
Ecological Applications, 19(3), 2009, pp. 799–816
� 2009 by the Ecological Society of America

Indicators of regime shifts in ecological systems:
What do we need to know and when do we need to know it?
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Abstract. Because novel ecological conditions can cause severe and long-lasting
environmental damage with large economic costs, ecologists must identify possible
environmental regime shifts and pro-actively guide ecosystem management. As an illustrative
example, we applied six potential indicators of impending regime shifts to S. R. Carpenter and
W. A. Brock’s model of lake eutrophication and analyzed whether or not they afforded
adequate advance warning to enable preventative interventions. Our initial analyses suggest
that an indicator based on the high-frequency signal in the spectral density of the time-series
provides the best advance warning of a regime shift, even when only incomplete information
about underlying system drivers and processes is available. In light of this result, we explored
two key factors associated with using indicators to prevent regime shifts. The first key factor is
the amount of inertia in the system; i.e., how fast the system will react to a change in
management, given that a manager can actually control relevant system drivers. If rapid,
intensive management is possible, our analyses suggest that an indicator must provide at least
20 years advance warning to reduce the probability of a regime shift to ,5%. As time to
intervention is increased or intensity of intervention is decreased, the necessary amount of
advance warning required to avoid a regime shift increases exponentially. The second key
factor concerns the amount and type of variability intrinsic to the system, and the impact of
this variability on the power of an indicator. Indicators are considered powerful if they detect
an impending regime shift with adequate lead time for effective management intervention, but
not so far in advance that interventions are too costly or unnecessary. Intrinsic ‘‘noise’’ in the
system obscures the ‘‘signal’’ provided by all indicators, and therefore, the power of the
indicators declines rapidly with increasing within- and between-year variability in measurable
variables or parameters. Our results highlight the key role of human decisions in managing
ecosystems and the importance of pro-active application of the precautionary principle to
avoid regime shifts.

Key words: alternative stable states; hysteresis; lakes; management response; regime shift; simulation;
spectral density; threshold; time-series.

INTRODUCTION

Ecologists, climatologists, and oceanographers recog-

nize that biological and physical systems can undergo

major reorganizations due to changes in underlying

environmental conditions. Such ‘‘regime shifts’’ are of

significant management concern because many of them

have negative ecological impacts (e.g., the shift from

oligotrophic to eutrophic states in lakes), whereas others

may be deliberately induced to attain specified manage-

ment goals (e.g., current practices in managing grazing

lands or in accelerating ecological restoration). To date,

most approaches to identifying regime shifts have been

post hoc: Ecologists, climatologists, and statisticians

examine historical time-series data of key ecosystem

variables to determine whether or not a regime shift has

already occurred. But managers (individuals who make

decisions about ecosystem management or who imple-

ment those decisions) must have indicators that provide

reliable advance warning of impending regime shifts.

These indicators must provide enough lead time for

implementation of management actions so that unde-

sired regime shifts can be forestalled or the system can

be moved into the desired regime. Recent research in this

area is focused on developing prospective indicators of

regime shifts, but these studies have not determined how

much advance warning these indicators provide and

whether it is enough time to actually direct an ecosystem

into the desired regime. Here, we examined in detail how

much advance warning six prospective indicators

provide. We then explored two issues involved with

using these indicators to manage a system subject to a

regime shift. The first is what we call the inertia of the

system: Can progress toward a regime shift be slowed or

stopped by a management intervention, or is the system

too far gone? The answer depends on the relationship

between how far in advance an indicator detects an
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impending regime shift and how quickly the system can

respond to the intervention. Second, all processes are

subject to noise (stochastic variance) that can obscure

the signal of an impending regime shift. Are certain

indicators better at identifying the relevant signal of an

impending regime shift? We used shifts from oligotro-

phic to eutrophic regimes in modeled lakes as our

example, but as we discuss at the end of the paper, our

results can be generalized to a wide range of ecosystems.

BACKGROUND

The possibility that ecosystems can exist in alternative

stable states was first illustrated using theoretical models

(Holling 1973, May 1977). Predictions of these models,

in which the parameters defining interactions between

species remain constant but either the initial conditions

or a strong perturbation to the system lead to alternative

equilibrium points (May 1977, Beisner et al. 2003), have

been demonstrated in a wide variety of ecosystems

(Schröder et al. 2005). Climatologists and oceanogra-

phers also have recognized the existence of ‘‘regime

shifts’’: substantial, long-term reorganization of climate

systems that result from directional changes in under-

lying environmental drivers and lead to new temporary

or permanent equilibrium states (Easterling and Peter-

son 1995, Lazante 1996). Directional changes in

environmental drivers also can lead to reorganization

of ecological systems, and we now recognize regime

shifts in a variety of ecosystems, including grasslands

and rangelands, coral reefs, oceanic fisheries, and lakes

(Steele 1998, Scheffer and Carpenter 2003, Walker and

Meyers 2004, Litzow and Ciannelli 2007, deYoung et al.

2008).

Regime shifts often are caused by feedbacks among

key environmental drivers (e.g., Carpenter and Brock

2006, Lawrence et al. 2007). Thus, processes that control

the system after a regime shift has occurred may not

necessarily be the same ones that controlled the system

before the regime shift. Consequently, it can be difficult

to reverse a regime shift. For example, an increase in the

rate of phosphorus (P) recycling from lake sediments

back into the water column occurs when the amount of

P in solution reaches a certain threshold, rapidly shifting

the lake from an oligotrophic to a eutrophic state

(Carpenter and Cottingham 1997). A reduction in the

amount of P after a regime shift may not lead the lake

immediately to a shift back into an oligotrophic state

(Carpenter et al. 1999) because P recycling no longer

uniquely controls the new state of the system. Similarly,

in rangeland systems, when shrub cover is low,

grasslands can recover from overgrazing when grazers

are removed. But when shrub cover is higher, grasslands

cannot recover from overgrazing after grazers are

removed because shrubs outcompete grasses (Anderies

et al. 2002, Bestelmeyer et al. 2004). Transitions between

grassland and shrubland states can be further controlled

by the frequency of fire, but the relative impact of

competition (bottom-up effects) and grazing/predation

(top-down effects) differ strongly in the different states

(Anderies et al. 2002, Bestelmeyer et al. 2004).

Climatologists, oceanographers, and statisticians have

focused on post hoc identification of regime shifts in

long time-series (Easterling and Peterson 1995, Lazante

1996, Rodionov 2005a, b, Solow and Beet 2005), but

such methods are of little use if a management goal is to

avoid (or accelerate) a regime shift. Recent work with

models of lake ecosystems suggests that increased

variance of an evolving time-series may presage a regime

shift from an oligotrophic to a eutrophic state (Brock

and Carpenter 2006, Carpenter and Brock 2006).

Indicators of regime shifts in atmospheric and oceanic

systems (both physical and biological) include a change

in the variance spectrum toward lower frequencies

(Rodionov 2005c). Van Nes and Scheffer (2007)

identified a decreased rate of recovery from small

perturbations as an indicator for regime shifts in models

of aquatic macrophyte population dynamics, asymmet-

ric competition between two or more species, effects of

grazing pressure on populations, and phosphorus

cycling in lakes. The development and use of any

indicator should allow managers to anticipate regime

shifts and manage systems accordingly, but it is not clear

whether available indicators provide sufficient advance

warning to managers who are working with relatively

short time-series and incomplete information about the

system of interest.

Our approach here was to explore potential methods

to detect regime shifts when only partial knowledge of

important underlying ecological processes is available,

and then to use these methods to suggest conservative

management strategies. We addressed these questions by

applying several different indicators of an impending

regime shift to an example system: Carpenter and

Brock’s (2006) model of lake eutrophication. We used

this model because it has been used extensively to

explore the possibility of detecting regime shifts (Brock

and Carpenter 2006, Carpenter and Brock 2006).

Our approach differs from previously published

economic and ecological approaches to detecting and

managing regime shifts. Economists have tended to

focus on the value of an ecosystem and have used cost–

benefit analysis to determine the cost of a regime shift

(for application of these economic models to ecological

systems see Carpenter et al. 1999, Ludwig et al. 2003,

2005). Such a cost–benefit analysis results in a utility

function for the ecosystem that depends on the state of

the system and any additional inputs. Deterministic

models are employed to determine the utility function

that maximizes the economic value of the ecosystem. It

is important to note that such an analysis expects

managers to have a deterministic ecosystem model that

describes the true dynamics of the system and allows for

accurate forecasts of future states, including regime

shifts. Such models are rarely available.

In contrast, ecological approaches have focused

attention on detecting regime shifts given available data
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(Carpenter 2003, Keller et al. 2005). Recent approaches

assume imperfect knowledge about the system and

instead use simple models that approximate system

dynamics (e.g., Carpenter and Brock 2006). These

dynamic time-series models continually update param-

eter estimates as more knowledge accrues. Unfortunate-

ly, in models developed to date, parameter estimates

become most reliable only after the threshold to a new

regime has been crossed (Carpenter 2003).

The structure of this paper is as follows. First, we

present a précis of Carpenter and Brock’s (2006) lake

model and the minor modifications that we made to it.

Within this section, we also describe the different

sources of stochasticity that contribute to variability in

the model output. Second, we describe six indicators for

impending regime shifts. Third, we illustrate the inertia

of this system and discuss how far in advance an

indicator must signal a regime shift for a management

intervention to be effective. Fourth, we explore how

differences in the types and magnitudes of variability in

the system influence the power of each of the indicators

and their ability to detect a regime shift. Finally, we

discuss how managers could actually use these indicators

to develop and implement realistic management plans.

THE LAKE MODEL

The basic model

Carpenter has developed a detailed model of ecosys-

tem dynamics of lakes subject to phosphorus (P) input

from non-point-source agricultural inputs (Carpenter

2003, Carpenter and Brock 2006). Such chronic, long-

term stressors are common features of many ecosystems,

including forests subject to atmospheric deposition of

nitrogen, sulfur, and heavy metals (e.g., Gbondo-

Tugbawa et al. 2002, Holland et al. 2005, Vanarsdale

et al. 2005) and estuaries and coastal waters that receive

run-off from large rivers (e.g., Rabalais et al. 2002). We

focus here on a lake model because many underlying

processes driving lake ecosystem dynamics are well

understood (Carpenter 2003) and because indicators of

regime shifts have been developed using lake models

(Carpenter and Brock 2006, van Nes and Scheffer 2007).

But ecosystems are not impacted only by chronic,

non-point-source stressors. Point sources of pollutants

(which may affect ecosystems acutely through single or

intermittent discharges, or chronically through contin-

uous operations of, e.g., smelters or power plants) or

targeted harvesting or grazing operations are examples

of stressors for which continued operation could cause

regime shifts but which are more tractably managed.

Pipes can be shut off, herds can be moved, or fishing

boats can be beached more readily than diffuse plumes

of nitrogen moving through soil can be contained.

Therefore, we modified Carpenter and Brock’s (2006)

model of lake ecosystems to include both types of

stressors: non-point source (i.e., leaching of P from soil

into water, as in the original model) and point sources

(i.e., direct discharge into the water of P as industrial

effluent) (Fig. 1). This addition allows our results to be

generalized beyond agricultural systems.

The model we used is a system of three coupled

stochastic differential equations for the density (grams

per square meter) of P in soil (U ), lake water (X ), and

lake sediments (M ):

FIG. 1. Schematic drawing of the basic model of a lake ecosystem (after Carpenter and Brock [2006]), with additional point-
source inputs of P (‘‘point-source P from industry’’). Variables in parentheses correspond to variables in the model (Eqs. 1–3, Table 1).
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dU

dt
¼ Fa � cUH ð1Þ

dX

dt
¼ Fi þ cUH 1þ e

dW1

dt

� �
� ðsþ hÞX

þMRðXÞ r þ r
dW2

dt

� �
ð2Þ

dM

dt
¼ sX � bM �MRðXÞ r þ r

dW2

dt

� �
: ð3Þ

The meaning and units of each variable and parameter

in this model are given in Table 1.

The model is solved for successive summer seasons

when the lake is stratified. The time-steps are one year

(annual) for changes in U (phosphorus in soil) and 36

within-year increments for X (phosphorus in water) and

M (phosphorus in lake sediments). The different time

scales at which each of these processes occur are based

both on current understanding of lake ecosystems and

on consistency with Carpenter’s coding of the model (S.

Carpenter, personal communication). We followed Car-

penter and Brock (2006) in assuming that the nutrients

from the soil enter into the system once each year, prior

to summer stratification of the lake. Eq. 1 is solved on

annual time steps, and this annual input is then

distributed over all the within-year time-steps used to

solve Eqs. 2 and 3. In contrast, recycling occurs

continually throughout the year due to stochastic events

driven by wind (Soranno et al. 1997).

In Eq. 1, Fa is the input rate of P to soil (from fertilizer

use, dust deposition, or weathering). Eq. 2 calculates the

annual input of P into water, which comes from two

primary sources. First is the non-point-source leakage of

P from soil into water, which is the product of soil P (U ),

the transfer coefficient from the soil into the lake (c), and

two sources of variability, H, and

e
dW1

dt

(see Sources of variability in the model, below);

throughout, we refer to the product

cUH 1þ e
dW1

dt

� �

as Fsoil. Second are the additional inputs of P from

industrial sources (Fi). Throughout, we refer to total P

inputs, the sum of Fi and Fsoil, as Ftotal. Loss of P from

the water column occurs through sedimentation (s) and

outflow (h). Eq. 3 determines the amount of P in lake

sediments as a function of sedimentation (s) and burial

(b), and a recycling coefficient r. Recycling of P from

sediment back into the water column acts as a third

source of P input to the system and it is increases in P

recycling that trigger the regime shift in the lake model

(Carpenter 2003, Carpenter and Brock 2006). This

recycling of P is represented by the recycling function

R(X ):

RðXÞ ¼ Xq

mq þ Xq
ð4Þ

where m is the value (2.4 g/m2) at which recycling is half

the maximum rate, and the exponent q determines the

slope of R(X ) near m (Carpenter et al. 1999). R(X )

ranges from 0 to 1, and R(m) ¼ 0.5.

TABLE 1. Parameters used in the basic model (after Carpenter and Brock [2006], with addition of Fi).

Symbol Definition Units Nominal value Source

b permanent burial rate of sediment P yr�1 0.001 Carpenter (2003)
c transfer coefficient of P from soil to lake yr�1 0.00115 Calculated from data of

Bennett et al. (1999)
Fa net annual input of P to the watershed soil per unit

lake area (weathering plus airborne input plus
fertilizer application minus removal of phosphorus
in harvest)

g�m�2�yr�1 variable Bennett et al. (1999)
estimated Fa ¼ 14.6

Fi net annual point-source input of P to the water per
unit lake

g�m�2�yr�1 variable

h outflow rate of P yr�1 0.15 Carpenter (2003)
H annual variance in input of P from soil into water unitless f (k)
m P density in the lake when recycling is half its

maximum possible (R(m) ¼ 0.5)
g/m2 2.4 Carpenter (2003)

M concentration of P in lake sediments g/m2 variable
q parameter for steepness of R(X ) near m unitless 8 Carpenter (2003)
r recycling coefficient of P from sediment to lake

(¼ maximum recycling rate of P)
g�m�2�yr�1 0.019 Carpenter (2003)

R(X ) recycling function (see Eq. 4) unitless f (X, m, q)
s sedimentation rate of P g�m�2�yr�1 0.7 Carpenter (2003)
U concentration of P in soil g/m2 variable
X concentration of P in lake g/m2 variable
k standard deviation of annual P input unitless 0.35 Carpenter (2003)
e control parameter on within-year variance in P input unitless 0.01 Carpenter (2003)
r control parameter on recycling of P during the summer unitless 0.01 Carpenter (2003)
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In our initial simulations and numerical analyses, we

used values for all the parameters estimated for Lake

Mendota, Wisconsin, USA, as provided in Table S1 of

Carpenter and Brock (2006) (see also our Table 1). To

determine how each of these parameters affects the

behavior of different indicators of regime shifts, we

suppressed or changed the values of one or more sources

of variability in some of the simulations described below

(by setting one or all of k, e, or r equal to zero or to a

value lower value than the defaults: see Table 1). All

simulations and analysis were done using the R language

(R Development Core Team 2007), version 2.4.

Fig. 2 illustrates the behavior of this model subject to

realistic increases in inputs of the two different sources

of P. For both sources, we started the simulations at

oligotrophic equilibrium, and with Fa ¼ 0.3. In the first

case, we fixed Fa at 0.3 g/m2 but increased Fi from 0 to

1.2 g/m2 (Fig. 2A), which resulted in a total input of

phosphorus (point source þ non-point source) of 1.5

g/m2 by year 300 (Fig. 2B). In the second case, we fixed

Fi at 0, and we increased agricultural inputs Fa from 0.3

to 10 g/m2 (Fig. 2A), which also led to an increase in

Ftotal (equal to Fsoil alone in this case) of 1.5 g/m2 by year

300 (Fig. 2C). At these levels of total P inputs, the lake

model shifted from an oligotrophic to a eutrophic state

(i.e., a regime shift occurred) sometime between

simulated years 225 and 275 (dark-gray vertical lines

in Fig. 2D, E). In both cases we dropped Fi or Fa to zero

at year 300, shortly after the regime shift occurred.

As point-source input (Fi) increased (Fig. 2A), the

total P in the water increased slowly at first, and then the

lake abruptly shifted to a eutrophic state (Fig. 2D).

Turning off the point-source input resulted in a

relatively rapid return to oligotrophic conditions (Fig.

2D). In contrast, a similar pattern of increase and then

abrupt decrease in non-point-source inputs of P to soil

(Fa; Fig. 2A) was not paralleled by an abrupt decrease in

total P inputs (Fig. 2C) because of the slow rate of

transfer of P from soil to water. The shift from an

oligotrophic regime to a eutrophic one was relatively

rapid, but the time to reversal was lengthy (Fig. 2E) and

controlled in part by the parameter c, the transfer

coefficient of P from the soil into the lake. In both cases,

the new state of the lake system showed some resilience,

as the regime shift was not reversed immediately.

However, it took much more time to reverse a regime

shift caused by non-point-source agricultural inputs Fa

because the soil acted as a ‘‘sponge’’ and continued to

release P to the lake long after inputs had stopped.

Sources of variability in the model

There are three sources of stochastic variability in the

model. First, there is annual variance H in Eq. 2 that

describes the input of P from soil into water:

H ¼ exp Z � k2

2

� �
ð5Þ

where Z is a white noise process with mean ¼ 0 and

variance¼ k2. H generates a random lognormal variable

FIG. 2. Example of the behavior of the model (using basic parameter set described in Table 1) subject to realistic increases in
point-source or non-point-source inputs. (A) Simulated point-source (Fi in Eq. 2) or non-point-source (Fa in Eq. 1) inputs of
phosphorus. (B) Total inputs (Ftotal ¼ Fa þ Fi) following increases in point-source inputs only. (C) Total inputs (Ftotal ¼ Fa þ Fi)
following increases in non-point-source inputs only. (D) Total P in water column when point-source inputs are increased and then
eliminated. (E) Total P in water column when non-point-source inputs are increased and then eliminated. In panels B–E, the light-
gray vertical line indicates the onset of observable recycling of P from lake sediments into the water column [R(X )¼ 0.0001], and
the dark-gray vertical line indicates the shift from an oligotrophic to a eutrophic regime.
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with mean ¼ 1. Second, there is within-year variation

that depends on e in Eq. 2 (dW1 is a white noise process

with mean¼ 0 and variance¼ dt). Such variation could

be caused by irregular rainfall events, for example.

Third, frequent shocks to recycling because of wind

events within the summer season are represented by

rMRðXÞ dW2

dt

in Eqs. 2 and 3; dW2 also is a white noise process with

mean¼ 0 and variance¼ dt. Note that Z is independent

of dW1 and dW2. These three sources of variability are

illustrated schematically in Fig. 3, which shows that the

control parameters e and r have similar effects on

within-year variability in concentration of phosphorus

in the water column.

The key to understanding how a regime shift can

occur in this system is to recognize processes occurring

on three time scales (Brock and Carpenter 2006). The

first is a very slow change in an exogenous driver or in a

slowly changing system component, such as Fa or Fi in

Eqs. 1 and 2 (see also Fig. 2). The second is a medium-

speed change in the state variable subject to the regime

shift, such as the concentration of P in the water column

(X ). The third is a fast change in X due to the white-

noise processes Z, dW1, or dW2 (Table 1, Fig. 3).

Since the value of Fsoil depends on k and e, the annual
variance in X increases with inputs of phosphorus from

FIG. 3. Effects of the three variance parameters (k, e, and r) on time-series of concentration of P in the water column and its
standard deviation. (A) The parameter k (here, k ¼ 0.35) controls annual variability in concentration of P in the water. (B) The
standard deviation in annual concentration of P in the water increases along with inputs of P from the soil (Fsoil). (C) The parameter
e controls within-year variability in concentration of P in the water (here, e ¼ 0.01). (D) The within-year standard deviation of
concentration of P in the water increases with inputs of P from soil (Fsoil). (E) The parameter r controls summer variability in
recycling of P from lake sediments into the water column (here, r¼ 0.01). (F) The standard deviation in concentration of P in the
water column increases only after recycling of P from sediments into the water column reaches measurable levels [R(X )¼ 0.0001].
For each of these runs, we used the base parameter values (Table 1). The only inputs of P to the system were from soil, and these
inputs increased linearly through time (as in Fig. 2A up to simulated year 300). See Table 1 for an explanation of abbreviations.
Note that in panels A, C, and E the x-axis (years) only ranges from 1 to 6 years, as these figures simply illustrate the type of
variability controlled by each of the three parameters.
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soil. The parameter r begins to affect the system once P

recycling from the sediment into the water column

begins. Therefore, if a regime shift is caused by an

increase in agricultural inputs, an increase in the

variance of X should precede a regime shift (Carpenter

and Brock 2006). The parameter k controls annual

(between-year) variance, so ideally, we would like to

identify indicators that can differentiate within-year

variance (e.g., variance due to the control parameters e
and r) from between-year variance due to k. Such

indicators also should allow us to detect the ‘‘signal’’ of

an impending regime shift from the background ‘‘noise’’

of normal within-year and between-year variance.

INDICATORS OF REGIME SHIFTS

The lake model (Eqs. 1–3) is the result of decades of

study and a deep understanding of lake biogeochemistry

(Carpenter 2003). However, few ecosystems are as well

understood, and most often we do not have a

mechanistic understanding, let alone measurements, of

all the underlying drivers determining an ecosystem’s

state. Rather, we are more likely to work with a

simplified model of the system (Carpenter and Brock

2006). In monitoring lakes, we typically monitor inputs

of P from industry (Fi) or soil (Fsoil) annually or at

regular within-year intervals. Annual concentration of P

in the water (X ) is estimated from samples taken

throughout the year. From these observations, we can

estimate change in water P as

dX

dt
¼ a0 þ ðFi þ FsoilÞ � a1X ð6Þ

where a0 and a1 are parameters that represent the true

but unknown processes for recycling of P from the

sediment into the water column (a0) and losses of P from

the system (a1). Total P input (Fi þ Fsoil ¼ Ftotal) is

assumed constant during the course of a year. This

model is a dynamic linear model (DLM; Pole et al. 1994)

that is upgraded annually (Brock and Carpenter 2006):

X½DLM�;t ¼ Xt�1 expð�a1t�1
Þ þ 1þ expð�a1t�1

Þ
a1t�1

þ ðFi þ FsoilÞ þ
a0t�1
½1� expð�a1t�1

Þ�
a1t�1

: ð7Þ

Using this model and the observed time series of Ftotal

and X, one important goal is to develop clear indicators

that will suggest a regime shift with ample time to

respond. We explored the behavior of six such indicators

(Table 2). Other indicators have been proposed, but

cannot be easily used in a management context. For

example, indicators of resilience suggested by van Nes

and Scheffer (2007) require experimental interventions,

and an indicator based on Fisher Information is

applicable only to systems that exhibit periodic time-

series (Fath et al. 2003). Brock and Carpenter (2006)

showed that the maximum eigenvalue of the variance–

covariance matrix of their modeled system increases

steeply prior to a regime shift. We also saw this behavior

in our analysis of the lake model, but in order to use this

indicator, a manager would need to have reliable within-

year data on concentrations of P in sediments (M in Eqs.

2 and 3). Such data are rarely available in lake

monitoring programs. Rodionov (2005a, c) summarizes

a number of other indicators used by climatologists that

require amounts of data that are rarely available to

ecologists or environmental managers.

The six indicators we used are listed in Table 2. The

first two, SD and SDDLM, are the standard deviation of

the within-year values of P in the water column (X )

around the mean of the model output (Eq. 2) or around

the prediction of the DLM (Eq. 7), respectively

(Carpenter and Brock 2006). Carpenter and Brock

(2006) showed that, because recycling of P from

sediments to water increases before a regime shift, so

does variability in the system due to r (Fig. 3E, F), and

TABLE 2. Six indicators of regime shifts.

Type of indicator Name of indicator Equation

Variance indicator SD
SDt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX36

k¼1

ðXt;k � XtÞ2

36

vuut

SDDLM SD½DLM�t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX36

k¼1

ðXt;k � X½DLM�tÞ2

36

vuut

SDrec SD½rec�;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X36

k¼1

�
Xt;k � X½rec�ðtÞ;k

�2

36

vuuut

Spectrum indicator SPEC Spect ¼ max(spec(Xt,k21:36))
Dynamic linear model (DLM) indicator a0 Upgraded parameter a0 (from Eqs. 6 and 7)
Control X X ¼ Xt

Note: In each of these equations, X is the vector of 36 observed within-year values (indexed by k) of the concentration of P in the
water column in year t.
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so do SD and SDDLM. SDDLM also may be less

susceptible to changes in between-year variability (k).
The third indicator, SDrec, is based on the fact that

there is a predictably large shock to the system (excess P

input) at the beginning of each year due to k. Part of the
within-year variation is caused by an adjustment of the

system to this shock; if we assume that this adjustment is

linear, linearize the within-year values of X, and then

take the standard deviation around this linear model, we

may be able to detect the signal due to the onset of

recycling of P from sediments to the water column more

clearly. In the equation for SDrec, X[rec],t is the vector of

linear fitted values for each year t. X[rec],t is calculated

using the lm function in R to estimate X (the 36 within-

year values of water-column P) as a function of time.

The SPEC indicator is based on the idea that within-

year spikes (sharp increases followed by sharp decreases

in a measured variable) in water-column P caused by

recycling will, for some frequencies, result in an increase

in spectral density of the time-series. That is, if there is

no within-year variance in X, or if X increases or

decreases smoothly within a given year, there will be no

high-frequency signal to its time-series. However, when

there are many spikes in X within a given year, a high-

frequency periodic signal in the time-series may be

detectable. Using the 36 within-year X values generated

by the model, we estimated the maximum spectral

density using the R function spec (in package stats). This

may seem like a very approximate indicator, but like the

other indicators, SPEC can be upgraded annually. It is

also similar to other indicators predicated on the idea

that new processes and regimes may change the variance

spectrum of underlying time-series (Kleinen et al. 2003).

Furthermore, the only assumption of this indicator is

that recycling of P from sediments back into the water

column occurs in bursts during the summer season; no

additional data are required by a manager to determine

the value of SPEC.

The a0 indicator is simply based on the updated

parameters in the DLM (Eqs. 6 and 7). When

phosphorus recycling starts, there is a change in the

processes that the DLM might be able to detect. Finally,

X itself could be used as an indicator, because recycling

causes spikes in the time-series of values of water-

column P. We used this last indicator, X, as a ‘‘control’’

to see if the other indicators really improve the detection

of regime shifts.

As P input increases, total water P (Fig. 4, top row)

and all of the indicators (Fig. 4, second to sixth rows)

increase in value and variance after recycling of P from

sediments to the water column starts (vertical gray lines

in Fig. 4), but before the regime shift occurs at time

;245 years in these simulations. The ‘‘signal’’ of the

indicator is clearest when the only variability in the

system is due to r (Fig. 4, left column). As additional

sources of variability are added, it is substantially more

difficult to detect a ‘‘signal’’ within the annual variability

of the indicators. Clearly, the variance in each indicator

increases after recycling starts (Fig. 4, right column).

HOW SOON MUST A REGIME SHIFT BE DETECTED

IN ORDER TO PREVENT IT?

Methods

Our first analysis asked if progress of a system toward

a regime shift is irreversible (at least in the short term) or

if it can be slowed or stopped (or accelerated) by a

management intervention. The critical piece of informa-

tion is the relationship between the lead time an

indicator provides before a regime shift occurs and

how quickly the system can respond to an intervention.

As illustrated in the description of the model, the rate of

response also may depend on the input source, here non-

point-source leakage of P from soil (Fsoil) and point-

source inputs of P (Fi) (Fig. 1).

To identify how far in advance any indicator must

detect a regime shift so that a management intervention

can successfully avert it, we used the same input

schedules of P into soil (Fa) and directly into water

(Fi) as we used to generate Fig. 2 (parameters given in

Table 1). We noted in the output when different levels of

P were recycled from the lake sediments (R(X )¼ 0.0001,

0.001, 0.01, and 0.1), and when the shift from an

oligotrophic to a eutrophic regime occurred. We then

altered the values of Fa and Fi (i.e., simulated a

management response), and re-ran the simulation

beginning at the year of the regime shift, and for each

year preceding the regime shift. The number of years

back that we restarted the system is called the ‘‘Delay.’’

It represents the (simulated) time an indicator gives a

manager to attempt to prevent a regime shift.

Management responses depend on three parameters:

(1) ‘‘Resp’’ as the number of years before any

intervention (this represents, for example, the time it

takes a manager to convince industry to stop P inputs

into the lake); (2) ‘‘Base level’’ as the fraction of total (P)

inputs that the manager cannot eliminate; and (3)

‘‘Nyears’’ as the number of years it takes to reach Base

level. We simulated three different management re-

sponses. The first was a slow response that allowed for

high base level of P inputs: Resp¼ 10, Base level¼ 0.5,

Nyears ¼ 50. The second was an intermediate response

that allowed for a lower base level of P inputs: Resp¼ 5,

Base level ¼ 0.1, Nyears ¼ 10. The third was a fast

response that allowed for no base level of P inputs: Resp

¼ 0, Base level ¼ 0.0, Nyears ¼ 2. With these responses,

we re-ran the simulations for 500 years for a range of

Delay values. We determined whether a regime shift

would still occur, and if it did, how long it would take to

return the lake to the oligotrophic state following the

different management interventions. We considered a

regime shift to have occurred when the mean value of P

in the water column exceeded 2.4 g/m2, the concentra-

tion at which the rate of recycling R(X ) is 0.5 (i.e., X¼m

¼ 2.4 g/m2). We ran 200 replicate runs for each set of
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FIG. 4. Time series of concentration of P in the water column (top row) and the five indicators of regime shift (listed in Table 2)
when the model was run only with noise due to recycling of P from sediment to the water column (r¼0.01, k¼ e¼0.0; left column)
or when the model was run with all sources of variability included (r¼ 0.01, e¼ 0.01, k¼0.35; right column). The gray vertical line
indicates when recycling of P from sediments into the water column reaches measurable levels [R(X ) ¼ 0.0001]. In all runs, the
system shifted from oligotrophic to eutrophic regimes at the approximate simulated year 250. When all sources of variation were
included in the model (right column), the ‘‘signal-to-noise’’ ratio was large from the time that recycling of P begins, .100 years
before a regime shift. The ‘‘signal-to-noise’’ ratio is clearest for the SPEC indicator, which reliably signaled a regime shift ;40 years
in advance. See Table 2 for an explanation of abbreviations.
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parameters: P input schedules (temporal trajectories of

Fa and Fi), and the three management responses.

Results

If the increase in P input was entirely due to point-

source effluent (Fi), the worst-case management inter-

vention (slow management response, some base-level

input allowed) prevented a regime shift if it was applied

30 years in advance (Fig. 5A). In contrast, for non-

point-source inputs (Fa, Fsoil), the best-case management

intervention (rapid response, no allowable base-level of

inputs) needed to have been applied at least 35 years in

advance, and the worst-case intervention needed to have

been applied at least 70 years in advance, to prevent the

lake from shifting into a eutrophic state (Fig. 5C). For

agricultural inputs, recycling of P from lake sediments to

the water column reached 0.001 (0.1%) 60 years before

the regime shift, and 0.01 (1%) 22 years before the

regime shift was observed (Fig. 5C). Extrapolating this

result to the ‘‘real world,’’ where best-case interventions

are unlikely, any indicator of a regime shift must detect a

small recycling rate many decades in advance if regime

shifts are to be avoided.

However, even if a regime shift cannot be prevented,

intervention still may have utility. The mean recovery

time of the system (how long it takes for the model

system to return to an oligotrophic regime) is shorter

when management intervention is applied sooner (Fig.

5B, D). This conclusion applies not only to lake

eutrophication. The use of indicators for detection of

regime shifts and triggering of management interven-

tions will be most successful when a manager can

quickly change a control variable (i.e., small manage-

ment inertia) and when there are no processes that will

otherwise slow the response of the system; here,

accumulation of P in the soil and its subsequent slow

release (i.e., small system inertia). Our analyses also

assume a fixed linear schedule of change for Fi and Fa,

that managers can measure and control these important

input variables, and that their decisions to intervene

depend strictly on preventing a regime shift. Variation in

rates of change of inputs, the starting point of the

system, stochastic noise, and constraints on decision-

making all can influence the success of a monitoring or

management plan. We discuss these in more detail in the

last section of the paper, after we discuss the power of

different types of indicators in the face of stochasticity in

the system.

HOW POWERFUL ARE THE INDICATORS AT DETECTING

IMPENDING REGIME SHIFTS?

Methods

When P begins to recycle from the sediments back

into the water column, spikes of P in the water column

become measurable. Thus, we hypothesized that by

comparing the magnitude of spikes in water-column P

before and after P recycling had begun (R(X )¼ 0.0001),

we could determine how powerful each of the indicators

FIG. 5. Probability of a regime shift (top row) and average time to recovery (N¼200 simulation runs) from a eutrophic back to
an oligotrophic regime (bottom row) as a function of time of three different management interventions when P inputs are due only
to point sources (left) or non-point sources (right). Model parameters and input schedules are as in Fig. 2. The three management
interventions are slow (10 years from observable signal to response with a 50% reduction in P achieved after 50 years); intermediate
(five years from observable signal to response with a 90% reduction in P achieved after 10 years); and rapid (immediate response
with no allowable inputs two years after response). The gray vertical lines indicate when recycling of P from lake sediments into the
water column; R(X )¼ 0.0001 (dotted line); 0.001 (short-dashed line); 0.01 (long-dashed line); 0.1 (solid line). Note the break on the
vertical axis of panel B.
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is at detecting a regime shift with different levels of

variability from each of the three possible sources (k, e,
and r). An indicator is considered to be powerful if it

detects an impending regime shift with sufficient lead

time to allow for an effective management intervention,

but not so far in advance that an intervention is not cost

effective. In particular, we suggest that if an indicator is

powerful at identifying a regime shift, the spikes that

occur in its time-series once P recycling starts and a

regime shift is imminent should be much larger than the

spikes that occurred earlier in the time series. Ideally, an

indicator should pick up the potential for a regime shift

far enough in advance for a management intervention to

avoid (or minimize the probability of) a regime shift.

As before, we generated time-series of the lake system

beginning at oligotrophic equilibrium and applied the

same inputs of Fi and Fa. When Fa was held constant

while Fi increased, only within-year recycling variability

(controlled by r) increased. In contrast, when Fa

increased, between-year and within-year variability

(controlled by k and e) also increased, and within-year

recycling variability (controlled by r) only increased

after recycling started. For each input schedule, we

varied k, e, and r (Table 3), and for each combination,

we ran 500 replicate simulations. For each input

schedule of P and the combinations of variance

parameters given in Table 3, we asked: (1) Which

indicator gives the best results for the given set of

parameters; (2) which indicator best detects the onset of

recycling of P from the sediment back into the water

column; and (3) which indicator is best able to isolate

variability due to P recycling from the other sources of

variability?

First, to determine the power of each indicator as a

function of time-to-regime shift (equal to Delay), we

constructed the vector of the difference between adjacent

values in the indicator time series (the value at time tþ 1

minus the value at time t), running from the onset of P

recycling (R(X ) ¼ 0.0001) to the time-of-intervention

Delay (Delay � YearRS, the year in which the regime

shift occurred). We called this vector SPIKE1, and it

contains the differences between adjacent indicator

values; the maximum value of SPIKE1 represents the

highest spike in the indicator time-series. We then

constructed a similar vector (called SPIKE2) in the

time-series of identical length running backwards from

the onset of P recycling. Our measure of power was the

log of the ratio of the maximum values of each of the

two vectors:

log
maxðSPIKE1Þ
maxðSPIKE2Þ

� �
ð8Þ

which basically represents how much higher the spikes in

the indicator time series are after the onset of P

recycling. If the magnitudes of the spikes are equivalent

before and after the onset of recycling, Eq. 8¼0, and the

indicator does not detect the upcoming regime shift (i.e.,

its power is low). We compared the powers of the

different indicators for each set of variance parameters

in Table 3 by plotting the power (Eq. 8) vs. Delay, and

by estimating the area under each curve using the R

function diffinv in the Stats package. Higher values of

power suggest that the indicator is able to discriminate

the signal from the noise for each combination of

parameters.

Second, as spikes in the time-series of concentration of

P in the water column are much larger after P recycling

has started, we wanted to isolate those spikes that were

‘‘large enough’’ to correctly identify a regime shift. We

use the algorithm in Box 1 to determine whether an

indicator detects a regime shift. This approach is much

TABLE 3. Values of the three variance parameters used in the
simulations to determine the power of each indicator listed in
Table 1.

Set number k e r

1 0.01 0.001 0
2 0.01 0.001 0.01
3 0.01 0.01 0.01
4 0.10 0.001 0.01
5 0.35 0.001 0.01
6 0.35 0.01 0.01

BOX 1. Algorithm to determine whether an indicator detects a regime shift.

1) Record the values of the first twenty spikes in the time-series, and store in vector SPIKE.

2) For each subsequent year, determine if another spike occurs in the time-series.

3) If there is a spike, compare its value with SPIKE using different ‘‘filters.’’ The filter uses the mean and

standard deviation of the SPIKE to create a limit value:

LimitValue ¼ meanðSPIKEÞ þ FAC 3 SDðSPIKEÞ ð9Þ

where FAC is a coefficient that determines the sensitivity of the indicator.

4) If the spike of the year is above LimitValue, then the indicator detects a regime shift. Else, upgrade

SPIKE (by using the new spike and the preceding 19 to create a new vector SPIKE) and return to step 2.
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closer to a year-to-year management approach than

annual computation of the log of the ratio of the two

vectors of spikes (Eq. 8).

We ran this algorithm for each indicator, using a

range of values for FAC (1 to 10 in increments of 0.5) to

construct different filters. When the indicator detected a

regime shift, we compared the year of detection (YearD)

with the year at which recycling of P from sediment to

the water column actually began in the simulations

(YearREC) and with the year at which the regime shift

actually occurred in the simulations (YearRS) (note that

Delay ¼ YearRS � YearD, and is the time an indicator

provides that can be used to prevent a regime shift from

occurring).

We defined two different types of error: a ¼ the

fraction of runs in which YearD . YearRS� Delay, and

is the proportion of runs in which the detection occurs

too late for an intervention to prevent a regime shift. In

contrast, b ¼ the fraction of runs in which YearD ,

YearREC, and is the proportion of runs that detected a

regime shift too early, suggesting an intervention before

it is needed to stop the regime shift. The remainder (1�
[a þ b]) is the fraction of runs that provide good

detection of impending regime shifts (YearREC � YearD
, YearRS � Delay). Good detection implies adequate

time to prevent a regime shift in a cost-effective manner.

We defined the overall error rate as follows:

Error ¼ percentðbÞ þ ½5 3 percentðaÞ�: ð10Þ

This error rate weights a more than b because errors in a
are false negatives, whereas errors in b are false

positives. In this case, a false negative has more serious

management consequences than a false positive. We

used an arbitrary weighting factor of 5, but other

weights could be used without qualitatively changing the

results. By comparing values of Error as a function of

Delay for each indicator and each filter, we can identify

‘‘optimal’’ filters and error values for each indicator

across a range of parameters affecting variability in the

system.

RESULTS

When only Fa increased, and when variance param-

eters were set at high levels (set number 6 in Table 3), all

the indicators had higher power when the regime shift

was imminent (Delay ! 0; Fig. 6). Power for all

indicators approached 0 as Delay increased, but even

when Delay ¼ 30, SDrec and SPEC detected the

upcoming regime shift (Fig. 6). For this combination

of inputs and variability, SD and SDDLM provided little

gain in power relative to the time-series itself (X ), and a0
provided no indication of an impending regime shift at

all (Fig. 6).

As we altered combinations of values of the variance

parameters (Table 3), the rank order of the power of

each indicator did not change, but the total power did

(Fig. 7). With very low values for the parameters (Table

3, set 1), all indicators were poor (black bars in Fig. 7).

Increasing the value of r (variability in recycling) alone

improved the power of all the indicators (dark-gray bars

in Fig. 7), but SPEC worked better, and X worked more

poorly, than all the other indicators. The power of all

the indicators decreased as the other variance parame-

ters were increased (lighter gray and white bars in Fig.

7). Two indicators, SDrec and SPEC, were less respon-

sive to increasing k than the other indicators (Fig. 7),

because between-year variance did not affect within-year

patterns and did not alter the power of SPEC, which

FIG. 6. Power of each of the six indicators given in Table 2 as a function of time of management intervention (Delay) when all
sources of noise are present in the model system (parameter set 6 of Table 3). See Fig. 4 for an explanation of abbreviations.
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measures within-year spectral density. Since we pur-

posely designed SDrec not to respond to the shock at the

beginning of each year, its lack of response to changes in

k was not surprising. The power of the other indicators

declined as k increased (Fig. 7). None of the indicators

was particularly resistant to changes in e, which is

difficult to distinguish from variability due to r (Fig. 3).

When Fa was held constant and increases in Ftotal were

due entirely to Fi, the conclusions were qualitatively

similar (data not shown). Overall power of all the

indicators was better when Fi was the primary input

source because Fa was lower and so there was less

variability in the system due to e and k. Comparing the

two different types of inputs, we note that if two

different input sources can trigger a regime shift (e.g., Fa

and Fi), then detection of an upcoming regime shift will

be more difficult if the input source (here Fa) that

contributes most to the underlying variability is also the

one that is increasing.

All indicators had lower values of total error (Eq. 10)

when a regime shift was imminent (low values of Delay),

and errors increased with time to the regime shift (Fig.

8). The error rates paralleled the power of the indicators.

SPEC and SDrec had the lowest error values, whereas a0
and X had the highest error values. With increasing non-

point-source inputs (Fa increasing, Fi ¼ 0) and with

realistic values for the variance parameters, SDrec and

SPEC could detect regime shifts with relatively low error

(,30%) up to five simulated years in advance (Fig. 8A).

Alternatively, if non-point-source inputs were held

constant and point-source inputs were increasing, these

two indicators could reliably detect regime shifts up to

40 simulated years in advance (Fig. 8B).

The results that we show here used the FAC value

that minimizes the error rate for each indicator. In a real

management case, choosing the FAC value to use

depends on the management goals: If a manager wants

warning of a regime shift far in advance, the algorithm

should be more sensitive, so FAC should be set relatively

low. Because the examination of both the power and the

detection ability (error rate) of the different indicators

yielded similar conclusions, the detection algorithm

(Box 1) could be used in a monitoring program to

detect a regime shift for a given value of FAC. Thus, in

the next section, we discuss how one might effectively

manage to prevent an impending regime shift.

AN ILLUSTRATIVE EXAMPLE: CAN PRO-ACTIVE

MANAGEMENT AVOID A REGIME SHIFT?

Consider a situation where an oligotrophic lake is at

equilibrium and is receiving only non-point-source

agricultural inputs of P that leach slowly from the soil

(as in the starting conditions of Carpenter and Brock’s

2006 model). By comparing the amount of P in the water

with data from other oligotrophic and eutrophic lakes,

we can be confident that the lake has some lengthy but

undetermined time to go before it crosses a threshold

into a new nutrient regime. A new use is proposed for

the lake: An industrial plant wants to discharge P into

the lake, and a management plan is needed to allow

increased inputs into the lake while avoiding an

undesirable regime shift. The site manager is able only

to monitor the amount of P in the lake and the

agricultural (non-point-source) inputs of P into the lake,

and to control only the proposed industrial inputs into

the lake. Our results from the analyses presented in the

preceding sections suggest the following simple manage-

FIG. 7. Total power of each of the six indicators given in Table 2 for all the parameter sets given in Table 3. The power of each
indicator for each parameter set is calculated as the area under the Power vs. Delay curve (as illustrated in Fig. 6). See Fig. 4 for an
explanation of abbreviations.
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ment algorithm: (1) Allow linear increases in industrial

inputs, calculate indicator values annually, and use the

detection algorithm (Box 1) to detect when recycling of

P from sediments into the water column begins. (2)

Based on the input level when detection occurs, estimate

the amount of total inputs (non-point source þ point

source) that will keep the lake far enough from the

threshold so that a stochastic event (e.g., an unantici-

pated spike in P inputs) will not trigger a regime shift. (3)

Increase or decrease allowable point-source inputs in

line with measured agricultural inputs to keep total

inputs constant.

Our goal was not to find the best management

strategy with a cost–benefit analysis. Rather, we first

illustrated the effect of the time at which a regime shift is

first detected on the risk of an actual regime shift.

Second, we examined the influence of changing model

parameters on the risk of triggering a regime shift. This

sensitivity analysis allowed us to determine the robust-

ness of this management algorithm to changes in

parameters, and therefore to identify how altering a

management ‘‘strategy’’ (i.e., a set of adjustable param-

eters defined in the next paragraph) affects the final

outcome. We don’t show the results for total inputs into

the lake, but these are correlated with the risk of regime

shifts.

Methods

We ran 500-year simulations starting at oligotrophic

equilibrium (initial Fa ¼ 0.3, e ¼ 0.01, k ¼ 0.35), only

agricultural inputs, and a linear increase in Fa that led to

a doubling of non-point-source P inputs in 40 years. We

ran 500 replicate simulations and noted the proportion of

replicates that led to a regime shift. We used the SPEC

indicator, which had the best performance in detecting

regime shifts across a broad range of conditions (see

Figs. 6–8), and noted the percentage of regime shifts

detected for each year prior to the regime shift.

For each set of simulations we defined two sets of

parameters. System parameters are parameters that a

manager cannot control. These system parameters

include the variance parameters k and e and the non-

point-source agricultural inputs Fa. Note that the initial

value of Fa defines the distance of the system from its

threshold. Management parameters are parameters that

a manager can control. These management parameters

are: (1) Speed, the rate at which total inputs can

increase, and here is referenced to the time needed to

double the initial P inputs into the system (the higher the

FIG. 8. Error values (from Eq. 10) for each of the six indicators given in Table 2 when all sources of variability were present in
the model system (parameter set 6 of Table 3) and for the optimal level of FAC for each indicator. (A) Model run with only non-
point-source inputs (Fa increasing linearly, Fi¼ 0, as in Fig. 2C). (B) Model run with only point-source inputs increasing (Fa¼ 0.3,
Fi increasing linearly as in Fig. 2B). See Fig. 4 for an explanation of abbreviations.
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value of Speed, the lower the increase in input rate of P);

(2) the detection factor FAC used to calibrate the

indicator (Eq. 9 in Box 1); and (3) the Best input, which

is the amount of allowable point-source P inputs set by

the manager, relative to input levels when the impending

regime shift is detected. We call a given set of

management parameters a ‘‘management strategy.’’

Note that, even though a manager cannot control the

system parameters, knowledge of them can be used to

alter management parameters and to improve the

management strategy.

Results

When impending regime shifts were detected far in

advance, the sensitivity of the algorithm could be

decreased by modifying the management parameters so

as to reduce the time from detection to potential regime

shift (YearD) without increasing the risk of regime shift.

However, once YearD declined to ;60 simulated years

prior to a regime shift, the percentage of actual regime

shifts that occurred began to increase exponentially (Fig.

9). By YearD ’ 30, the probability that a regime shift

would occur approached 1 due to the inertia in the

system.

Table 4 illustrates how changes in system parameters

and management parameters altered the probability of a

regime shift. The probability of runs resulting in regime

shifts ranged from 1% to 69%, with higher numbers

resulting from high input levels or lower sensitivity of the

indicator. Increasing variability in the system (higher

values of e or k) decreased the sensitivity of the indicator,

made detection more difficult, and led to higher

probabilities of regime shifts. Larger values of these

parameters also increased the risk that stochastic events

could trigger regime shifts, even if they were detected well

in advance. If a manager knows from past observations

that these system parameters are high, s/he can keep

point-source inputs lower to reduce the probability that a

regime shift occurs (and reduce total inputs into the

system). The crucial result is that detection algorithms

need sufficient data to provide adequate warning of an

impending regime shift: 20–30 simulated years seems to

be the minimum we observed for any of our indicators.

TABLE 4. Results of the sensitivity analysis for the effects of varying system and management parameters on the probability that
regime shifts occur.

Fixed parameters Varying parameters
Regime
shifts (%) Conclusion

Fixed responses, changing system variability

Initial Fa ¼ 0.3; Speed ¼ 40; FAC ¼ 10;
Best input ¼ 0.9

k ¼ 0.1, e ¼ 0.001,
r ¼ 0.01

1.2 Regime shifts are more difficult to detect
and occur more frequently as variability
in the system increases.k ¼ 0.35, e ¼ 0.01,

r ¼ 0.01
21

k ¼ 0.5, e ¼ 0.02,
r ¼ 0.01

53

Fixed system variability and responses, changing proximity to threshold

k ¼ 0.35, e ¼ 0.01, r ¼ 0.01; Speed ¼ 40;
FAC ¼ 10; Best input ¼ 0.9

Initial Fa ¼ 0.2 10 The closer one is initially to the threshold,
the harder it will be for the indicator to
detect the regime shift with ample
warning (see Fig. 2).

Initial Fa ¼ 0.3 23
Initial Fa ¼ 0.4 36

Fixed system variability, variable rate of response

k ¼ 0.35, e ¼ 0.01, r ¼ 0.01; Initial
Fa ¼ 0.3; FAC ¼ 10; Best input ¼ 0.9

Speed ¼ 20 35 Allowing for a more rapid rate of new
inputs gives less time for the indicator
to detect the regime shift before it
happens. Thus, the percentage of regime
shifts increases.

Speed ¼ 40 19
Speed ¼ 60 18

Fixed system variability and responses, variable sensitivity of the indicator

k ¼ 0.35, e ¼ 0.01, r ¼ 0.01; Initial
Fa ¼ 0.3; Speed ¼ 40; Best input ¼ 0.9

FAC ¼ 5 1.2 As the tuning coefficient increases, the
detection rate declines and the
probability of regime shift increases.

FAC ¼ 10 19
FAC ¼ 20 67

Fixed system variability, variable allowable inputs

k ¼ 0.35, e ¼ 0.01, r ¼ 0.01; Initial
Fa ¼ 0.3; Speed ¼ 40; FAC ¼ 10

Best input ¼ 0.75 2 Higher allowable inputs is a special
parameter. It has no effect on detection
time, but it is critical because a high
value means that management maintains
the system close to its threshold.
Consequently, after detecting the
potential occurrence of a regime shift,
there is an increased risk of a shift
occurring due to small disruptive events.

Best input ¼ 0.9 18
Best input ¼ 1.0 69

Notes: Values shown are means of 500 simulations for each set of parameters. The SPEC indicator was used to detect impending
regime shifts. The percentage of regime shifts that occurred in the model are those that occurred after simulated management
intervention was applied.
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The importance of process error and observation error

In reality, the true underlying processes determining

regime states are stochastic (Eqs. 1–3) and generally

unknown. Individual instances of the model reflect

propagation of stochastic process variance, and final

outcomes can vary greatly (and thus, we illustrate

probabilities of regime shifts over multiple runs in Figs.

5 and 9). Although we can simulate multiple instances of

the generating equations and analytically determine the

consequences of the propagation of process error

through the model, managers and decision-makers are

monitoring only a single realization of this process. And

it is to this single realization that the detection algorithm

(Box 1) would be applied. In different situations (or in

different runs of the model), the realization of the

process will also differ, but the algorithm should still

work effectively. This is because managers are not trying

to understand the underlying generating process itself,

but rather they are trying to detect and respond to

patterns emerging from a particular instance.

Observation error does not propagate through time in

the model, but it may have more significant consequenc-

es in a management context because errors in observa-

tion may lead to erroneous assessment of the probability

of a regime shift. Our model (Eqs. 1–3) does not

incorporate observation error, but it is relatively

straightforward to measure P content of water. In

general, monitoring programs should measure variables

with sufficient precision and accuracy so that the

observation error is small, or at least is dominated by

the process error.

DISCUSSION AND GENERAL CONCLUSIONS

Regime shifts occur in a wide range of ecological

systems, including forests (e.g., Lawrence et al. 2007,

Millar et al. 2007, deYoung et al. 2008), fisheries and

other large marine ecosystems (e.g., Mantua 2004,

Daskalov et al. 2007), and grasslands and rangelands

(e.g., Anderies et al. 2002, Bestelmeyer 2006). A rapidly

growing database of thresholds and regime shifts in

ecological systems is described by Walker and Meyers

(2004) and is maintained online by the Resilience

Alliance (available online).3 Conceptual reviews identify

two broad categories of regime shifts: ecosystems that

cross thresholds because state variables have changed

and ecosystems that can occupy alternative stable states

due to shifts in underlying system parameters (Beisner et

al. 2003, Scheffer and Carpenter 2003). Our methods

and analysis were developed for an example of the first

type of regime shift and should be generally applicable

to systems of both types where new regimes are

maintained by changes in state variables or other system

drivers, and where alternative stable states characterized

by fold bifurcations do not occur. However, there are

also many examples in which alternative stable states

can exist for the same set of underlying system

parameters: systems in which fold bifurcations exist in

phase–space (e.g., Petraitis and Latham 1999, Scheffer

and Carpenter 2003, van Nes and Scheffer 2007,

Carpenter et al. 2008).

Recent work suggests that such fold bifurcations are

preceded by rising variance and spectral density increase

(Carpenter et al. 2008), but the behavior of these

indicators near critical points is not as smooth as we

have found here, and other indicators may not work at

all in these situations. In fact, how variance changes

before, during, and after a regime shift is bound to differ

in different ecosystems. For example, Kleinen et al.

(2003) found that the variance spectrum shifted to lower

frequencies and longer wavelengths near regime shifts in

oceanic thermohaline circulation. Although our results,

along with others (e.g., Kleinen et al. 2003, Rodionov

2005c, Carpenter and Brock 2006), suggest that prop-

erties of the variance spectrum can be useful as

indicators of regime shifts, there is probably no one

property that will work for all systems. Rather, if the

emergent process has high frequency (such as P recycling

in lakes), then looking for indicators in the high-

frequency bands of the variance spectrum is likely to

be fruitful. In contrast, if the emergent process has low

frequency (such as in ocean circulation), then looking

for indicators in the low-frequency bands of the variance

spectrum is more appropriate. Either way, a basic

process model of how the system works is crucial. In

the absence of detailed process information, manage-

ment intervention should not wait for definitive proof

of, or a single number that may presage, an impending

FIG. 9. Probability that a regime shift occurs as a function
of when it was detected. In the simulations used to generate
these values, the system parameters were set at k ¼ 0.35, e ¼
0.01, r¼ 0.01, and initial Fa¼ 0.3. Point-source inputs (Fi) were
allowed to increase linearly according to the following
management parameters: Speed ¼ 40 years to doubling total
inputs (Ftotal ¼ Fi þ Fa); and the amount of allowable point-
source inputs after management intervention, Best inputs¼ 0.9.
The tuning coefficient for the detection indicator FAC was set
equal to 10. This parameter set was the ‘‘medium’’ parameter
set of Table 4.

3 hhttp://www.resalliance.org/183.phpi
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regime shift. Rather, expeditious invocation of the

precautionary principle in managing ecosystems seems

prudent.

Our analysis illustrates that prospective indicators of

regime shifts exist, but that when information about true

processes driving the system are incomplete or when

intensive management actions cannot be implemented

rapidly, many years of advance warning are required to

avert a regime shift. The lake model we used as our

example is based on detailed, long-term study by a large

number of investigators; the model accurately accounts

for the processes causing regime shifts in north

temperate lakes (Carpenter 2003, Carpenter and Brock

2006). However, most managers have neither the time

nor the money to invest in decades of study by large

groups of investigators to create a detailed model of a

particular system. Encouragingly, our analysis shows

that, with only a basic understanding of a few core

processes, managers still can identify indicators of

impending regime shifts in lakes based on identifying

feedbacks among system parameters that occur well

before thresholds are crossed and regime shifts occur.

For the lake model, the indicator based on increases

in the spectral density of the time series of P recycling is

best at detecting impending regime shifts, but other

indicators (Table 2) may be more effective for different

ecosystems. The detection algorithm (Box 1) suggests a

method to explore the effectiveness of the different

algorithms, which in all cases should provide a high

‘‘signal’’ of feedbacks in the face of ‘‘noise’’ from other

processes. But even if impending thresholds can be

detected, prevention of regime shifts depends on the

inertia of the system and the rapidity with which a

manager can react and implement management actions.

In our example of managing P inputs into a lake, we

achieved good results because the management inter-

vention could occur quickly (immediate adjustment in

Fi). If the time to intervention increases, regime shifts

may not be preventable even if managers can reliably

detect thresholds well in advance. But even when inertial

aspects of a system limit the ability to prevent a regime

shift, it may still be important to intervene to reduce the

hysteresis of the system so that it can return to its initial

state more rapidly.

Another important consideration is the number of

slow variables that interact to cause a regime shift.

Management is easiest when only one slow variable

causes the regime shift and when that variable can be

controlled. But when several slow variables are involved,

and some cannot be controlled (e.g., Fa in our example),

management may be more difficult. In our example,

since the controllable slow variable (Fi) and the

uncontrollable slow variable (Fa) had additive effects,

their sum could be controlled simply by manipulating Fi.

In other cases, such as when the slow variables are either

noninteracting or interact in nonlinear ways, such

compensatory interventions may not be possible or

successful.

Our work also suggests several additional avenues for

future research in this area. Combining several indica-

tors of regime shifts into a composite indicator may

increase the signal-to-noise ratio in the analysis, thereby

increasing the probability of detecting a true regime shift

early and decreasing the probability of falsely detecting

a regime shift. We also assessed only single year-to-year

changes in indicator values (Box 1), but algorithms that

consider multiple successive year-to-year changes may

provide a mechanism for assessing the significance of

observed changes in the system (Rodionov 2005b).

Further assessment of the propagation of process error

and the impact of observation errors of different

magnitudes in the model and the application of the

management algorithm in real situations would help to

provide additional bounds on our ability to detect and

respond to regime shifts. Finally, we considered only

linear increases in a single parameter that caused a

regime shift, but in many cases, multiple parameters will

change nonlinearly, especially in the cases of fold

bifurcations (also discussed by Carpenter et al. 2008).

Future work should also focus on identifying changes in

indicators values that are caused by changes in multiple

parameters: ideally ones that can be monitored easily

and that are due to processes that may actually lead to

regime shifts.
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