Show Me a Picture, Tell Me A Story

Harvard Forest Schoolyard Ecology Program:
Level II & III Data Visualization and Analysis Workshop

Betsy A. Colburn

Thursday, January 9, 2020
Harvard Forest, Petersham, MA

Date Sampled Fallen
9/22/2004 10 0
9/29/2004 10 0
10/6/2004 10 0
10/13/2004 10 0
10/19/2004 10 0
10/27/2004 10 0
11/4/2004 5 5
9/28/2005 24 3
10/5/2005 24 3
10/12/2005 24 8
10/19/2005 24 10
10/26/2005 24 13
11/2/2005 24 20
11/10/2005 24 24
9/20/2006 24 2
9/27/2006 18 6
10/4/2006 24 11
10/11/2006 24 16
10/18/2006 24 17
10/25/2006 24 18
11/1/2006 24 23
11/8/2006 12 12
9/12/2007 24 4
9/19/2007 24 4
9/26/2007 24 9
10/3/2007 24 13
10/10/2007 24 20
10/17/2007 24 21
10/24/2007 24 23
10/31/2007 6 6
Schoolyard Science phenology data set in comma-delimited text (.csv) format, as on the Harvard Forest Schoolyard Science website, and in a spreadsheet.

.csv

<table>
<thead>
<tr>
<th>School</th>
<th>Teacher</th>
<th>Date</th>
<th>Julian</th>
<th>TreeID</th>
<th>Species</th>
<th>Ltotal</th>
<th>Lfallen</th>
<th>Tcolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-06</td>
<td>250</td>
<td>2</td>
<td>CH</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>1</td>
<td>YB</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>2</td>
<td>CH</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>3</td>
<td>RM</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>4</td>
<td>RM</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>5</td>
<td>CH</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>6</td>
<td>WH</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-22</td>
<td>266</td>
<td>7</td>
<td>RM</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-29</td>
<td>273</td>
<td>1</td>
<td>YB</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-29</td>
<td>273</td>
<td>2</td>
<td>CH</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-29</td>
<td>273</td>
<td>3</td>
<td>RM</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-09-29</td>
<td>273</td>
<td>4</td>
<td>RM</td>
<td>5</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-10-06</td>
<td>280</td>
<td>1</td>
<td>YB</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-10-06</td>
<td>280</td>
<td>2</td>
<td>CH</td>
<td>10</td>
<td>0</td>
<td>NA</td>
</tr>
<tr>
<td>ARM</td>
<td>Miller</td>
<td>2004-10-06</td>
<td>280</td>
<td>3</td>
<td>RM</td>
<td>5</td>
<td>2</td>
<td>NA</td>
</tr>
</tbody>
</table>
Data Analysis – Understanding Results of Sampling

- **Spreadsheets and Tables**
 - Original data
 - Modified data
 - Additional extracted data
 - e.g., growing season (Buds, Leaves)
 - e.g., biomass accrual for plot or species (Changing Forests)

- **Graphs and Figures**

- **Statistics**

- **Models**
Considerations for Analyzing & Graphing Data

• What do you have for original data?

• What do you want to find out? (What are the questions you are asking of your data?)

• What kinds of additional information can you obtain (from your data or elsewhere) to help answer your questions? (Weather data, other schools’ data...)

• What kind of graphs(s) [or statistics, or models] can help you address your questions?

• What graphs [or statistics, or other illustrations] can help you tell your story effectively?
Tree species sampled in a schoolyard phenology study. ARM Schoolyard data. a. Pie graph. b. Stacked bar graph. (Species codes as in a.) c. Bar graph.

These graphs could apply equally well to data on tree species in plots sampled for Our Changing Forests – Level 2 exercises will look at both kinds of data sets.
To a very large extent, the choice of how to present data graphically is simply a matter of the investigator’s preferences – much of the time, there is no “right” or “wrong” way to illustrate results. What graphical presentation is most informative? What graphs are easiest to understand and interpret?
Leaf fall in one tree over four years of sampling. ARM Schoolyard data.

Progression of Leaf fall in Yellow Birch #1 over Four Years of Study

What kinds of data from Our Changing Forests or Woolly Bully could be shown with a similar graph? What would be different on the graph?
Leaf fall in Multiple Trees. ARM Schoolyard data.
Leaf fall in Multiple Trees. ARM Schoolyard Data.
Mean 50% bud break (BB), 75% leaf development (75) and 50% leaf fall (L50) for 4 species (Acer rubrum - ACRU n=5, Betula alleghaniensis - BEAL n=3, Quercus rubra - QURU n=4 and Q. alba - QUAL n=3).
Fig. 3. (A) Aboveground biomass in living stems in the canopy (black) and the subordinate level (grey), (B) and biomass in the canopy, (C) and subordinate level by species. The values above the bars in panels B and C indicate the number of stems that comprise the biomass represented in each bar.
How are Density and Biomass of Woody Plants Related?
For results from Woolly Bully sampling, there are various ways to graph data on branch growth and HWA infestation. Some of these are also appropriate for graphing tree growth in plots for Our Changing Forests.
Before Data Analysis:

• Look at the Data and Check for:
 ✓ Errors
 ✓ Missing or Duplicate Information
• Add or Correct Data as Needed
Before Creating Graph(s):

• Obtain Additional Information Needed to Answer Your Question(s) – Growing Season, Tree Growth, % of Leaves Fallen, Site Elevation, Weather Data….

• The Data Base Calculates Some of these Variables; You may Want to Add Others, and/or to Manipulate Your Data in Various Ways
Create Visual Representation(s) of your Data – Graph(s)!

- What Question(s) Do You Want to Explore Through a Graph?
- What are the Axes?
- What Data are being Graphed?
- What are the Units Shown?
- Are Numbers and Words Legible?
- Would a Different Kind of Graph of the Same Data Provide Additional or Better Information?
Take Time to Look at the Graph(s) You Create:

• What pattern(s) do you see?
• How do patterns relate to the basic questions your study is trying to answer?
• What factors might explain the patterns? What might be causing them?
• How can you use the graphs with your students?
Go to it — Happy Data Visualization AND Interpretation!
Calculating Growing Season Length From Schoolyard Data

Growing Season Calculation:

1. Determine 50% bud burst and 50% leaf-fall dates for each tree, or alternatively, you could calculate the average for each species, or average for all trees at a site, depending on your analysis goals.
2. Subtract budburst date from leaf-fall date; this gives the number of days in the growing season for the selected tree(s).
3. This approach could also be used to estimate average duration of flooding in some vernal pools, if data are available on both the increase in water depth in spring, and the decline in water levels as the hydrologic year progresses.

Estimating date of 50% leaf fall, bud burst, pool filling or drying, or other event

Use data measuring change in factor of interest -- water depth, growth, leaf fall, etc. Look at the data, and choose two points bracketing the 50% level -- the formula below finds the 50% point between them.

- d1 and d2 are the julian days when measurements were made before and after the 50% level was reached.
- p1 and p2 are the percent of leaf-fall estimated for measurement dates d1 and d2, respectively.

Plug the values for d1, d2, p1, and p2 into the following formula:

\[
50\% \text{ Leaf-fall or bud-burst Julian Date: } \frac{d_1}{d_50} + \left(\frac{d_2-d_1}{p_2-p_1}\right)
\]

EXAMPLE:

- Spring: d1 = 95, d2 = 122
 - 50% bud burst = 95 + ((122-95)(50-47)/(62-47)) = 100.4
- Fall: d1 = 277, d2 = 284
 - 50% leaf fall = 277 + ((284-277)(50-46)/(67-46)) = 278.3

If 50% bud-burst was at day 100 (April 10 in a non-leap year), and if 50% leaf-fall was day 278, then 278-100 = 178: the growing season was 178 days long for this particular tree or group of trees.

Calibrating Julian Date from Standard Date:

Use the Excel formula below:

\[
\text{Julian Date: } \frac{K_6}{\text{DATE(YEAR(K6),1,0)}}
\]

REPLACE "DATE" IN COLUMN A WITH AN ACTUAL DATE, AND THE JULIAN DAY WILL BE CALCULATED IN COLUMN B.

http://harvardforest.fas.harvard.edu/schoolyard/data-analysis