targeting N and P acquisition (Hodge et al. 2001). Plant C is rapidly transferred to AMF hyphae
(Kaiser et al. 2015), followed by slower release to rhizosphere bacterial and fungal populations
(Deslippe et al. 2016). In several recent studies, nearly half of chitinolytic and lignolytic enzyme activity in
the rhizosphere (Brzostek et al. 2015) and 80% of the stimulated N mineralization (Zhang et al.
2019) were driven by the presence of EMF. However, the degree to which these observations are
due to priming versus direct enzymatic decay of SOM by EMF is unclear.

Rhizosphere priming is often assumed to be due primarily to the release of labile exudates;
however, priming may also result from the turnover of mycorrhizal necromass, stimulating sapro-
trophic microbes in a similar way (Fernandez & Kennedy 2016). A large proportion of C assim-
ilated by the bacterial rhizosphere community can be derived from AMF hyphal turnover rather
than exudates (Drigo et al. 2010), suggesting an important role for fungal necromass in the prim-
ing process. Microbes are generally N-rich, and accelerated turnover of microbial necromass may
increase N availability to a greater extent than decomposition of other SOM pools (Phillips et al.
2012). Some mycorrhizal fungi also produce organic acids with strong metal-complexing ability.
For example, oxalic acid, an abundant rhizosphere compound, can stimulate SOM mineralization
by liberating organic compounds from protective associations with soil minerals (Keiluweit et al.
2015). Mineral-associated organic matter includes a range of N-rich molecules, and mycorrhizal
exudation may influence the mobilization of mineral-associated organic matter by stimulating
microbial activity on or near mineral surfaces, stimulating the destabilization and degradation of
mineral-associated SOM while at the same time releasing N and other nutrients (Jilling et al.
2018).

3.4. Mycorrhizal Competition with Saprotrophic Fungi
The above-described mechanisms focus on how mycorrhizal fungi stimulate SOM decay, pre-
sumably leading to soil C loss, although partial SOM decay may also facilitate SOM stabilization.
Gadgil effect:

hypothesis that mycorrhizal fungi suppress SOM decomposition through antagonistic interactions with free-living saprotrophs

However, field observations indicate that litter or SOM decomposition by free-living saprotrophs is sometimes enhanced when mycorrhizal fungi are absent from soil (Gadgil & Gadgil 1971, 1975). This phenomenon, often referred to as the Gadgil effect, has been observed principally in soil trenching or tree girdling experiments where living roots and their extraradical hyphae are either severed (trenching) or cut off from host C supply (girdling). In both cases, declines in living mycorrhizal hyphae in the soil have been associated with increased litter decay (Sterkenburg et al. 2018), decreased plant litter accumulation (Gadgil & Gadgil 1975), enhanced C and N mineralization (Averill & Hawkes 2016, Moore et al. 2015), and increased activities of SOM-degrading enzymes (Kaiser et al. 2010; but see Brzostek et al. 2015). Negative correlations between mycorrhizal densities and rates of litter decay have also been observed in litter decomposition studies (Koide & Wu 2003). Although the Gadgil effect is most often discussed in the context of EMF colonization, the presence of AMF also suppresses microbial decomposition (Leifheit et al. 2015). The primary explanation for these observations is that mycorrhizal fungi compete through antagonistic interactions (e.g., production of antimicrobial compounds) with free-living saprotrophs for shared limiting resources, namely nutrients and/or water (Averill 2016, Koide & Wu 2003, Leifheit et al. 2015, Peay 2016), suppressing the activities of free-living saprotrophs. However, other mechanisms are possible. For example, mycorrhizal fungi may parasitize nutrient-rich saprotrophic fungi as an alternate resource-acquisition strategy (Fernandez & Kennedy 2016).

Although the Gadgil effect is invoked frequently in the literature, there is little direct empirical support for it due to methodological limitations. Manipulating root and mycorrhizal abundance through soil trenching or tree girdling produces confounding effects, including altered soil moisture dynamics and the introduction of a fresh pool of severed roots and fungal hyphae for heterotrophic microbes to utilize. There is also limited consensus on the magnitude or direction of the Gadgil effect across ecosystem types (Fernandez & Kennedy 2016). For example, results from several recent girdling experiments suggest that (a) the Gadgil effect is limited to the plant litter layer (Sterkenburg et al. 2018); (b) saprotrophic fungi do not exploit the empty niche left by mycorrhizal fungi after trenching (Sterkenburg et al. 2018); and (c) the presence of roots and mycorrhizal fungi actually accelerates rather than suppresses SOM decomposition via the priming mechanism (see Section 3.3), particularly at EMF-dominated sites (Brzostek et al. 2015).

4. IMPLICATIONS FOR SOIL CARBON DYNAMICS AT THE ECOSYSTEM SCALE

The different evolutionary histories of EMF versus AMF have resulted in a suite of nutrient acquisition traits and strategies that have implications for soil C cycling at the ecosystem scale, with nutrient cycling rates and SOM storage differing significantly between EMF- and AMF-dominated ecosystems. For example, EMF-colonized trees are associated with leaf litters having higher ratios of C to N (Jo et al. 2019, Lin et al. 2017, Read 1991, Zhu et al. 2018) and slower rates of decomposition (Cornelissen et al. 2001, Hobbie et al. 2006, Keller & Phillips 2018) compared with AMF-associated trees. Plant roots, which are significant contributors to SOM formation, also decompose more slowly for EMF- than AMF-colonized trees (Jacobs et al. 2018). Total fungal and mycorrhizal extraradical hyphal biomass is higher in EMF-dominated forests (Cheeke et al. 2017), as is the total amount of C stored in mycorrhizal-associated pools (Soudzilovskaia et al. 2015).

Nutrient cycles also vary by mycorrhizal type, with EMF-dominated sites typically having higher dissolved organic C concentrations (Phillips et al. 2013) and organic P availability (Rosling et al. 2016), and lower inorganic N concentrations (Corrales et al. 2016, Lin et al. 2017) and rates of nitrate leaching (Midgley et al. 2015). These observations have been synthesized into the
mycorrhizal-associated nutrient economy (MANE) framework (Phillips et al. 2013), providing an integrated synopsis of how EMF- versus AMF-colonized trees differentially influence C and nutrient cycles. The overarching MANE hypothesis is that these two mycorrhizal types elicit fundamentally different nutrient economies: the EMF organic nutrient economy, with slow C and nutrient cycling, resulting in a limited loss of inorganic nutrients compared with the AMF inorganic nutrient economy, characterized by fast decomposition of high-quality plant litter and rapid C and nutrient cycling. While the above observations have been documented mostly for temperate forests, emerging evidence suggests that similar dynamics occur in other systems, including a subarctic alpine plant community (Soudzilovskaia et al. 2015) and tropical forests (Corrales et al. 2016, Waring et al. 2016).

How MANE dynamics influence SOM storage is less clear, with studies reporting higher soil C concentrations or stocks in EMF-dominated (Averill et al. 2014, Lin et al. 2017, Taylor et al. 2016) or AMF-dominated (Craig et al. 2018, Jo et al. 2019) sites. Other studies have shown no correlation between relative EMF or AMF dominance and soil C (Jo et al. 2019, Zhu et al. 2018). These conflicting results may be due to differences in soil depth analyzed. Surface soils (∼0–20 cm) in EMF-dominated sites tend to exhibit enhanced soil C relative to AMF-dominated sites (Jo et al. 2019, Lin et al. 2017, Taylor et al. 2016; but see Zhu et al. 2018), whereas a recent analysis of deeper soils showed that AMF-dominated sites store more C to a depth of 1 m (Craig et al. 2018; but see Averill et al. 2014). Cross-biome analyses also yield different results compared with more localized studies that control for climate and edaphic factors. For example, in a global analysis of soil C content to a depth of 1 m, Averill et al. (2014) reported greater C storage in EMF systems, whereas Craig et al. (2018) found a negative correlation between relative EMF dominance and soil C in an analysis of soil C stocks (also to a depth of 1 m) at three midlatitude broadleaf forests with similar climate. An analysis of three million mycorrhizal trees showed that the consequences of differential mycorrhizal association on soil C stocks varies by ecoregion; the relationship between AMF tree dominance and soil C stock is positive in mesic temperate regions but negative in dry regions (Jo et al. 2019).

As discussed above, AMF and EMF deploy different nutrient acquisition strategies as a result of their evolutionary history and resultant genetic capacity. A general supposition is that AMF, because of their inability to produce extracellular SOM-degrading enzymes, scavenge mineral nutrients, as they are dependent on and even enhance SOM decomposition by free-living rhizosphere saprotrophs (i.e., rhizosphere priming; see Section 3.3). EMF, in contrast, mine nutrients from SOM either directly (i.e., through enzymatic breakdown; see Section 3.1) or indirectly (i.e., oxidation via Fenton chemistry), potentially leaving C-rich, nutrient-poor substrates behind (Lambers et al. 2008, Orwin et al. 2011). The effect of these two different nutrient-acquiring strategies (i.e., scavenging versus mining) on SOM storage depends on how they differentially affect SOM stabilization versus destabilization. On the surface, the AMF scavenging strategy might be expected to drive soil C loss as the activities of heterotrophic microbes are stimulated. This hypothesis is supported by the observation that AMF-associated C inputs stimulated higher rates of decomposer activity and soil C loss (Wurzburger & Brookshire 2017). However, labile plant C inputs and microbial by-products are now known to be important precursors of stable SOM that become protected within soil aggregates and through association with mineral surfaces (Cotrufo et al. 2013). Thus, an alternative prediction is that a scavenging strategy promotes the formation of stable SOM, consistent with the observation that concentrations of amino sugars (an index of microbially derived SOM) and N in mineral-associated organic matter were positively correlated with AMF tree dominance (Craig et al. 2018). Additionally, some studies suggest that priming is more important in EMF- versus AMF-dominated systems (Brzostek et al. 2015, Sulman et al. 2017) and that the activities of N- and P-acquiring enzymes are greater at EMF- compared with...
AMF-dominated sites (Phillips et al. 2013), as a result of either priming or direct EMF production of extracellular enzymes. However, reduced extracellular enzyme activities have also been observed when EMF are reduced or removed from the soil (Kaiser et al. 2010, Kyaschenko et al. 2017). Thus, the nutrient acquisition activities of EMF, like those of AMF, could either stimulate decomposition and soil C loss (e.g., Baskaran et al. 2017) or facilitate the stabilization of more C on mineral surfaces and within soil aggregates.

Mycorrhizal fungi are perhaps the best-studied group of soil organisms, yet our understanding is limited as to how their presence and activities ultimately affect soil C cycling. There is observational evidence that mycorrhizal nutrient acquisition strategies have implications for soil C dynamics at the ecosystem scale; however, direct experimental evidence is lacking for how these strategies differentially influence soil C storage. The various ways in which mycorrhizal fungi influence SOM formation, stabilization, and destabilization (discussed in Sections 2 and 3) all potentially operate to some degree and are not mutually exclusive, with synergies likely among them. The overall impact of mycorrhizal fungi on SOM storage will be the net effect of these contrasting processes, which are context dependent, varying by mycorrhizal type (e.g., AMF versus EMF), species (e.g., EMF evolved from brown-rot versus white-rot ancestors), host plant, season, edaphic properties, and other factors. Obtaining direct empirical evidence of the mechanisms by which mycorrhizal fungi influence SOM dynamics, the degree to which they occur in the field, and the conditions under which they operate is an area of critical research need.

SUMMARY POINTS

1. Mycorrhizal fungi are a major conduit of plant photosynthate to the rhizosphere.
2. Mycorrhizal extraradical hyphae secrete significant quantities of rhizosphere exudates.
3. Mycorrhizal necromass likely plays a significant, yet largely unquantified, role in SOM formation and stabilization.
4. Mycorrhizal fungi do not have the genetic capacity to act as saprotrophs but rather employ several nutrient acquisition strategies that facilitate SOM decay.
5. Enzymatic degradation (white-rot relatives) and oxidation via Fenton chemistry (brown-rot relatives) are potentially important mechanisms by which EMF enhance SOM decay and nutrient release.
6. Rhizosphere priming is a potentially important nutrient acquisition strategy for AMF due to their inability to produce extracellular SOM-degrading enzymes.
7. Mycorrhizal type (e.g., AMF versus EMF) differentially influences SOM dynamics at the ecosystem scale.

FUTURE ISSUES

1. What are the contributions of mycorrhizal exudation and necromass production to SOM formation and stabilization?
2. What is the relative importance of mycorrhizally mediated SOM decay mechanisms for nutrient acquisition (i.e., enzymatic degradation, oxidation via Fenton chemistry, rhizosphere priming), and under what conditions do they operate?
3. Do EMF enzymatically access a significant amount of organic N from SOM while in symbiosis?

4. Do mycorrhizal fungi suppress SOM decomposition through antagonistic interactions with free-living saprotrophs (i.e., the Gadgil effect)? If so, what host and environmental factors modulate this effect, and what are the overall consequences for soil C storage?

5. How universal are MANE dynamics, and what are the underlying mechanisms explaining these ecosystem-scale observations?

6. Will explicit representation of plant–mycorrhiza–SOM dynamics in ecosystem and Earth system models improve their predictive capacity?

DISCLOSURE STATEMENT

The author is not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

I thank Sarah Hobbie and the Editorial Committee of the Annual Review of Ecology, Evolution, and Systematics for the invitation to contribute this article. I also thank Stuart Grandy, Erik Hobbie, Andy Ouimette, Rich Phillips, Anne Pringle, and members of the Frey, Ernakovich, and Grandy laboratories at the University of New Hampshire for helpful feedback that improved the manuscript. Particular thanks go to Mark Anthony, Adriana Romero-Olivares, and Adriana Jilling for assistance with references and figures. The US National Science Foundation and Departments of Agriculture, Defense, and Energy have supported my research in the area of soil carbon cycling over the past 20 years.

LITERATURE CITED

Bödeker ITM, Nygren CM, Taylor AF, Olson Å, Lindahl BD. 2009. Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J. 3:1387–95

Midgley MG, Brzostek E, Phillips RP. 2015. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. *J. Ecol.* 103:1454–63

Contents

AREES at 50: A Semicentennial Celebration
Douglas J. Futuyma .. 1

Cultural Evolution in Animals
Andrew Whiten .. 27

Somatic Mutation and Evolution in Plants
Daniel J. Schoen and Stewart T. Schultz 49

Beyond Reproductive Isolation: Demographic Controls
on the Speciation Process
Michael G. Harvey, Sonal Singhal, and Daniel L. Rabosky 75

An Integrative Framework for Understanding the Mechanisms
and Multigenerational Consequences of Transgenerational Plasticity
Alison M. Bell and Jennifer K. Hellmann 97

Origins and Assembly of Malesian Rainforests
Robert M. Kooyman, Robert J. Morley, Darren M. Crayn,
Elizabeth M. Joyce, Maurizio Rossetto, J.W. Ferry Slik,
Joeri S. Strijk, Tao Su, Jia-Yee S. Yap, and Peter Wilf 119

More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver
of Plant Growth and Soil Health
Muhammad Saleem, Jie Hu, and Alexandre Jousset 145

Consequences of Multispecies Introductions on Island Ecosystems
James C. Russell and Christopher N. Kaiser-Bunbury 169

Importance of Pollinator-Mediated Interspecific Pollen Transfer for
Angiosperm Evolution
Juan Isaac Moreira-Hernández and Nathan Muchhala 191

Haploid Selection in “Diploid” Organisms
Simone Immler .. 219

Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics
Serita D. Frey .. 237
What Have Long-Term Field Studies Taught Us About Population Dynamics?
Beth A. Reinke, David A.W. Miller, and Fredric J. Janzen .. 261

History and Geography of Neotropical Tree Diversity
Christopher W. Dick and R. Toby Pennington ... 279

Climate Change in the Tropics: Ecological and Evolutionary Responses at Low Latitudes
Kimberly S. Sheldon .. 303

Experimental Studies of Evolution and Eco-Evo Dynamics in Guppies (Poecilia reticulata)
David N. Reznick and Joseph Travis .. 335

The Invasion Hierarchy: Ecological and Evolutionary Consequences of Invasions in the Fossil Record
Alycia L. Stigall ... 355

Interactive Effects of Global Change on Forest Pest and Pathogen Dynamics
Allison B. Simler-Williamson, David M. Rizzo, and Richard C. Cobb 381

Phylogenetic Comparative Methods and the Evolution of Multivariate Phenotypes
Dean C. Adams and Michael L. Collyer .. 405

Spatial Population Genetics: It’s About Time
Gideon S. Bradburd and Peter L. Ralph .. 427

Evolutionary and Ecological Consequences of Gut Microbial Communities
Nancy A. Moran, Howard Ochman, and Tobin J. Hammer ... 451

A Bird’s-Eye View of Pollination: Biotic Interactions as Drivers of Adaptation and Community Change
Anton Pauw ... 477

Life Ascending: Mechanism and Process in Physiological Adaptation to High-Altitude Hypoxia
Jay F. Storz and Graham R. Scott ... 503

Evolution in the Anthropocene: Informing Governance and Policy
Peter Søgaard Jørgensen, Carl Folke, and Scott P. Carroll .. 527

Revisiting the Fate of Dead Leaves That Fall into Streams
Jane C. Marks ... 547

The Paradox Behind the Pattern of Rapid Adaptive Radiation: How Can the Speciation Process Sustain Itself Through an Early Burst?
Christopher H. Martin and Emilie J. Richards .. 569
Related Articles

From the *Annual Review of Animal Biosciences*, Volume 7 (2019)

Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap
Elisabetta Giuffra, Christopher K. Tuggle, and The FAANG Consortium

Mammalian Sex Chromosome Structure, Gene Content, and Function in Male Fertility
Wan-Sheng Liu

Multiple Facets of Marine Invertebrate Conservation Genomics
Jose V. Lopez, Bisboy Kamel, Mónica Medina, Timothy Collins, and Iliana B. Baums

The Role of Reproductive Technologies in Amphibian Conservation Breeding Programs
Aimee J. Silla and Phillip G. Byrne

Tigers of the World: Genomics and Conservation
Sbu-Jin Luo, Yue-Chen Liu, and Xiao Xu

Seawater Chemistry Through Phanerozoic Time
Alexandra V. Turchyn and Donald J. DePaolo

Flood Basalts and Mass Extinctions
Matthew E. Clapham and Paul R. Renne

Soil Functions: Connecting Earth’s Critical Zone
Steven A. Banwart, Nikolaos P. Nikolaidis, Yong-Guan Zhub, Caroline L. Peacock, and Donald L. Sparks

Marsh Processes and Their Response to Climate Change and Sea-Level Rise
Duncan M. FitzGerald and Zoe Hughes

The Mesozoic Biogeographic History of Gondwanan Terrestrial Vertebrates: Insights from Madagascar’s Fossil Record
David W. Krause, Joseph J. W. Sertich, Patrick M. O’Connor, Kristina Curry Rogers, and Raymond R. Rogers
Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis
Paulo M. Brando, Lucas Paolucci, Caroline C. Ummenhofer, Elsa M. Ordway, Henrik Hartmann, Megan E. Cattau, Ludmila Rattis, Vincent Medjibe, Michael T. Coe, and Jennifer Balch

The State and Future of Antarctic Environments in a Global Context
Steven L. Chown and Cassandra M. Brooks
Island Biodiversity in the Anthropocene
James C. Russell and Christoph Kueffer
Mammal Conservation: Old Problems, New Perspectives, Transdisciplinarity, and the Coming of Age of Conservation Geopolitics
David W. Macdonald
The State of the World’s Mangrove Forests: Past, Present, and Future
Status, Institutions, and Prospects for Global Capture Fisheries
Christopher Costello and Daniel Ovando
Illegal Wildlife Trade: Scale, Processes, and Governance
Michael ‘t Sas-Rolfes, Daniel W.S. Challender, Amy Hinsley, Diogo Veríssimo, and E.J. Milner-Gulland
Ecotourism for Conservation?
Amanda L. Stronza, Carter A. Hunt, and Lee A. Fitzgerald
Co-Producing Sustainability: Reordering the Governance of Science, Policy, and Practice
Carina Wyborn, Amber Datta, Jasper Montana, Melanie Ryan, Peat Leith, Brian Chaffin, Clark Miller, and Lorrae van Kerkhoff
Social Synergies, Tradeoffs, and Equity in Marine Conservation Impacts
David A. Gill, Samantha H. Cheng, Louise Glew, Ernest Aigner, Nathan J. Bennett, and Michael B. Mascia

From the Annual Review of Entomology, Volume 64 (2019)
The Ecology of Collective Behavior in Ants
Deborah M. Gordon
Invasion Success and Management Strategies for Social Vespula Wasps
Philip J. Lester and Jacqueline R. Beggs
Invasive Cereal Aphids of North America: Ecology and Pest Management
Michael J. Brewer, Frank B. Peairs, and Norman C. Elliott
Movement and Demography of At-Risk Butterflies: Building Blocks for Conservation
Cheryl B. Schultz, Nick M. Haddad, Erica H. Henry, and Elizabeth E. Crone

Epigenetics in Insects: Genome Regulation and the Generation of Phenotypic Diversity
Karl M. Glastad, Brendan G. Hunt, and Michael A.D. Goodisman

Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families
Hugh M. Robertson

Systematics, Phylogeny, and Evolution of Braconid Wasps: 30 Years of Progress
Xue-xin Chen and Cornelis van Achterberg

Water Beetles as Models in Ecology and Evolution
David T. Bilton, Ignacio Ribera, and Andrew Edward Z. Short

Phylogeography of Ticks (Acari: Ixodida)
Lorenza Beati and Hans Klompen

From the Annual Review of Genetics, Volume 53 (2019)

Crossover Interference: Shedding Light on the Evolution of Recombination
Sarah P. Otto and Bret A. Payseur

Evolutionary Ecology of Wolbachia Releases for Disease Control
Perran A. Ross, Michael Turelli, and Ary A. Hoffmann

Living with Two Genomes: Grafting and Its Implications for Plant Genome-to-Genome Interactions, Phenotypic Variation, and Evolution
Brandon S. Gaut, Allison J. Miller, and Danelle K. Seymour

Standard Deviations: The Biological Bases of Transmission Ratio Distortion
Lila Fishman and Mariah McIntosh

The Microbiome and Aging
Bianca Bana and Filipe Cabreiro

Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form
Larissa B. Patterson and David M. Parichy

From the Annual Review of Genomics and Human Genetics, Volume 20 (2019)

The Genetics of Human Skin and Hair Pigmentation
William J. Pavan and Richard A. Sturm

Measuring Clonal Evolution in Cancer with Genomics
Marc J. Williams, Andrea Sottoriva, and Trevor A. Graham

The Causes and Consequences of Genetic Interactions (Epistasis)
Júlia Domingo, Pablo Baeza-Centurion, and Ben Lehner

x Related Articles
Thinking About the Evolution of Complex Traits in the Era of Genome-Wide Association Studies
Guy Sella and Nicholas H. Barton

Planktonic Marine Archaea
Alyson E. Santoro, R. Alexander Richter, and Christopher L. Dupont

Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes
Ted Maksym

Biologically Generated Mixing in the Ocean
Eric Kunze

Climate Change, Coral Loss, and the Curious Case of the Parrotfish Paradigm: Why Don’t Marine Protected Areas Improve Reef Resilience?
John F. Bruno, Isabelle M. Côté, and Lauren T. Toth

Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data
Piero Calosi, Hollie M. Putnam, Richard J. Twitchett, and Fanny Vermandele

From the *Annual Review of Microbiology*, Volume 73 (2019)

Ecology and Evolution of Plant Microbiomes
Viviane Cordovez, Francisco Dini-Andreote, Víctor J. Carrión, and Jos M. Raaijmakers

Algal Sex Determination and the Evolution of Anisogamy
James Umen and Susana Coelho

The Ultimate Guide to Bacterial Swarming: An Experimental Model to Study the Evolution of Cooperative Behavior
Jinyuan Yan, Hilary Monaco, and Joao B. Xavier

Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis
Jessica L. Mark Welch, Floyd E. Dewhirst, and Gary G. Borisy

Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations
Rachel A. Foster and Jonathan P. Zebr

Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens
Kirsten I. Bos, Denise Kühnert, Alexander Herbig, Luis Roger Esquivel-Gomez, Aída Andradas Valteuña, Rodrigo Barquera, Karen Giffin, Aditya Kumar Lankapalli, Elizabeth A. Nelson, Susanna Sabin, Maria A. Spyrou, and Johannes Krause

From the *Annual Review of Plant Biology*, Volume 70 (2019)

Molecular Interactions Between Plants and Insect Herbivores
Matthias Erb and Philippe Reymond
A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks
Acer VanWallendael, Ali Soltani, Nathan C. Emery, Murilo M. Peixoto, Jason Olsen, and *David B. Lowry*

Comparative and Functional Algal Genomics
Crysten E. Blaby-Haas and Sabeeha S. Merchant

CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture
Kunling Chen, Yanpeng Wang, Rui Zhang, Huawei Zhang, and *Caixia Gao*

Risk Assessment and Regulation of Plants Modified by Modern Biotechniques: Current Status and Future Challenges
Joachim Schiemann, Antje Dietz-Pfeilstetter, Frank Hartung, Christian Kohl, and *Jörg Romeis,* and *Thorben Sprink*

From the *Annual Review of Phytopathology*, Volume 57 (2019)

Revisiting the Concept of Host Range of Plant Pathogens
Cindy E. Morris and Benoît Moury

Durability of Quantitative Resistance in Crops: Greater Than We Know?
Christina Cowger and James K.M. Brown

Molecular Dialog Between Parasitic Plants and Their Hosts
Christopher R. Clarke, Michael P. Timko, John I. Yoder, Michael J. Axtell, and *James H. Westwood*

Ecology and Evolution of the Sudden Oak Death Pathogen *Phytophthora ramorum*
Niklaus J. Grünwald, Jared M. LeBoldus, and *Richard C. Hamelin*

Understanding Adaptation, Coevolution, Host Specialization, and Mating System in Castrating Anther-Smut Fungi by Combining Population and Comparative Genomics
Fanny E. Hartmann, Ricardo C. Rodríguez de la Vega, Fantin Carpentier, *Pierre Gladiex,* *Amandine Cornille, Michael E. Hood,* and *Tatiana Giraud*

Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases
Samuel W. Wilkinson, Melissa H. Mageroy, Ana López Sánchez, Lisa M. Smith, *Leonardo Furci, T.E. Anne Cotton,* and *Jurrjaan Ton*