Introduction to Data Visualization

Schoolyard Ecology Looking at Data Workshop for Teachers

Betsy A. Colburn
 Harvard Forest

January 9, 2020

We use graphs of our data to tell a story and identify questions

J. Mossman

Choate Rosemary Hall Our Changing Forests Joseph Scanio

J. Scanio

We use graphs of our data to tell a story and identify questions

We use graphs of our data to tell a story and identify questions
Atmospheric Carbon Dioxide ($\mathbf{C O}_{\mathbf{2}}$) levels, 1800-present

We use graphs of our data to tell a story and identify questions

Atmospheric Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ levels, 1800-present

Data from Greenland ice cores through 1958, and subsequently from Mauna Loa Observatory, HI. Annual means of monthly measurements. 2019 data are from July, 2019 as estimate of annual average.
https://sealevel.info/co2.html

Temperature graph from weather stations and buoys worldwide; shows yearly average differences between measured land and ocean temperatures in a given year and a baseline average annual temperature (the temperature anomaly shown on the Y axis). Also shown is five-year running average, which is the average of the temperature anomalies for the current year and the four preceding years. The base period (0 point on Y axis) is 1951-1980
https://data.giss.nasa.gov/gistemp/graphs_v4

We use graphs of our data to tell a story and identify questions

Would this graph help you interpret year-to-year changes in tree growth, if that was the subject of the graph below

What if this graph were showing changes in annual growth of trees relative to the previous year (biomass or diameter) what might you conclude?

Mean Date of 50\% Leaf-fall in Four Species of Trees at the Harvard Forest, 1990-2018 (John O’Keefe Data)

a. Line graph - not appropriate

b. Bar graph - appropriate

Macroinvertebrate communities in a Cape Cod Vernal Pool, April and June, 1996. Data from EA Colburn

$20,5 \% 2,1 \% 8,2 \%$

April, 376 organisms June, 68 organisms

Density and Biomass of Trees and
Shrubs in the Harvard Forest Megaplot
(Data from D. A. Orwig)

■ Red maple
\square white pine

- Yellow birch

■ winterberry holly*

700

Density

Biomass

Age and diameter of trees on Mt Wachusett. Data from DA Orwig.

Distribution of Six

 Tree Species and Six Shrub Species in the HarvardForest Megaplot. (Data: D.A. Orwig)

We use graphs of our data to tell a story and identify questions

Atmospheric Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ levels, 1800-present

Data from Greenland ice cores through 1958, and subsequently from Mauna Loa Observatory, HI. Annual means of monthly measurements. 2019 data are from July, 2019 as estimate of annual average.
https://sealevel.info/co2.html

Temperature graph from weather stations and buoys worldwide; shows yearly average differences between measured land and ocean temperatures in a given year and a baseline average annual temperature (the temperature anomaly shown on the Y axis). Also shown is five-year running average, which is the average of the temperature anomalies for the current year and the four preceding years. The base period (0 point on Y axis) is 1951-1980
https://data.giss.nasa.gov/gistemp/graphs_v4

Steps in Preparing Visual Presentations of (Schoolyard) Data

- Collecting the Data
- Organizing Data and Inputting data to a Data base

Level 1 - STEP 1 IN DATA ANALYSIS
Levels 2 and 3 also need to do this

- Preparing data for analysis
- Transformations (e.g., change numbers to percent, date to Julian Day, etc.)
- Extracting additional information
- (e.g., biomass accrual for the whole plot, length of growing season)
- Carrying out data analysis
- Data analysis through visual presentations of data
- Looking at Data - Graphing considerations

Levels 2, 3

- Kinds of graphs - what is appropriate for your data and questions?

Level 2 teachers - Creating graphs by hand or by using graphics programs with structured exercises Looking at graphs and answering questions about them.

Level 3 teachers - Organizing your students' data and creating and interpreting graphs of the data, or otherwise working with data to meet your individual goals for today. We hope graph INTERPRETATION will be part of your work!

Everyone - wrapping up

- Sharing graphs, ideas, questions
- Workshop evaluation and feedback

