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Plasticity and not adaptation is the primary 
source of temperature-mediated variation in 
flowering phenology in North America

Tadeo H. Ramirez-Parada    1 , Isaac W. Park1, Sydne Record    2, 
Charles C. Davis    3, Aaron M. Ellison    3,4 & Susan J. Mazer    1

Phenology varies widely over space and time because of its sensitivity 
to climate. However, whether phenological variation is primarily 
generated by rapid organismal responses (plasticity) or local adaptation 
remains unresolved. Here we used 1,038,027 herbarium specimens 
representing 1,605 species from the continental United States to measure 
flowering-time sensitivity to temperature over time (Stime) and space (Sspace). 
By comparing these estimates, we inferred how adaptation and plasticity 
historically influenced phenology along temperature gradients and how 
their contributions vary among species with different phenology and 
native climates and among ecoregions differing in species composition. 
Parameters Sspace and Stime were positively correlated (r = 0.87), of similar 
magnitude and more frequently consistent with plasticity than adaptation. 
Apparent plasticity and adaptation generated earlier flowering in spring, 
limited responsiveness in late summer and delayed flowering in autumn in 
response to temperature increases. Nonetheless, ecoregions differed in the 
relative contributions of adaptation and plasticity, from consistently greater 
importance of plasticity (for example, southeastern United States plains) to 
their nearly equal importance throughout the season (for example, Western 
Sierra Madre Piedmont). Our results support the hypothesis that plasticity is 
the primary driver of flowering-time variation along temperature gradients, 
with local adaptation having a widespread but comparatively limited role.

The timing of life-cycle events (phenology) determines the environmen-
tal conditions that organisms encounter throughout development and 
often mediates their fitness1. Phenology usually is cued by seasonally 
and interannually variable climatic factors—such as temperature—that 
enable individuals to adjust growth and reproduction plastically in 
response to fluctuating environmental conditions1,2. Phenology also 
varies within species as a result of evolutionary adaptation to local 
environments, which may select for different mean phenological 

timings among or within populations in space and time3–6. Although 
both plasticity and adaptation alter phenology, their relative contribu-
tions rarely have been measured within the same system largely because 
doing so requires experiments or spatiotemporally extensive genetic 
sampling7–9 (but see ref. 6). Accordingly, most studies have highlighted 
either plasticity or adaptation as mechanisms of phenological variation 
attributable to environmental change7 but their relative importance 
across species and ecological contexts remains unresolved. Elucidating 
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across a climatic gradient, we should observe negligible sensitivity 
to temporal climatic variation (that is, no plasticity; Stime = 0) and a 
substantial difference between the slopes of the temporal and spatial 
relationships (Sspace − Stime ≠ 0 attributable to adaptation along the 
gradient; Fig. 1a,b). Alternatively, a phenologically plastic species 
whose populations are not locally adapted along the gradient should 
show sensitivity to interannual climatic variation (that is, Stime ≠ 0) and 
no differences between temporal and spatial slopes (Sspace − Stime = 0; 
Fig. 1c,d), implying that variation along the gradient can be attributed 
to plastic responses (that is, Sspace = Stime). When both adaptation and 
plasticity drive phenological variation along the climate gradient (that 
is, Stime ≠ 0 and Sspace − Stime ≠ 0), the resulting empirical pattern should 
depend on the relative direction of plastic and adaptive responses. Spe-
cifically, when adaptation operates in the same direction as plasticity 
(that is, co-gradient adaptation), we should observe a greater spatial 
than temporal sensitivity (for example, Stime < 0 and Sspace − Stime < 0 
implies that Sspace < Stime, so Sspace is more negative; Fig. 1e,f). In turn, 
when adaptation operates in the opposite direction to plasticity (that 
is, counter-gradient adaptation15,16), we should observe a lesser spatial 
sensitivity or one of opposite direction to the temporal relationship (for 
example, Stime < 0 and Sspace − Stime > 0 implies that Sspace > Stime, so Sspace 
is either less steep or positive; Fig. 1g,h). Finally, if a species shows no 
plasticity or local adaptation along a climate gradient, we would expect 
negligible temporal and spatial sensitivities (Fig. 1i,j).

Phenological sensitivity to temperature often varies among spe-
cies occurring in different regions or that initiate phenological events at 

the degree to which species have phenologically responded to historical 
climatic variation through plasticity or adaptation could provide impor-
tant context for predicting whether organismal responses may be suf-
ficient—or evolutionary change necessary—to maintain development 
synchronized with suitable climatic conditions in a warming world8.

Phillimore and others9 proposed that the relative and joint con-
tributions of plasticity and local adaptation to spatial variation in 
phenology within a species can be estimated from the difference 
between the slopes of spatial and temporal phenology–climate rela-
tionships. This proposition rests on several observations. The effects 
of interannual climatic variation on phenology generally reflect plastic 
responses, especially among long-lived species less liable to experience 
micro-evolutionary changes from year to year10. Phenological variation 
over space also can be caused by phenotypic plasticity for which, for 
example, growing-degree day thresholds that trigger life-cycle events 
occur on different dates across sites11. However, among populations, 
local adaptation also can generate phenological variation along cli-
matic gradients12,13. Therefore, assuming no confounding factors and 
in the absence of substantial variation in phenological plasticity within 
and among populations, phenological variation along spatial climate 
gradients should reflect the joint effects of plasticity and adaptation14.

Given these observations and assumptions, plasticity and adap-
tation can generate five empirical patterns of sensitivity to temporal 
climatic variation (hereafter, Stime) and to spatial climatic variation 
(hereafter, Sspace) (Fig. 1). First, if a species does not show phenological 
plasticity but population-level phenological means are locally adapted 
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Fig. 1 | Spatial and temporal relationships between flowering time and 
temperature resulting from plasticity and adaptation. a,b, Local adaptation 
acting as the sole driver of flowering time along the gradient (that is, no 
phenological plasticity) (a) should result in a negligible temporal relationship 
and a substantial difference between temporal and spatial slopes (b). c,d, In 
contrast, plasticity acting as the sole driver of flowering-time variation along 
the gradient (that is, no adaptation) (c) should result in a substantial temporal 
relationship and negligible differences between spatial and temporal slopes 
(d). Local adaptation and plasticity jointly influencing flowering time should 
result in different empirical patterns depending on the direction of their effects. 
e,f, Plasticity and adaptation operating in the same direction (for example, 
both negative) (e) should result in a clear temporal relationship and a spatial 
relationship of substantially greater magnitude (f). g,h, In contrast, plasticity and 
adaptation operating in opposite directions (for example, plasticity negative, 

adaptation positive) (g) should result in a clear temporal relationship and a 
spatial relationship of substantially lesser magnitude (or having a different 
sign altogether) (h). i,j, Species exhibiting no plasticity or adaptation along the 
gradient (i) would generate negligible temporal and spatial slopes (j). Orange 
lines in a, c, e and g illustrate phenological responses of spatially separated 
populations to temporal temperature variation, which spans a narrower 
temperature range than spatial temperature variation across the entire species 
range (segmented red lines). The biological processes in a, c, e and g generate 
the empirical patterns in b, d, f and h. In turn, the empirical patterns imply the 
processes that generated them. See ‘Exploring assumptions’ for an overview 
of the assumptions of this approach and the degree to which they were met 
by our data. For examples of species exhibiting each of these patterns, see 
Supplementary Fig. 1.
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different times throughout the growing season17–24. However, compari-
sons of phenological sensitivity to climate over space and time—which 
are necessary to evaluate the apparent contributions of plasticity and 
adaptation (Fig. 1)—across species differing in phenology and occupy-
ing different climates require spatiotemporally extensive datasets and 
therefore remain rare. Herbaria provide abundant and increasingly 
available data to conduct these analyses at unprecedented taxonomic, 
temporal and spatial scales21,25–30. However, few studies have separately 
estimated sensitivity to spatial versus temporal climate variation using 
specimens (but see refs. 28,31–36) and none has leveraged their unique 
scope to determine the ecological contexts in which plasticity or adap-
tation might contribute more strongly to spatial variation in phenology.

Here we analysed a dataset of over a million flowering specimens 
from 1,605 species across the continental United States to compare 
phenological sensitivities to spatial and temporal variation in tempera-
ture (Sspace and Stime, respectively). For each species, we assessed whether 
its empirical sensitivity patterns were consistent with the effects of 
plasticity, adaptation or both along temperature gradients (Fig. 1). 
Additionally, we evaluated how apparent temperature-related plastic-
ity and adaptation of flowering time varied among species with differ-
ent native climates, phenological niches and occurring within different 
regional floras. Together, our analyses identified ecological contexts in 
which plasticity or adaptation appears to have most strongly influenced 
spatial phenological variation, providing the most taxonomically and 
geographically extensive assessment of temperature-mediated varia-
tion in flowering time among North American angiosperms conducted 
to date.

Results
Plasticity versus adaptation as determinants of phenology
Sspace and Stime of 93% and 79% of species, respectively, differed from 0 
with at least 95% probability. Sspace and Stime agreed in direction for 94% of 
species and estimates of both Stime and Sspace were negative for 89% and 
91% of species, indicating earlier flowering across increasingly warmer 
locations and in warmer-than-average years (Fig. 2a).

Both apparent plasticity and adaptation were associated with 
clinal variation in flowering time along temperature gradients, 
with plasticity playing a predominant role among species. Sspace and 
Stime were highly positively correlated and their magnitude tended 
to correspond one-to-one for many species (Fig. 2b). Therefore, 
flowering shifts in warmer-than-average years typically had similar 

direction and magnitude (d °C−1) to those observed across increas-
ingly warmer locations, consistent with a scenario of plasticity as the 
cause of phenological variation along spatial temperature gradients  
(Fig. 1c,d and Table 1).

More species showed sensitivity patterns consistent with plastic-
ity (79%) than with adaptation (45%) (Fig. 1 and a detailed classification 
scheme in Table 1). Apparent plasticity explained ~52% of the variance 
in flowering-time clines along temperature gradients among species 
(straight black line in Fig. 2b). Of the species, 41% showed sensitivity 
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Fig. 2 | Distributions of and relationship between Sspace and Stime among 1,605 
North American angiosperms. a, Shaded regions correspond to the kernel 
density distributions of Stime (red) and Sspace (blue) among species. b, Each point 
represents a species whose x, y coordinates are given by the MAP estimates for 
Sspace and Stime, respectively. Colours in b indicate whether sensitivity patterns 
were consistent with plasticity (green) or adaptation (magenta) as the sole 
drivers of flowering-time variation along the temperature gradient, with both 
plasticity and adaptation in a co- or counter-gradient adaptation pattern (blue, 

orange) or neither (dark yellow). The straight, solid black line in b indicates a 
1:1 relationship (that is, Sspace = Stime), whereas the curved solid line shows the 
observed relationship estimated from a GAM. The shaded region along the 
curved solid line in b corresponds to the standard error of the predicted value of 
Stime. The percentage of species showing each pattern is shown in parentheses in 
the legend. The 95% credible interval for the correlation between Sspace and Stime is 
provided as a text inset in b.

Table 1 | Criteria for classifying the sensitivity pattern of 
each species

Biological process Empirical sensitivity pattern

Plasticity only
(1) Probability of direction for Stime ≥ 0.95

(2) Probability of direction for Sspace − Stime < 0.95

Adaptation only
(1) Probability of direction for Sspace − Stime ≥ 0.95

(2) Probability of direction for Stime < 0.95

Plasticity and adaptation

Co-gradient

(1) Probability of direction for Stime ≥ 0.95

(2) Probability of direction for Sspace − Stime ≥ 0.95

(3) Sspace and Stime have the same direction

(4) |Sspace| > |Stime|

Counter-gradient

(1) Probability of direction for Stime ≥ 0.95

(2) Probability of direction for Sspace − Stime ≥ 0.95

Case 1

(3) Sspace and Stime have opposite direction

Case 2

(4) Sspace and Stime have the same direction

(5) |Sspace| < |Stime|

Neither
(1) Probability of direction for Stime < 0.95

(2) Probability of direction for Sspace − Stime < 0.95

Patterns were classified as consistent with the role of plasticity only, adaptation only, the 
joint effects of plasticity and adaptation in a co- or counter-gradient adaptation pattern or 
neither adaptation nor plasticity. The probability that Stime or Sspace − Stime differed from 0 in the 
direction of its maximum a posteriori (MAP) estimate (that is, their probability of direction) 
was obtained from the posterior distribution of these parameters for each species.
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patterns consistent with plasticity as the sole driver of phenological 
variation across gradients. In contrast, only 7% of species showed 
sensitivity patterns consistent solely with adaptation (Fig. 1a,b). Of 
the species, 38% showed both apparent local adaptation and evidence 
of plasticity. Among these, a greater proportion showed flowering 
advances (and co-gradient patterns; 27%) than flowering delays (and 
counter-gradient patterns; 10%) resulting from apparent adaptation 
along temperature gradients (Fig. 2b). Of the species, 14% showed pat-
terns that were consistent neither with temperature-related plasticity 
nor with adaptation. These patterns remained consistent when analys-
ing only long-lived species (whose responses to yearly temperature 
anomalies are certain to be plastic) (Extended Data Fig. 1).

Plasticity and adaptation across ecological contexts
Apparent plasticity (Stime) varied substantially among species with 
different phenological niches and across local climates (R2 = 0.55;  
Fig. 3a,c). Species flowering during late winter and spring tended to 
show flowering advances in warmer-than-average years. Such advances 
decreased in magnitude throughout the season, typically reversing to 
flowering delays during late summer and autumn (Fig. 3a,c). The timing 
of the transition from positive values was consistent throughout PC1 
(Fig. 3a) but occurred much earlier in arid regions with high tempera-
ture seasonality along PC2 (Fig. 3c). Apparent adaptation (Sspace − Stime) 
also varied with phenological niche and native climate (R2 = 0.47; Fig. 
3b,d). Apparent adaptation varied from negative to positive values 
throughout the growing season, indicating a transition from flowering 
advances to delays attributable to local adaptation. Such transitions 
occurred much earlier in cool, thermally seasonal regions (that is, the 
low range of PC1) (Fig. 3b). Apparent adaptation also varied through-
out the growing season along PC2, with transition from advances to 
delays under warmer conditions occurring earlier in regions with high 
precipitation (Fig. 3d).

These patterns were mirrored at the regional level: throughout 
the season, average apparent plasticity and adaptation among species 
transitioned from generating flowering advances to generating delays 
in response to higher temperatures in all sampled ecoregions (R2 for 
Stime = 0.44; R2 for Sspace − Stime = 0.35; Fig. 4). This transition invariably 
occurred during the summer months. The magnitude of apparent 
adaptation tended to be lower than that of apparent plasticity during 
most of spring and early summer for all ecoregions. Their difference 
tended to be less among species flowering during early spring and the 
magnitude of adaptation was often greater among species flowering 
during late summer and early autumn (Fig. 4a–n). Nonetheless, we 
detected regional differences in the relative contributions of apparent 
adaptation and plasticity among species throughout the season. For 
example, apparent adaptation and plasticity had similar magnitudes 
within the Western Sierra Madre Piedmont (Fig. 4g). In contrast, mean 
apparent plasticity was consistently greater than adaptation among 
species in the southeastern United States plains (Fig. 4j). The differ-
ence in magnitude between apparent plasticity and adaptation was 
greatest among early- to mid-summer flowering species in the Western 
Cordilleras and cold deserts (Fig. 4b,c).

Discussion
This study provides evidence that, for 1,605 North American plant spe-
cies, phenotypic plasticity historically has been the primary mechanism 
generating flowering-time variation along temperature gradients. 
Nonetheless, apparent adaptation and plasticity jointly generated 
phenological variation in many species. Both apparent plasticity and 
adaptation consistently generated flowering advances in spring, lesser 
advances during summer and flowering delays during early autumn and 
this pattern was consistent across climates and ecoregions. Whether 
phenological reaction norms to historical climatic conditions will 
remain adaptive under future climatic regimes is unclear10. Nonethe-
less, these results suggest that plasticity historically has enabled flow-
ering phenology to respond quickly to a wide range of temperature 
conditions among North American angiosperms, with adaptation 
frequently playing an important but context-dependent role.

Plasticity causes clinal variation in flowering time
Extensive research has documented phenological plasticity to spatial 
climatic variation in plants37–40 that can result in clinal phenological 
variation41 even among short-lived taxa11. Our study extends these 
results by showing that the predominance of plasticity over adaptation 
associated with temperature-related variation in phenology over space 
appears to be the norm among North American species.

The greater importance of plasticity found in this study does not 
contradict the well-established role of phenological adaptation in 
space and time40, which can mediate rapid temporal shifts in phenol-
ogy5 or facilitate ecological invasions6,42. Indeed, 45% of species in 
our data showed evidence of adaptation-driven phenological varia-
tion along temperature gradients (Fig. 2b). It is also possible that we 
did not detect nonlinear or patchy adaptation patterns or that the 
contributions of apparent adaptation and plasticity may be differ-
ent in regions under-represented in our data (for example, the Great 
Plains and prairies; Extended Data Fig. 2). Crucially, we only assessed 
the apparent contributions of plasticity and adaptation to observed 
variation in flowering time over temperature gradients, so our results 
do not rule out the possibility that adaptation is the primary driver 
of phenological variation along gradients of different climatic vari-
ables. Finally, determining the exact environmental conditions within 
microsites where herbarium specimens were collected is impossible 
because continental-scale climate products have relatively coarse 
spatial resolution and because specimen coordinates typically are 
inexact. Climatic variation at the microsite level could confound our 
estimates of Sspace and our assessment of the prevalence of local adapta-
tion if, for example, different populations along the gradient occupied 
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distinct microsites that maintained temperatures more constant than 
apparent when looking at coarser pixel-level averages. However, to 
our knowledge, such microsite sorting across species ranges has only 
been reported at their trailing edges where climate is most limiting43. 
Nonetheless, these potential complexities underscore the ultimate 
need for molecular or quantitative genetic studies to corroborate the 
broad correlational patterns outlined in this study.

Still, the strong correlation between Sspace and Stime has important 
implications for phenoclimatic research. For example, it suggests that 
temperature-related variation in flowering time among conspecific 
populations is a good proxy of responsiveness to interannual tem-
perature variation. Therefore, space-for-time substitutions might be 
viable approaches for quantifying plastic flowering responsiveness 
to temperature in North American angiosperms, for most of which 
we lack long-term phenological records26,44. Specifically, the match 
between Sspace and Stime shows that substituting space for time might 
reveal the direction and approximate magnitude on flowering sensitiv-
ity to temperature over time within species or relative differences in 
sensitivity among species. However, co-gradient adaptation frequently 
generated spatial sensitivities of greater magnitudes than those over 
time, demonstrating that Sspace might overestimate Stime in many species.

Our results also indicate that plasticity may have generated phe-
nological variation across a temperature range (a median range of 
13.7 °C) exceeding the degree of warming forecasted for most regions 
in coming decades. However, such historical plastic flowering shifts 
over space will not necessarily be mirrored by temporal shifts within 
populations as warming trends continue. For example, historical tem-
perature cues may become uncorrelated from the factors mediating 
the fitness consequences of phenology, rendering plastic reaction 
norms maladaptive10. Plastic phenological shifts associated with warm-
ing also may be constrained by physiology45 or by other competing 
cueing mechanisms such as photoperiod or winter chilling that may 
be disrupted by phenological shifts associated with higher tempera-
tures46–48. These complexities highlight the need for research on the 

fitness consequences of recent and ongoing phenological shifts49,50 and 
on the inter-related mechanisms underpinning associations between 
multiple abiotic cues (for example, chilling, forcing, photoperiod 
and resources) and seasonal development beyond model systems48,51.

Plasticity and adaptation vary across ecological contexts
Sensitivities transitioned from flowering advances under warming 
in spring to reduced or no responsiveness during summer and even 
flowering delays in early autumn (Figs. 3 and 4). This pattern implies 
that temperature trends will probably drive changes to the structure 
of the flowering season during spring and autumn under global change 
but that other environmental factors might play predominant roles 
during summer.

These results support studies showing decreases in phenological 
sensitivity to temperature among species throughout the season in 
temperate biomes18,21,52,53 and others showing flowering delays among 
autumn-flowering species or lengthening of the growing and flower-
ing seasons under warming23,54–56. While we cannot unambiguously 
identify the causes of this pattern, studies have shown that warming 
typically advances phenology during spring due to accelerated devel-
opmental rates, while phenophases occurring during autumn are cued 
directly by seasonal cooling57–59. This difference would explain why 
autumn-flowering species showed phenological delays under warming 
(that is, autumn cooling occurs later in warmer-than-average years) 
or why the transition from advances to delays was more pronounced 
within cool regions with high temperature seasonality (that is, those 
showing more pronounced cooling during autumn; Fig. 3). Regard-
less of its causes, our study corroborates that transitions from spring 
flowering advances to autumn delays because of climatic warming are 
consistent across thousands of species and diverse climate zones and 
biomes in the continental United States.

Likewise, apparent adaptation throughout the season typically 
transitioned from generating mean flowering advances to generating 
delays along temperature gradients. Our results are consistent with 
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those reported by Delgado and others23, who found changes in the 
direction of apparent plasticity and adaptation throughout the grow-
ing season for multiple trophic levels (that is, saprotrophs, primary 
producers and primary and secondary consumers) in Eastern Europe. 
That changes in apparent plastic and adaptive responses to warming 
throughout the year might be robust across different phenophases, 
taxa, trophic levels or climatic regimes across the temperate zone may 
reflect shared cueing mechanisms or selective pressures for different 
phenological events occurring during the same seasons56, with fac-
tors other than temperature (for example, resources or photoperiod) 
probably driving phenological variation for developmental events in 
summer. Additionally, the greater prevalence of co-gradient adaptation 
as opposed to counter-gradient adaptation suggests that adaptation 
typically operates to generate greater variation in phenology along 
temperature gradients than is generated by plasticity alone.

Conclusions
Our findings indicate that phenotypic plasticity is the predominant 
historical mechanism of spatial phenological variation across a wide 
range of temperature conditions in the continental United States; adap-
tation plays more context-specific roles. Whether and how species-level 
attributes such as functional traits and life history may mediate these 
relative contributions or whether historical responses will tend to be 
adaptive under non-analogue climatic conditions remain open ques-
tions and important directions for future research. Our results outline 
broad correlational patterns whose verification will require direct 
measurements of plasticity and adaptation across species and climate 
regions. Nonetheless, our data—across many biomes and thousands 
of species—confirmed patterns of plastic and adaptive phenologi-
cal advances in spring and delays in autumn in response to warming 
observed in detailed empirical studies, highlighting the increasing 
utility of biological collections for studying plant responses to global 
change at vast taxonomic and spatiotemporal scales.

Methods
Specimen data
We assembled specimen records from 220 herbaria made available 
digitally through 16 consortia from Mexico, the United States and 
Canada (accessed during July and August of 2022; Supplementary 
Note 1). We retained only specimens explicitly recorded as bearing 
flowers, which we determined by summarizing all unique entries in the 
DarwinCore ‘reproductiveCondition’ column and identifying those 
that unambiguously indicated presence of flowers. After harmoniz-
ing species names using the taxonomic name resolution service60, 
we removed specimens lacking species-level identification, GPS 
coordinates or dates of collection. To match the spatial and temporal 
coverage of the climate data (see ‘Climatic data’), we retained only 
specimens collected from 1896 to 2020 within the United States. 
We considered as duplicates any conspecific specimens collected 
within 111 m (0.001 of a decimal degree) of one another on the same 
date. For subsequent analysis, we selected species represented by at 
least 300 specimens to ensure that our model was computationally 
tractable and that we had sufficient sample sizes for estimating tem-
perature responses in space and time. This filtering yielded a sample 
of 1,038,047 specimens from 1,605 species (Extended Data Fig. 2) (see 
ref. 61 for additional methodological detail).

We used day of year (DOY) of collection of each specimen as a proxy 
for flowering date. Because flowering spanned year-ends for many 
species, we accounted for the DOY discontinuity between 31 December 
and 1 January using an azimuthal correction, whereby DOYs from the 
year before become negative values29.

Climatic data
Temperature conditions preceding and leading up to anthesis can 
mediate flowering time through their effects on developmental rates 

of preceding phenophases or by cueing floral development and anthe-
sis. Accordingly, we used mean surface temperatures averaged over a 
standard period of 3 months18,21,53,62 leading up to (and including) the 
mean flowering month for each species (hereafter, TMEAN) as a predic-
tor. For each collection site, we obtained monthly TMEAN time series 
( January 1896 to December 2020) at a 16 km2 spatial resolution from the 
parameter–elevation regressions on independent slopes model (PRISM 
Climate Group, Oregon State University, http://prism.oregonstate.
edu). We characterized each collection site by its long-term mean tem-
perature (hereafter, TMEANNormal), averaging observed TMEAN across 
all years between 1896 and 2020. Annual deviations from long-term 
TMEAN conditions (hereafter, TMEANAnomaly) at each site and in each 
year were calculated by subtracting the TMEANNormal from the observed 
TMEAN conditions in the year of collection. Positive and negative 
TMEANAnomaly values, respectively, reflect warmer-than-average and 
colder-than-average years. TMEANNormal and TMEANAnomaly were uncor-
related irrespective of the latitudinal and elevational range spanned 
by a species (median r = −0.04), thus representing independent axes 
of climatic variation (Supplementary Fig. 2). TMEANNormal spanned a 
wider temperature range than TMEANAnomaly for most species, with 
respective median ranges of 13.7 and 5.4 °C (Supplementary Fig. 3). 
Species occurring in cold climates tended to show later mean flower-
ing dates than species occupying warmer regions (Supplementary 
Fig. 4a); consequently, average TMEANNormal values were well above 
0 °C leading up to the mean flowering dates of all species in our data 
(Supplementary Fig. 4b).

To assess how sensitivities varied across climatic gradients (see 
‘Analyses’), we first characterized long-term precipitation and tem-
perature at each site of collection using a principal component analy-
sis (PCA), with mean annual temperature normal (MATNormal), mean 
annual precipitation normal (PPTNormal), temperature seasonality and 
precipitation seasonality as input features. We obtained precipitation 
(hereafter, PPT) data from PRISM and calculated PPT and tempera-
ture seasonality for each collection site as the difference between the 
months with the highest and lowest PPT and mean temperature normal, 
respectively. We made PPT seasonality proportional to local levels of 
precipitation by dividing differences in maximum versus minimum 
monthly precipitation normal by PPTNormal at each site. The PCA identi-
fied two principal components (PCs) accounting for more variance than 
its input features, jointly explaining 78% of observed variation. PC1 was 
associated with increasing PPT seasonality (36%), decreasing tempera-
ture seasonality (31%) and increasing MATNormal (28%) (Extended Data 
Fig. 2). PC2 represented a gradient of decreasing PPTNormal (74%) and 
increasing temperature seasonality (22%).

Analyses
Estimating apparent plasticity and adaptation. We estimated 
flowering-time sensitivity to TMEANNormal and TMEANAnomaly using a 
Bayesian mixed-effects model. The model fitted species-specific inter-
cepts and slopes and treated them as random effects sampled from 
community-level distributions (defined by among-species mean and 
standard deviation of intercepts and slopes). This hierarchical structure 
improved estimation of parameters by using information and estimates 
from all species in the data. In turn, the Bayesian inference framework 
allowed for estimation of the correlations between TMEAN sensitivi-
ties over space and time and their differences for each species while 
propagating parameter uncertainty.

We used DOY for each observation i as a response, assuming a 
normal distribution with mean µi and species-specific standard devia-
tion σsp:

DOYi ≈ N (μi,σsp) (1)

We modelled µi as a linear function of TMEANNormal (TMEANnormi) 
and TMEANAnomaly (TMEANanomi) for each observation i:
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μi = αsp + Sspacesp × TMEANnormi + Stimesp × TMEANanomi (2)

For each species (sp), the model yielded intercepts representing 
mean flowering dates (αsp), sensitivities (that is, regression slopes) for 
TMEAN normal (Sspacesp) and sensitivities for TMEAN anomaly (Stimesp).

To assess the correlation between Sspace and Stime, we modelled 
community-level distributions for intercepts and slopes as generated 
by a multivariate normal distribution with a vector of hypermeans µ 
and a variance–covariance matrix Σ:

(αsp, SNsp , SAsp ) ≈ N (μ,Σ) (3)

We also calculated the difference between sensitivity types 
(Sspacesp − Stimesp) as a derived quantity within the model, which we inter-
preted as the degree of apparent local adaptation in DOY observed 
across the TMEAN normal gradient (Fig. 1), with negative and positive 
values, respectively, indicating advances and delays in flowering DOY 
across warmer locations.

We used weakly informative priors, with wide, 0-centred normal 
distributions for intercepts, slopes and rate parameters for exponen-
tial distributions (used to obtain species-specific variances). For the 
variance–covariance matrix Σ, we used a Lewandowski–Kurowicka–Joe 
Cholesky covariance prior, with ŋ = 1 to allow for high correlations 
among parameters. Posterior distributions were obtained using Ham-
iltonian Monte Carlo in Stan (code provided in Supplementary Note 2) 
as implemented in R v.4.2.1 using the rstan package v.2.21.2 (ref. 63). We 
implemented a non-centred parameterization to improve sampling of 
the parameter space. Sampling was done using three MCMC chains with 
a training period of 1,000 iterations and sampling of 4,000 iterations. All 
Sspace, Stime and Sspace − Stime estimates had Gelman–Rubin statistics (R-hat) 
of <1.002 and visual examination of trace plots confirmed convergence.

Fitting the model on simulated data (Supplementary Note 3), 
which emulated the average range of TMEAN conditions and the 
signal-to-noise ratio of DOY versus TMEAN observed within species 
in our data, confirmed that our model could accurately recover the 
parameters of interest (Stime, Sspace and Sspace − Stime) for a range of sam-
ple and effect sizes (Supplementary Note 3 and Supplementary Figs. 
5–7). Moreover, we found that apparent plasticity (Stime) and apparent 
adaptation (Sspace − Stime) could be estimated with similar degrees of 
precision (Supplementary Fig. 8).

Because our model did not include an explicit temporal predictor, 
it may appear to ignore widespread trends in phenology and tempera-
ture reported in recent decades. However, additional simulation analy-
ses (Supplementary Note 4) showed that our model does account for 
temporal trends in phenology among species that experience trends 
in TMEANAnomaly over time and that are responsive to TMEANAnomaly (that 
is, non-zero Stime) (Supplementary Fig. 9a). To evaluate the model’s 
implicit assumption that trends in TMEANAnomaly cause observed trends 
in phenology, we used the herbarium dataset to determine empirically 
whether observed temporal trends in TMEANAnomaly and a species’ Stime 
indeed explain observed trends in DOY. We recovered the same patterns 
observed in the simulation (Supplementary Fig. 9b), suggesting that 
phenology and TMEANAnomaly trends are causally related. Moreover, 
detrending DOY and TMEANAnomaly before fitting the model did not 
affect our results, suggesting that omitting time as a covariate was 
unlikely to bias our results (Extended Data Fig. 3).

Finally, we evaluated the impact on our estimates of choosing alter-
native reference periods to calculate TMEANNormal (that is, 1901–2020 
versus 1901–1930, 1931–1960, 1961–1990 and 1991–2020) (Supplemen-
tary Note 5 and Supplementary Figs. 10–12). These analyses confirmed 
that period selection was unlikely to have affected our results.

Exploring assumptions. Herbarium specimens rarely are collected 
repeatedly at the same location across years. Accordingly, we found 
few repeated collections over time and in close enough proximity to 

represent single populations. Because of this, we estimated Sspace and 
Stime using statistical methods different from ref. 9 and ref. 23 (Supple-
mentary Note 6). Nevertheless, the interpretation of our model relied 
on the same simplifying assumptions: spatial slopes reflect variation 
in DOY among populations along a temperature gradient, temporal 
slopes reflect plasticity, plasticity does not vary within and among 
populations and the temporal and spatial relationships between phe-
nology and climate are not biased by confounding factors.

We evaluated the plausibility of many of these assumptions. 
Parameter Sspace probably represented phenological variation among 
populations because conspecific specimens were collected over vast 
regions spanning median latitudinal and longitudinal ranges of 1,356 
and 1,819 km (removing outliers), respectively. In turn, Stime probably 
reflected the effects of plasticity and not adaptation: analyses includ-
ing only long-lived perennials (unlikely to show micro-evolutionary 
changes over short periods) yielded very similar results to those 
presented below (Extended Data Fig. 1); moreover, detrending DOY 
and TMEANAnomaly before fitting the model—which may account for 
temporal confounds or micro-evolution64—yielded nearly identical 
estimates (Extended Data Fig. 3). Furthermore, we generated a single 
estimate of Stime per species, thus assuming uniform plastic responses 
within and among populations. This assumption was supported by the 
observation that, for most species, Stime did not vary along geographic 
gradients of long-term TMEAN, long-term PPT, TMEAN seasonality, PPT 
seasonality or the joint gradients described by PC1 and PC2 (Extended 
Data Fig. 4). Cumulative precipitation and photoperiod are unlikely to 
confound Sspace and Stime: accounting for cumulative PPT yielded nearly 
identical estimates in single-species models (Extended Data Fig. 5) 
and an analysis of 120 species collected withing geographic ranges 
restricted to narrower latitudinal bands (≤1°)—and therefore to limited 
geographically driven variation in photoperiod—yielded results very 
similar to those based on the entire dataset (Extended Data Fig. 6). 
Finally, we detected no biases in Sspace or Stime due to differences in sam-
ple size among species (Extended Data Fig. 7a,b), phylogeny (Extended 
Data Fig. 7c,d), spatial autocorrelation (Extended Data Fig. 7e,f),  
nonlinear phenology–temperature relationships (Extended Data Fig. 8)  
or difference in range size among species (Extended Data Fig. 9).

Although herbarium data have many spatial and temporal col-
lection biases and limitations—including preferential collection near 
roads and urban areas and decreases in collection intensity in recent 
decades65—such biases are probably not severe in our data (Supple-
mentary Notes 7 and 8 and Supplementary Figs. 13–20). Our estimates 
of Sspace, Stime and Sspace − Stime were robust to inclusion in our models of 
factors such as urbanization (Supplementary Fig. 14) and proximity to 
major roads (Supplementary Figs. 17 and 18) and showed no evidence 
of various forms of temporal non-independence (Supplementary 
Fig. 20). Collector preferences can result in over-representation of 
certain taxa or traits among specimens65. While we cannot rule out 
these biases in our data, our study encompassed species from 106 
families and 740 genera, capturing vast functional, evolutionary and 
life history diversity. Therefore, we consider it unlikely that our results 
were driven by over-representation of taxa or traits. Finally, some 
herbaria obscure location data for endangered or heavily poached spe-
cies. However, since we only included georeferenced specimens from 
well-represented species—of which only 12 (0.7% of the total) are listed 
as endangered by the United States Department of Agriculture66—it is 
unlikely that our species list includes many such taxa.

Categorizing sensitivity patterns. To assess the prevalence of appar-
ent plasticity and adaptation among species, we categorized each 
species’ Sspace versus Stime patterns as consistent with the effects of plas-
ticity alone (Fig. 1a,b), adaptation alone (Fig. 1c,d), the joint effects 
of plasticity and adaptation (co- or counter-gradient adaptation; Fig. 
1e–h) or neither. Classifications were based on the proportion of the 
posterior probability distribution of Stime and Sspace − Stime lying in the 
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direction of their MAP estimate (that is, their ‘probability of direction’, 
henceforth PD). PD is bound by 0.5 (maximum uncertainty about the 
effect of the predictor) and 1 (certainty of an effect in the direction 
of the MAP estimate). We subjectively considered apparent plasticity 
(Stime) and adaptation (Sspace − Stime) as significant when their PD was 
≥0.95 (Table 1). Apparent plasticity and adaptation showed similar lev-
els of estimation uncertainty both empirically (s.d. = 0.87 ± 0.34 d °C−1 
for Stime; s.d. = 0.93 ± 0.32 d °C−1 for Sspace − Stime) and in simulation 
analyses (Supplementary Note 3), suggesting sensitivity patterns 
were not substantially more likely to be classified as consistent with 
plasticity than with adaptation (and vice versa) due to estimation 
uncertainty.

Phenological niches, local climates and ecoregions. To assess 
how apparent plasticity and adaptation varied with native climate 
and phenological niche among species, we first calculated the mean 
flowering DOY and the mean coordinates along the climate gradients 
described by PC1 and PC2 among specimens of each species. We then 
fit two generalized additive models (GAMs) using Stime or Sspace − Stime as 
responses—assumed to be normally distributed—and a three-variable 
tensor-product smooth of mean flowering DOY, mean PC1 and mean 
PC2 as a predictor. This design allowed us to assess how native climate 
and phenological niche jointly determined the apparent roles of plas-
ticity and adaptation while accounting for possible interactions and 
nonlinearities. Because Stime and Sspace − Stime are estimates, we accounted 
for parameter uncertainty by weighting each observation by the inverse 
of its posterior variance (that is, its precision).

Additionally, we assessed the relative contributions of apparent 
plasticity and adaptation throughout the season within ecoregions of 
the contiguous United States. To do so, we identified the level II ecore-
gion—as classified by the USA Environmental Protection Agency67,68—
within which each specimen was collected. We used level II ecoregions 
because they provide sufficient ecological detail to distinguish regional 
floras while encompassing areas broad enough for each to capture 
multiple species in our data. To avoid inflating species overlap among 
regions or the influence of species that were rarely sampled within an 
ecoregion, we arbitrarily considered a species as present within an 
ecoregion if at least 10% of its collections occurred within it. We then 
retained only ecoregions represented by a minimum of eight species. 
Under this scheme, the median species was classified as occurring 
within two ecoregions (range 1–7), the median ecoregion was repre-
sented by 156 species (range 17–956 for Atlantic Highlands and Western 
Cordilleras, respectively) and pairs of ecoregions shared, on average, 
4% of their species (range 0–39%; Supplementary Fig. 21). Of the 120 
ecoregion pairs examined, 57 shared <1% of species, 100 shared <10% 
of species and 114 shared <20% of species.

Once species × ecoregion combinations were identified 
(n = 3,570), we fitted two GAMs including apparent plasticity (Stime) or 
apparent adaptation (Sspace − Stime) as a response, ecoregion as a categor-
ical predictor, mean flowering DOY as continuous predictor and a mean 
flowering DOY × ecoregion spline assessing the ecoregion-specific 
effects of mean DOY on apparent plasticity or adaptation. Again, we 
accounted for parameter uncertainty by weighting each observation 
by the precision of its corresponding apparent plasticity or adapta-
tion estimate. Collection locations in different ecoregions differed 
substantially in their long-term climatic conditions (Extended Data 
Fig. 10). However, we assumed no intraspecific variation in Stime across 
ecoregions, an assumption partially supported by the observation 
that Stime did not tend to vary along climatic gradients within species 
(Extended Data Fig. 4). All GAMs were implemented using the mgcv 
package v.1.8-40 in R (refs. 69,70).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data used in this study are publicly available on Zenodo61.

Code availability
All code necessary to reproduce the main results, Extended Data Fig-
ures and Supplementary Information are available on Zenodo61.
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Extended Data Fig. 1 | Distributions of and relationship between Sspace and 
Stime among 201 long-lived species in the continental United States. Light 
blue and red shaded regions in (a) respectively correspond to the kernel-density 
distributions of Sspace and Stime among the 201 species included in this analysis. 
The solid black line in (b) indicates a 1:1 relationship corresponding to perfect 
agreement between sensitivity types. The solid curved line indicates the line of 
best fit obtained from a Generalized Additive Model (GAM) of Stime vs. Sspace, with 
the shaded area around it denoting the standard error of the predicted mean 
value. Each point in (b) represents a species whose x, y coordinates are given by 
the maximum a posteriori (MAP) estimates for Sspace and Stime, respectively. Point 
shapes and colours in (b) indicate whether sensitivity patterns were consistent 
with plasticity or adaptation as the sole drivers of flowering time variation along 
the temperature gradient, with both plasticity and adaptation having statistically 
significant effects in a co- or counter-gradient adaptation pattern, or not showing 
statistically significant adaptation nor plasticity. The straight, solid black line in 
(b) indicates a 1:1 relationship (that is, Sspace = Stime), whereas the curved solid line 
shows the observed relationship estimated from a generalized additive model 
(GAM). The shaded region along the curved solid line in (b) corresponds to the 

standard error of the predicted value of Stime. The percent of species showing 
each pattern is shown in the legend in parenthesis. The 95% credible interval for 
the correlation between Sspace and Stime is provided as a text inset in (b). The subset 
of 201 species was selected based on growth form data from the United States 
Department of Agriculture Plant Database (USDA Plant Database, https://plants.
usda.gov). We downloaded all records of growth habit information available 
through the search tool and subset the resulting dataset to contain only species 
represented among the 1,605 species included in the analyses presented in the 
main text. We then retained only flowering specimens from species classified as 
‘Tree’ (n = 5), ‘Shrub’ (n = 164), ‘Subshrub’ (n = 27) or ‘Vine’ (n = 5), which yielded a 
dataset of 201 species. Using this subset dataset, we ran the model presented in 
the main text, obtaining estimates of sensitivity to TMEANNormal and TMEANAnomaly 
and of their difference for each species, as well as an estimate of their correlation 
accounting for parameter uncertainty. The resulting patterns closely mirrored 
those of the larger dataset, with a high correlation and agreement in magnitude 
between Sspace and Stime and similar relative frequencies among species for each 
sensitivity pattern.
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Extended Data Fig. 2 | Sampling intensity and long-term climatic conditions 
across collection sites in the continental United States. Pixels correspond 
to 20 × 20-km grid cells, with their colour representing (a) the total number 
of specimens collected and (b) their mean PC1 and PC2 values. PC1 represents 

a gradient of increasing precipitation seasonality, decreasing temperature 
seasonality and increasing long-term mean annual temperature. In turn, PC2 
represents a gradient of decreasing long-term mean annual precipitation and 
increasing temperature seasonality (see ‘Climatic data’).
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Extended Data Fig. 3 | Estimates with and without detrending DOY and 
TMEANAnomaly. Iler et al.64 showed that shared temporal trends between DOY 
and temperature can generate spurious relationships between these variables 
that often disappear when the phenological and temperature time series are 
detrended prior to estimating their relationship. Alternatively, a non-spurious 
but trended relationship between DOY and temperature might reflect the effects 
of adaptation to directional changes in temperature, at least in short-lived 
species. Therefore, relationships between phenology and temperature that 
persist following detrending are more likely to reflect phenological plasticity. 
Accordingly, we assessed whether estimates of sensitivity to TMEANAnomaly 
(Stime) presented in the main text could be confounded by temporal trends in 
DOY and TMEANAnomaly. To do so, we first ran single-species linear regressions 
using DOY or TMEANAnomaly as responses and year as a single predictor, storing 
the resulting residuals as detrended versions of both responses. Then, for each 

species, we ran two linear models of DOY against TMEANNormal and TMEANAnomaly: 
one with observed DOY and TMEANAnomaly and another with detrended DOY and 
TMEANAnomaly. Trended and detrended estimates of sensitivity to TMEANAnomaly 
were very highly correlated among species, suggesting that TMEAN sensitivity 
estimates presented in the main text do not reflect the confounding effect 
of shared temporal trends. Similarly, detrending DOY and TMEANAnomaly did 
not substantially alter estimates of Sspace and Sspace − Stime. a–c, In each panel, 
points represent the combinations of trended or detrended estimates of Sspace, 
Stime, or Sspace − Stime for each species in the data, whereas diagonal black lines 
correspond to 1:1 to relationships denoting perfect agreement between trended 
and detrended estimates. Solid blue lines in each panel indicate the observed 
relationship between trended and detrended estimates, with the shaded 
region around the trend line (nearly imperceptible due to the large sample size) 
indicating the standard error of the predicted value.
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Extended Data Fig. 4 | Variation in Stime across geographic climatic gradients 
for 1,605 species across the coterminous United States. Distribution of 
interaction terms between TMEANAnomaly and long-term climatic conditions 
within sites of specimen collection, including (a) TMEANNormal, (b) PPT Normal, 
(c) TMEAN Seasonality, (d) PPT Seasonality, (e) the gradient of increasing 
temperature and precipitation seasonality described by PC1 and (f) the gradient 
of decreasing precipitation and increasing temperature seasonality described 
by PC2. The interaction coefficients for all variables were obtained from 
single-species models including flowering DOY as a response, the focal long-
term climatic variable and TMEANAnomaly as a predictor and an interaction term 
between them. Long-term climatic variables were standardized (mean = 0, SD = 1) 
before fitting the models. Accordingly, the interaction terms quantify the change 
in the slope of TMEANAnomaly vs. DOY (Stime, in days/°C) for an increase of 1 SD in 

the long-term climatic variable. The values for the 25th, 50th and 75th percentiles 
of each among-species distribution are indicated in each panel text insets as well 
as the proportion of species for which the interaction coefficient had a p-value 
greater than 0.01 (based on a two-sided t-test). Within a species, phenological 
sensitivity to temperature can vary among portions of the range with different 
long-term climatic conditions. Therefore, differences between Sspace and Stime 
presented in the main text may result from variation in the DOY–TMEANAnomaly 
slope across the geographic climatic gradients and not from the effects of 
adaptation across the gradient. Despite this, we found no evidence of pervasive 
variation in Stime along various geographic climatic gradients, suggesting 
intraspecific variation in phenological sensitivity is unlikely to generate the 
patterns reported in the main text.
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Extended Data Fig. 5 | Consequence of including precipitation in models 
estimating Sspace and Stime. Relationship between estimates of flowering 
sensitivity to TMEANNormal (Sspace) (a, c) and TMEANAnomaly (Stime) (b, d) with or 
without accounting for the effects of cumulative precipitation normal and 
anomaly (x-axis and y-axis, respectively) during the same 3-month periods 
used to calculate TMEANNormal and TMEANAnomaly for each species (see Methods 
in main text). Panels (a) and (b) show the relationships between estimates 
from temperature-only models with those obtained from models including 
PPT normal and net PPT anomaly for the focal 3-month period in the year of 
collection. In turn, panels (c) and (d) show the same relationship but with 
estimates from a model including PPT normal and PPT anomaly proportional 
to the long-term average for that period (that is, divided by the PPT normal). 
Proportional anomalies were included to account for differences in the 
biological significance that the same amount of precipitation might have in 
chronically dry compared to chronically wet locations. The method developed 
by Phillimore et al.9 assumes that the variables causing phenological variation 
along spatial temperature gradients are correctly identified and included 
in the model. Although temperature has been found to be a predominant 
environmental cue inducing flowering in temperate biomes, other variables such 
as precipitation, or those that emerge from the interaction between temperature 
and precipitation, such as snow cover or water stress, routinely have been 

implicated in phenological variation in many North American species. Therefore, 
it is possible that differences in spatial vs. temporal patterns of temperature-
related phenological variation might stem from the confounding effects of 
phenologically important variables not included in our models. Estimates of 
phenologically important variables such as the timing of snowmelt or the onset 
of drought conditions in xeric environments are not available at the temporal and 
spatial scales spanned by our data. However, most of these variables are highly 
correlated with precipitation and temperature over space and time and including 
both in phenoclimatic models might account for the effects of predictors other 
than temperature and precipitation. Accordingly, we assessed whether estimated 
Sspace and Stime changed when accounting for the effects of long-term cumulative 
precipitation (PPT normal) and PPT anomalies in the year of collection, 
separately assessing the effects of both net PPT anomalies and of anomalies 
scaled proportionally to long-term means (PPT normal) for the focal 3-month 
period. Estimates of phenology–temperature relationships in space and time 
did not change substantially when including precipitation variables, resulting 
in a very high correlation between estimates from temperature-only models 
and those from models including precipitation (r = 0.95 or 0.96). Therefore, the 
estimates presented in the main text are unlikely to be biased by the omission of 
precipitation during the months leading up to flowering.
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Extended Data Fig. 6 | Distribution of and relationship between Sspace and 
Stime among species sampled within narrow latitudinal bands. These analyses 
included 157 species with 200 or more specimens collected within a latitudinal 
band of 1° (~111 km) in the continental United States (analogous to Fig. 2 of the 
main text). Light blue and red shaded regions in (a) respectively correspond 
to the kernel-density distributions of Sspace and Stime among the 157 species 
included in the analysis. The solid black line in (b) indicates a 1:1 relationship 
corresponding to perfect agreement between the two types of sensitivity. 
The solid curved line indicates the line of best fit obtained from a Generalized 
Additive Model (GAM) of Stime vs. Sspace, with the shaded area around it denoting 
the standard error of the predicted mean value. Each point in (b) represents a 
species whose x, y coordinates are given by the maximum a posteriori (MAP) 
estimates for Sspace and Stime, respectively. Point shapes and colours in (b) indicate 
whether sensitivity patterns were consistent with plasticity or adaptation as the 
sole drivers of flowering time variation along the temperature gradient, with 
both plasticity and adaptation having significant effects in a co- or counter-
gradient adaptation pattern, or not showing statistically significant adaptation 
nor plasticity. The straight, solid black line in (b) indicates a 1:1 relationship (that 
is, Sspace = Stime), whereas the curved solid line shows the observed relationship 

estimated from a generalized additive model (GAM). The shaded region along the 
curved solid line in (b) corresponds to the standard error of the predicted value 
of Stime. The percent of species showing each pattern is shown in the legend in 
parenthesis. The 95% credible interval for the correlation between Sspace and Stime 
is provided as a text inset in (b). Both temperature and photoperiod are known 
to be the predominant environmental cues controlling both vegetative and 
reproductive phenology among plants in temperature regions. Therefore, across 
latitudinal ranges such as those spanned by most species in our data (median 
latitudinal range = ca. 12.2°), it is possible that differences in Stime and Sspace (for 
example, geographic temperature gradients) might reflect the confounding 
influence of latitudinal shifts in photoperiod on our estimates of sensitivity to 
TMEANNormal. To account for this possibility, we identified 157 species in our data 
that were well sampled (200 or more specimens) within narrow latitudinal bands 
(≤1°). Using this subset of species and including only specimens from such 1° 
bands, we ran the model presented in the main text, obtaining estimates of Stime 
and Sspace and their difference for each species and an estimate of their correlation 
accounting for parameter uncertainty. The results did not qualitatively differ 
from those presented in the main text, with a high correlation between Sspace and 
Stime and similar relative frequencies of each sensitivity pattern among species.
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Extended Data Fig. 7 | Effects of sample size differences, spatial 
autocorrelation and phylogeny on estimates of Sspace and Stime. Comparison 
of Sspace and Stime estimates obtained by (a) homogenizing sample sizes among 
species, (b) accounting for spatial autocorrelation among observations and 
(c) accounting for phylogenetic relationships among species against estimates 
generated ignoring these factors (as those presented in the main text). In  
(a, b), we fit the model presented in the main text using a thinned dataset 
were each species was represented by 300 specimens, comparing its output 
to that of the model in the main text. In (c, d), we compared the results of 
models omitting or accounting for phylogenetic relationships. We selected 
a random subset of 300 species from which to generte a phylogeny, thinning 
these data to include only 300 specimens for each species (to make the model 
computationally tractable). Sspace and Stime estimates that did not account for 
phylogeny were obtained using the model described in the main text. In turn, the 
model accounting for phylogeny included a prior for the covariance structure 
of species-specific parameters consisting of the evolutionary distance between 
each pair of species as estimated from a phylogenetic hypothesis and a model 
of trait divergence among species. The phylogenetic tree (or hypothesis) was 
generated using the R package ‘v.PhyloMaker’ version 0.1.071 and generated a 

phylogeny resovled to the genus level. Using this tree, we then calculated the 
variance–covariance phylogenetic matrix predicted by a Brownian model of 
trait evolution using the R package ‘ape’ version 5.6-272. Finally, both models 
were implemented using the ‘brms’ package version 2.18.073. Finally, in (e, f) we 
compared estimates obtained from models ignoring or accounting for spatial 
autocorrelation of the residuals. All Sspace and Stime estimates were obtained 
using single-species models, but those accounting for spatial autocorrelation 
included a covariance structure for the residuals determined by the geographic 
distance between each pair of points. All models were fitted using the’nlme’ 
package version 3.174 in R. Estimates of Sspace and Stime obtained accounting for or 
ignoring spatial autocorrelation were nearly indentical across species. Across 
panels, the x-axes show the estimates obtained when omitting the focal factor 
(sample size, phylogeny, or spatial autocorrelation), whereas the y-axes show 
estimates obtained when accounting for it. Solid black lines represent a 1:1 line, 
representing perfect agreement in magnitude and direction between estimates. 
Sspace and Stime estimates obtained ignoring sample size differences, phylogeny 
and spatial autocorrelation where highly correlated to estimates obtained from 
models accounting for these factors. Accordingly, we consider it unlikely that 
omitting these factors could have biased our results.
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Extended Data Fig. 8 | Assessing evidence for nonlinear phenology–
temperature relationships. Comparison of R2 values obtained using 10-fold 
cross-validation of models of flowering DOY versus TMEANNormal and TMEANAnomaly 
obtained from (a) linear regressions assuming linear relationships between 
phenology and temperature or (b) generalized additive models (GAMs) 
accounting for potential nonlinear relationships. The shaded region in each 
panel represents the among-species kernel distribution of cross-validated R2 
values obtained using each model type (linear regression or GAM). The mean and 
SD of R2 values each are presented as text insets in each panel. The model that 
generated the sensitivity estimates presented in the main text assumed linear 
relationships between flowering dates and TMEANNormal and TMEANAnomaly. To 
verify whether such an assumption was warranted for our data, we compared 
the predictive ability of single-species models assuming linear relationships 
between phenology and temperature (fitted using linear regression) and models 
accounting for possible nonlinear relationships (fitted using Generalized 

Additive Models). We reasoned that if omitted nonlinear relationships between 
flowering time and temperature were pervasive in our data and potentially biased 
our results, then models accounting for nonlinear relationships would tend 
to perform better than linear regressions among species in our data. We used 
10-fold cross-validation to compare the out-of-sample performance (quantified 
through R2 values) of linear regressions and GAMs. For each model type (linear 
regression or GAM), this procedure randomly split the observations for each 
species into 10 groups, each of which was omitted from a model estimated from 
the remaining 9 groups. The performance of each of these models was then 
assessed against the observations omitted in fitting the model, generating 10 
out-of-sample R2 values for each model type (linear or GAM) per species. We 
then compared the distribution of mean cross-validated R2 values obtained 
from linear models and GAMs to assess whether nonlinear models explained 
additional variance.
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Extended Data Fig. 9 | Effects of geographic range on apparent plasticity and 
adaptation. Relationships between the latitudinal and longitudinal range of 
specimens of a species and estimates of apparent plasticity (Stime) and apparent 
adaptation (Sspace – Stime). Latitudinal ranges in (a, b) and longitudinal ranges in 
(c, d) were obtained by first removing the extreme 1% of observations among 
observations for each species. In a–d, blue lines in each panel correspond to best-
fit lines obtained using generalized additive models (GAMs), with blue ribbons 
showing the standard error of the predicted value of the response for each value 
of the predictors. R2 are provided as text insets in each panel. Although apparent 

plasticity and adaptation showed marginally greater magnitude among species 
with narrower latitudinal and longitudinal range, these relationships explained 
a very small proportion of the variance. Therefore, we conclude that it is unlikely 
that differences in latitudinal or longitudinal range size could confound the 
results presented in the main text. GAMs using apparent plasticity or apparent 
adaptation as a response and including both latitudinal and longitudinal range 
as predictors also explained a marginal proportion of the variance (R2 = 0.10 and 
R2 = 0.05, respectively).
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Extended Data Fig. 10 | Climatic space captured among specimen collection 
locations across ecoregions. a–n, Variation in long-term climatic conditions 
among sites of specimen collection occurring within different Level II ecoregions 
throughout the contiguous United States. Variation in long-term conditions 
was calculated using principal components (PCs). PC1 represents a gradient 

of increasing precipitation seasonality, decreasing temperature seasonality 
and increasing long-term mean annual temperature. In turn, PC2 represents 
a gradient of decreasing long-term mean annual precipitation and increasing 
temperature seasonality (see ‘Climatic data’).
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