

DEPARTMENT: Reproducible Research

Sharing and Preserving
Computational Analyses
for Posterity with
encapsulator

Reproducibility has become a recurring topic of discus-
sion in many scientific disciplines.1 Although it might be
expected that some studies will be difficult to reproduce,
recent conversations highlight important aspects of the
scientific endeavor that could be improved to facilitate re-
producibility. Open data and open source software are two
important parts of a concerted effort to achieve reproduci-
bility.2 However, multiple publications point out these ap-
proaches’ shortcomings,3,4 such as the identification of
dependencies, poor documentation of the installation pro-
cesses, “code rot,” failure to capture dynamic inputs, and
technical barriers.

In prior work,5 we pointed out that open data and open
source software alone are insufficient to ensure reproduci-
bility, as they do not capture information about the com-
putational execution, that is, the “process” and context
that produced the results using the data and code. In keep-
ing with the “open” culture, we defined open process as
the practice of both sharing the source and the input data
and providing a description of the entire computational

environment, including the software, libraries, and OS used for an analysis. We suggested the
use of data provenance,6 formalized metadata representing the execution of a computational task
and its context (for example, dependencies, specific data versions, and random or pseudorandom
values), which can be captured during computation.

We view data provenance as key to addressing these issues, yet still insufficient. We need tools
that leverage provenance to put capabilities, not complex metadata, into scientists’ hands. We
build on recent developments that address this need, such as executable papers7 and experiment
packaging systems, for example, ReproZip.8 We propose a solution for scientists running small-
to medium-scale computational experiments or analyses on commodity machines. Although
tools exist to cover analyses done using spreadsheet programs (further discussed in the “Chal-

Thomas Pasquier
University of Cambridge

Matthew K. Lau and
Xueyuan Han
Harvard University

Elizabeth Fong and
Barbara S. Lerner
Mount Holyoke College

Emery R. Boose, Mercè
Crosas, Aaron M. Ellison,
and Margo Seltzer
Harvard University

Editors: Lorena A. Barba,
labarba@gwu.edu;
George K. Thiruvathukal,
gkt@cs.luc.edu

111
Computing in Science & Engineering Copublished by the IEEE CS and the AIP

1521-9615/18/$33 ©2018 IEEEJuly/August 2018

 COMPUTING IN SCIENCE & ENGINEERING

lenges” section), we intentionally do not cover that space, as it has inherent barriers to transpar-
ency and identification of the source of errors.9,10 Similarly, we do not attempt to address the re-
producibility of large-scale computational analysis.

We present a “time capsule” for small- to medium-scale computational analysis. This time cap-
sule is a self-contained environment that allows other scientists to explore the results of a pub-
lished paper, reproduce them, or build upon them with minimal effort. We automatically curate
the scientist’s code to extract only those elements pertinent to a particular figure, table, or da-
taset.

DATA PROVENANCE
Data provenance10 has the potential to address some of the challenges related to reproducibility.
Indeed, to assess the validity or quality of information, it is necessary to understand the context
of its creation. Unfortunately, digital artifacts frequently omit or hide much of the context in
which they were created. As an example, many of us have been guilty of sharing code developed
on our machines that our colleagues could not run; because we often work in the same environ-
ment for months or years, it’s easy to forget about software and libraries we have installed over
time.

Meanwhile, small differences in a computational pipeline can lead to vastly different results. For
example, different analyses of the same dataset of carbon flux in an Amazonian forest ecosystem
differed in their estimates by up to 140 percent,11 amounting to differences of up to 7 tons of car-
bon in an area the size of a football field. This example highlights the significant impact of small
differences in code, especially when analyses or models contain user-defined or interactive (for
example, multiplicative) terms. Seemingly small changes to inputs or in the computational pipe-
line can lead to large differences in results, impeding their reproducibility and verification.

Data provenance is a formal representation of the context and execution of a computation. This
information is represented as a directed acyclic graph (DAG), a structure amenable to computa-
tional analysis. We use the World Wide Web Consortium (W3C) standard for data provenance:
PROV-DM. Figure 1 shows a simple provenance graph. Vertices represent entities (representing
data), activities (representing actions or transformations), and agents (representing users or or-
ganizations). In this figure, a process, controlled by Scientist Sarah, uses an executable function
(a program) and an input file (data) to generate an output.

Figure 1. A simple W3C PROV-DM compliant provenance graph.

Provenance can be captured at various levels of a system, such as in libraries explicitly called by
a program, in a language interpreter, in system libraries, or in the OS. The specific capture ap-
proach produces subtly different types of provenance: observed provenance is deduced by a sys-
tem that monitors execution, whereas disclosed provenance is created explicitly by software that
understands the semantics of the computations performed.12 encapsulator uses observed prove-
nance capture, which reveals the inner workings of an analysis script by collecting fine-grained
provenance.

112July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

Figure 2. A simple provenance graph for an R script.

When provenance is captured for a scripting or programming language, the provenance DAG
represents relationships among inputs, outputs, transient data objects, and statements. For exam-
ple, Figure 2 illustrates a provenance graph of the R script shown in Listing 1.

x <- 1
y <- 2
z <- x + y

Listing 1. Simple R script example.

In Figure 2, the blue rectangles correspond to statements in the language; the orange circles cor-
respond to data items (inputs, outputs, or transient objects); the purple arrows show the control
flow, representing the precise sequence of steps taken while executing the program; and the blue
and green arrows show data dependencies (the data used by an operation, and the data generated
by an operation, respectively).

The provenance DAG illustrates data dependencies (what input generated a given output), soft-
ware dependencies (on what libraries a script depends), and information about the structure of a
program. We next discuss how we use provenance DAGs to generate a time capsule.

CREATING A TIME-CAPSULE
Provenance alone provides a “picture” of a computational context, yet we want to provide an ac-
tive artifact that can reproduce a computational context: the time capsule. Figure 3 illustrates the
two phases involved in creating a time capsule from the provenance collected during execution:
curate the script to identify the precise lines of code and input data needed to produce a result,
and build the time capsule containing the previously generated artifact and the environment nec-
essary to reproduce it.

113July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

Figure 3. The encapsulation process.

Curating the Code
Science is, by its very nature, an iterative process. The task of cleaning and analyzing data is a
stark example of this. The data obtained from scientific instruments or other measurements of the
physical world are frequently a superset of the data a scientist wants to analyze. The first step in
computation or analysis is often to “process” raw data to produce something that can be analyzed
to answer a specific scientific question. This processing typically includes deciding how to han-
dle missing data values, extracting parts of the data, computing new data from pieces of raw
data, and so on. A scientist typically performs many such operations, not all of which end up be-
ing useful. Additionally, code evolves and accretes over time as scientists try different ways to
interpret or analyze the data. False starts and abandoned analyses frequently persist in the final
scripts that scientists use. The result is that code often contains a complex and evolving story of
what transpired, rather than a clear, straight-line path from data to discovery. Although this his-
tory might be interesting, it might also lead to confusing and difficult-to-understand code.

The first phase of encapsulator takes as input the provenance of the computation’s execution,
including all the false starts and abandoned attempts, and produces a curated script correspond-
ing to the generation of a specific result. Such a curated script contains the minimum sufficient
code to generate the output. Therefore, to understand a specific result, one can examine the cu-
rated version, rather than having to wade through potentially large amounts of irrelevant code.

To generate the minimal “cleaned” code, we analyze the provenance graph. Intuitively, the oper-
ations relevant to the generation of a figure or table are those connected in the DAG through data
dependencies to the output. First, we trim the provenance graph by deleting control flow, consid-
ering only data dependencies. For example, the provenance graph illustrated in Figure 4 is trans-
formed into the set of data dependency graphs shown in Figure 5.

114July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

Figure 4. Provenance graph corresponding to a small R script (approximately 60 lines of code).

Figure 5. Data dependency transformation of the provenance graph shown in Figure 4.

115July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

In a data dependency graph, orange nodes represent inputs, outputs, or transient data, and blue
nodes represent operations on data items. As we examine data dependencies in Figure 5, we al-
ternate between data items and operations. The code necessary to generate an output (at the top
of the figure) is the ordered set of operations present on all paths starting from the output in the
original source code (more intense colored nodes in Figure 5 show an example of such a path for
a given output). Similarly, the inputs necessary to generate an output are those encountered while
traversing those paths. We generate the final, curated code by retaining all the operations on the
paths in the graph leading to the output of interest, and then perform a final pass over the prove-
nance DAG to identify all the required libraries. Once the final code has been generated, we run
a source-code formatting tool (formatR for R scripts) to bring the code closer to best practices.
We repeat these steps for every output of interest until we have generated a curated script for
each. The inputs used to generate the selected outputs are identified and saved as part of the time
capsule. We have made available (http://provtools.org) a standalone R library (Rclean;
https://cran.r-project.org/web/packages/Rclean) implementing the mechanism described here.

Building the Time Capsule
Having shown how we produce curated scripts, we next explain how to construct a time capsule,
leveraging freely available tools wherever possible. Our goal is to generate a self-contained envi-
ronment that most scientists can use. This leads to the following requirements:

• The environment should present a user interface familiar to scientists.
• Encapsulation and use (de-encapsulation) of time capsules must require minimal tech-

nical expertise.
• The installation process itself must also require minimum intervention and technical

knowledge.
• Time capsules, their installation, and re-execution must be platform-independent.

We demonstrate through a practical scenario how well we meet those requirements in the next
section.

On the basis of those criteria, we selected virtual machines (VMs) as the self-contained environ-
ment for our time capsules (that is, their behavior and content is independent of the guest ma-
chine, and will remain identical over time). As one of the main barriers to reproducibility is
technical, we want to avoid introducing additional technical complexity. Software such as Virtu-
alBox (https://www.virtualbox.org) has made VMs an easy-to-use, “push button” technology,
and it is possible to use a user-friendly interface to run a virtualized desktop with almost no tech-
nical knowledge. To most scientists, a VM will appear as a desktop environment similar to the
one they use every day. To facilitate ease of adoption, we make sure that the time capsule con-
tains all the tools scientists need to usefully interact with the computational process.

We use Vagrant (https://www.vagrantup.com) infrastructure and software to build, share, and
distribute time capsules. Its VM provisioning is akin to that of Docker for containers. To provi-
sion a VM, one simply writes a script specifying the base VM (a preconfigured image), addi-
tional software, and files that should be installed. This is completely transparent to scientists:
encapsulator generates a Vagrant file based on the information extracted from the provenance
data in the previous phase. Although users can (optionally) customize the provision script, such
customization should never be necessary. In the current prototype, the time capsule is Linux-
based, as we leverage its package manager; other OSs present licensing challenges (discussed
below). However, the creation of the time capsule itself can be done from experiments running
on Windows, Mac, or any Linux distributions.

The provenance capture is achieved through program introspection using ProvR
(http://provtools.org/). This presents some restrictions regarding the amount of system details
that can be captured. In the current proof of concept implementation, we rely on the package
manager of the Fedora Linux distribution (https://fedoraproject.org/wiki/dnf) to install the sys-
tem dependencies required by a specific version of an R library. We are exploring the possibility

116July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

of complementing our provenance source using CamFlow (http://camflow.org/) to capture sys-
tem-level provenance in the Linux OS. However, it must be noted that system-level provenance
capture in closed source OSs remains a challenge.

During encapsulation, the scripts created in the first phase run in the time-capsule environment.
Their outputs are compared to those from the original script (that is, the one run on the host ma-
chine) to ensure that they are identical. Once the encapsulation is finished, the VM is packaged,
ready to be shared. This VM contains individual R scripts for each selected figure, along with the
datasets used as inputs. The current prototype relies on Vagrant’s cloud platform to host the VM.

USING ENCAPSULATOR
Consider the following scenario: Sarah is a young and brilliant scientist who would like to make
her research results available to the community, allow reviewers to easily verify her results, and
encourage others to build on them. John is a scientist from a near future who wishes to use Sa-
rah’s results. Professor O’Brien is a reviewer, interested in verifying Sarah’s findings.

The “messycode” examples (https://github.com/ProvTools/encapsulator) illustrate several “lazy
coding practices” that scientists, including Sarah, often use when writing code for models and
analyses:

• near stream-of-consciousness coding that follows a train of thought in script develop-
ment,

• output to console that is not written to disk,
• intermediate objects that are abandoned,
• library and new data calls throughout the script,
• output written to disk but not used in final documents,
• code that is not modularized, and
• code that is syntactically correct but not particularly comprehensible.

At this stage, we assume that Sarah has finished her computations, built the figures and tables for
her paper, and has the paper ready for submission. She is aware of research data repositories
such as Dataverse repositories (https://dataverse.org), and source-code repositories such as
GitHub, but she knows that they might not be sufficient to make her code truly reusable. In the
past, when she tried to reuse code written by other scientists, she often discovered that it was
poorly documented and hard to use. She also constantly found herself baffled by questions such
as what external packages the computation depends on, where to obtain those dependent files
and libraries, and what parameters were used to obtain the published results. Trying to figure out
these details resulted in her wasting countless hours. She would like to save other scientists from
these challenges, so that they can more easily build upon her work.

Sarah wants a picture of the context of her computations that allows anyone to reproduce them.
Provenance captured by tools such as provR (http://provtools.org) for R scripts contains the fol-
lowing information, represented as nodes or node attributes in a DAG:

• inputs,
• outputs,
• transient data objects and their values,
• operations, and
• library dependencies.

This information facilitates depiction of the development environment, accurately capturing, for
example, random seeds used and the version of a library that was required by the system. Alt-
hough this picture is important, it could prove difficult for John or Professor O’Brien to use it to
create an environment in which Sarah’s computations can be reproduced. They might not have
the required expertise, or the required version of a library might have become unavailable. Thus,
Sarah wants her experiments to be preserved in a time capsule.

117July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

Sarah decides to use encapsulator. She needs to install it and its dependencies: VirtualBox and
Vagrant. On her Mac laptop, she can do this:

brew install ruby
gem install encapsulator
encapsulator --install mac

Listing 2. Installing encapsulator and its dependencies.

The next step is to examine her R script and determine what outputs she wants to include in her
time capsule. She can find out what the possibilities are using encapsulator’s info capability:

encapsulator --info sarah.R

Listing 3. Obtaining a summary of an R script.

This generates the following output:

Files

Input july_biomass_survey.csv
Input dataset_v2_june_from_collaborator1.csv
Output save1.csv
Output fig1_biplot.png
Output fig1_biplot_v2.png
Output fig2_biplot.png

Packages

base v3.4.0
gdata v2.18.0
lattice v0.20-35
permute v0.9-4
txtplot v1.0-3
vegan v2.4-3

Listing 4. Example of an R script summary.

Sarah included only fig1_biplot_v2.png and fig2_biplot.png in her article, so she wants to gener-
ate a time capsule containing only the code (https://github.com/ProvTools/encapsulator) needed
to generate those two images:

encapsulator --encapsulate sarah/experiment sarah.R fig1_biplot_v2.png fig2_bip-
lot.png

Listing 5. Creating the time capsule.

Once encapsulator has finished building the time capsule, all that is left for Sarah to do is upload
it to her Vagrant cloud account.

118July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

A few months later, Professor O’Brien is reviewing Sarah’s paper and wants to understand her
analysis. He sees that Sarah has used encapsulator to share her work. As Sarah did in her work-
flow to produce the published results, he can easily install it on a Linux machine:

sudo apt install ruby
gem install encapsulator
encapsulator --install ubuntu

Listing 6. Installing encapsulator and its dependencies.

Once it is installed, he retrieves Sarah’s work by running:

encapsulator --decapsulate sarah/experiment

Listing 7. De-encapsulating a shared environment.

encapsulator manages the VM download and start-up transparently. After a short time, a win-
dow appears on Professor O’Brien’s desktop presenting him with the virtual desktop shown in
Figure 6. In this environment, he has access to familiar tools and can work without difficulty.
Further, the code that he examines for each figure is about a dozen lines of clean code, not Sa-
rah’s original 60 lines of messy code. Naturally, encapsulator can handle longer and more com-
plex scripts.

John reads Sarah’s article five years after its publication. Using the same sequence of commands
that Professor O’Brien did, he is able to get the time capsule running on his laptop, and the envi-
ronment in the VM is identical to what it was at the time of publication. John can get to work
easily without worrying about the problem of outdated dependencies (such as old library ver-
sions that are no longer available for download).

Figure 6. The time capsule running on Professor O’Brien's machine.

119July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

CHALLENGES

Domain-Specific Environment
Our time capsule comes with a generic environment, including some tools generally used for
data analysis to provide an easy-to-use, familiar interface. In future versions, based on domain-
scientist feedback, we will provide platforms containing standard toolsets specific to domains
(“ecology”, “genetics”, “chemistry,” and so forth).

Time-Capsule OS
The current version of encapsulator uses Linux, in particular the package management system,
to build a time capsule. Although a large number of tools used by scientists are available on
Windows, Mac, and Linux, some tools might be available only on specific platforms. Further-
more, distributing Mac and Windows capsules introduces licensing issues (proprietary software
in research is a complex topic13). At this stage, one can build a capsule on any platform, but the
capsule itself is Linux-based. This might not pose a major obstacle for domain scientists whose
analytical workflows occur almost entirely within an integrated development environment (IDE)
such as RStudio, since these IDEs are supported on all major OSs and appear nearly identical
across platforms.

Language Support
Our current prototype supports only the R programming language. We intend to incorporate sup-
port for additional languages used in data analysis, including Python and provenance capture li-
braries such as noWorkflow.14 Because encapsulator uses the PROV-JSON standard for data
provenance, any provenance capture tool with a statement-level granularity for any language
could be used to generate a capsule. Furthermore, it should be possible to support individual
workflows that use multiple languages, which are becoming more common in some domains.

Integration with IDEs
Although they are relatively simple to use, command-line interfaces are daunting to some users.
We are investigating integrating encapsulator into existing, commonly used IDEs, such as an
encapsulator add-in for RStudio, a common IDE for R (https://rstudio.github.io/rstudioaddins/).
Many researchers use spreadsheet programs for their data management and analysis. Although
the feasibility and sufficiency of capturing provenance for such workflows has been demon-
strated,15 and encapsulation is therefore also theoretically possible, we argue that these methods
are inherently unstable since they typically rely on proprietary software with complex underlying
data structures. Additionally, best practices for data science typically conflict with spreadsheet-
based workflows that tend to lead to informal, and often inaccurate, data management and analy-
sis.

Out-of-Tree Libraries
Many obscure libraries might not be available through the package management system, either a
specific Linux distribution or a programming language, such as CRAN (https://cran.r-pro-
ject.org) for R packages. We are investigating ways to handle such library dependencies. Those
that do not have dependencies are relatively easy to handle by building and installing the pack-
age during the encapsulation process. Others that use alternative package managers, such as Bio-
conductor (https://www.bioconductor.org), are also relatively easy to handle. However, those
with complex third-party dependencies without formal definitions are more difficult to support.

120July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

Nondeterministic Processes
Some scripts use pseudorandom number generators and two runs might not produce identical
results. We plan to incorporate the ability to reproduce such results in a future release once the
provenance capture system records random values; however, a more serious issue is nondeter-
minism introduced by concurrency. This could be ameliorated during the curation phase by pro-
ducing scripts that enforce ordering. It might be preferable to enhance how we assess whether a
given result produced within the time capsule is correct. In the current proof of concept, the re-
sults must be identical to those produced on the host machine. However, it might be reasonable
to verify that the results meet some statistical property instead (for example, within δ of the orig-
inal results). We recognize that this is not a trivial task and that significant investigation is re-
quired to determine a suitable path forward.

Long-Term Archival
There are two major assumptions that encapsulator makes about availability of a time capsule
for long-term archival: the continued existence of the Vagrant cloud, and x86-64 virtualization.
The first issue can be addressed by replicating the time capsule in a trusted archival repository.
One option that we plan to explore in future work is to publish the time capsule in a Dataverse
repository as a “replication dataset,” automatically assigning a DOI and minimal citation
metadata and generating a formal persistent data citation for the time capsule. The second issue
is more complex, so the answer is speculative. Virtualization depends on the remaining life span
of the x86-64 architecture and whether the concerned time capsule will have any relevance after
that. This last point is interesting to ponder, as preservation of our digital world is an issue16 that
goes beyond science and reproducibility. Artifacts of our modern culture are already disappear-
ing (such as video games and digital publications), which is an important sociocultural issue be-
yond the scope of our current project.

Container Support
Although we claim that tools such as Docker are not ideal to reduce the technical barriers to re-
producibility for scientists, they are useful for automating the repetition of results. As Vagrant
supports container provisioning, encapsulator can handle such targets. However, one should also
remember that while containers are lighter, they are not as self-contained as VMs. Indeed, con-
tainers run over the kernel of their host machine; if change to the kernel were to affect results,
then reproducibility could not be guaranteed.

CONCLUSION
We introduce encapsulator, a sophisticated yet simple toolbox that uses the provenance of com-
putational data analysis to produce a time capsule in which computational workflows can be re-
run and modified. This tool is designed to require minimal overhead for integration into a user’s
workflow and limited technical expertise. When viewed within the context of increasing compu-
tational demands of all disciplines, encapsulator provides a key tool for facilitating transparent
research at a crucial time for science.

SOFTWARE ENGINEERING PRACTICES
All software presented in this column is open source under GPL v3, and available at
http://provtools.org, or directly through GitHub (https://github.com/ProvTools). The latest ver-
sion (at the time of submission) can be referenced with doi:10.5281/zenodo.1199232, and is dis-
tributed via the RubyGems service (https://rubygems.org/gems/encapsulator). The software
presented here remains under development and is subject to change. Matthew K. Lau should be
contacted for any additional information about the ProvTools ecosystem. Further details about
continuous integration and engineering practices are available in the README.md files of the
individual components.

121July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

SIDEBAR: ALTERNATIVES TO ENCAPSULATOR
Some systems are designed to reproduce complex workflows running on grid or cloud infrastruc-
tures (for example, Kepler17), and fill a related, but distinct niche. Indeed, encapsulator is in-
tended to support research run on single commodity machines, which accounts for a significant
proportion of research results in a number of fields. Systems designed for particular domains al-
ready exist (for example, GenePattern18 and Galaxy19), but the role of encapsulator is to provide
a general approach.

ReproZip8 and CDE20 are directly comparable to encapsulator. However, they use system calls
to identify dependencies and package experiments. Therefore, computations must first be run in
Linux before they can be packaged. This might prove problematic for many scientists who do
not use Linux. encapsulator relies on language-level observed provenance and is not subject to
such limitations.

The main difference between encapsulator and alternative tools is its ease of use. Modifying
packaged computations generated by the alternatives might require a relatively high level of
technical skill. encapsulator builds a fully functional, self-contained environment that is easy for
scientists to navigate. The list presented here is succinct, but we maintain online a list of open
source provenance tools, including some designed for reproducibility and replication purposes
(https://projects.iq.harvard.edu/provenance-at-harvard/tools).

ACKNOWLEDGMENTS
This work was supported by the NSF (grant no. SSI-1450277 End-to-End Provenance, and
grant no. ACI-1448123 Citation++). More details about those projects are available at
https://projects.iq.harvard.edu/provenance-at-harvard.

The peer reviewers for this manuscript were Professor Lorena Barba (School of Engineer-
ing and Applied Science, George Washington University) and Professor Carl Boettiger (De-
partment of Environmental Science, Policy and Management, University of California,
Berkeley). Both helped to clarify the terminology used around reproducibility, and Profes-
sor Boettiger helped us clarify the extent of the provenance captured.

REFERENCES
1. M. Baker, “1,500 Scientists Lift the Lid on Reproducibility,” Nature, vol. 533, no.

7604, Nature, 2016, pp. 452–454.
2. J. Gezelter, “Open Source and Open Data Should Be Standard Practices,” J. of

Physical Chemistry, ACS, 2015; doi.org/0.1021/acs.jpclett.5b00285.
3. D Garijo et al., “Quantifying Reproducibility in Computational Biology: The Case of

the Tuberculosis Drugome,” PloS one, vol. 8, no. 11, PloS one, 2013, p. e80278.
4. L. Joppa et al., “Troubling Trends in Scientific Software Use,” Science, vol. 340, no.

6134, American Association for the Advancement of Science, 2013, pp. 814–815.
5. T. Pasquier et al., “If These Data Could Talk,” Nature Scientific Data, Nature, 2017;

doi.org/10.1038/sdata.2017.114.
6. L. Carata et al., “A Primer on Provenance,” Comm. ACM, vol. 57, no. 5, ACM, 2014,

pp. 52–60.
7. R. Strijkers et al., “Toward Executable Scientific Publications,” Procedia Computer

Science, vol. 4, Elsevier, 2011, pp. 707–715.
8. F. Chirigati et al., “Reprozip: Computational Reproducibility with Ease,” Proc. Int'l

Conf. Management of Data, 2016, pp. 2085–2088.
9. J. Cunha et al., “Towards a Catalog of Spreadsheet Smells,” Proc. Int'l Conf.

Computational Science and Its Applications, 2012, pp. 202–216.
10. M. Ziemann, Y. Eren, and Q. El-Osta, “Gene Name Errors are Widespread in the

Scientific Literature,” Genome Biology, vol. 17, no. 1, 2016, p. 177.

122July/August 2018 www.computer.org/cise

 REPRODUCIBLE RESEARCH

11. A. Ellison et al., “An Analytic Web to Support the Analysis and Synthesis of
Ecological Data,” Ecology, vol. 87, no. 6, 2006, pp. 1345–1358.

12. U. Braun et al., “Issues in Automatic Provenance Collection,” Proc. Int'l Conf.
Provenance and Annotation of Data (PAW 06), 2006, pp. 171–183.

13. A. Gambardella and B. Hall, “Proprietary Versus Public Domain Licensing of
Software And Research Products,” Research Policy, vol. 35, no. 6, 2006, pp. 875–892.

14. L. Murta et al., “noWorkflow: Capturing and Analyzing Provenance of Scripts,” Proc.
Int'l Provenance and Annotation Workshop, 2014, pp. 71–83.

15. H. Asuncion, “In situ Data Provenance Capture in Spreadsheets,” Proc. IEEE Int'l
Conf. eScience, 2011, pp. 240–247.

16. K. Lee et al., “The State of the Art and Practice in Digital Preservation,” J. Research
Nat'l Institute of standards and technology, vol. 107, no. 1, 2002, p. 93.

17. I. Altintas et al., “Kepler: An Extensible System for Design and Execution of Scientific
Workflows,” Proc. 16th IEEE Int'l Conf. Scientific and Statistical Database
Management, 2004, pp. 423–424.

18. M. Reich et al., “Genepattern 2.0,” Nature Genetics, vol. 38, no. 5, 2006, pp. 500–501.
19. B. Giardine et al., “Galaxy: A Platform for Interactive Large-Scale Genome Analysis,”

Genome Research, vol. 15, no. 10, 2005, pp. 1451–1455.
20. B. Howe, “CDE: A Tool for Creating Portable Experimental Software Packages,”

Computing in Science & Engineering, vol. 14, no. 4, 2012, pp. 32–35.

ABOUT THE AUTHORS
Thomas Pasquier is a research associate at the University of Cambridge’s Department of
Computer Science, a research fellow at St. Edmund’s College (University of Cambridge)
and an associate of Harvard University’s Center for Research on Computation and Society.
His research interests include the design of more accountable and transparent computer sys-
tems. Pasquier received a PhD in computer science from the University of Cambridge. He is
a member of IEEE and ACM. Contact him at tfjmp@seas.harvard.edu.

Matthew K. Lau is a postdoctoral research fellow at Harvard University’s Harvard Forest
Long-Term Ecological Research Site, and a member of the Ecological Society of America.
His research interests include the ecological and evolutionary dynamics of ecological net-
works. A long-time supporter of open source programming tools for scientific analyses, he
has taught undergraduate- and graduate-level courses and workshops in statistical program-
ming. Lau received a PhD in biology from Northern Arizona University. Contact him at
matthewklau@fas.harvard.edu.

Xueyuan Han is a second-year PhD student in computer science at Harvard University. His
research interests include applying data provenance analysis in various contexts, including
data management, cybersecurity, and machine learning. Han received a BS in computer sci-
ence, as well as an Outstanding Bachelor of Science Department Award, from the Univer-
sity of California, Los Angeles. Contact him at hanx@g.harvard.edu.

Elizabeth Fong is a software developer and researcher at Mount Holyoke College. In be-
tween graduating from and working at Mount Holyoke College, she was a data engineering
fellow at Insight. Her research interests include data provenance and data engineering, as
well as their applications in fields such as ecology, medicine, and biochemistry. Fong re-
ceived a BA in computer science with a minor in molecular biology from Mount Holyoke
College. Contact her at fong22e@mtholyoke.edu.

Barbara S. Lerner is an associate professor of computer science at Mount Holyoke Col-
lege. Her research interests include automated collection of data provenance to support re-
producibility, program understanding, and debugging. She is also interested in the
development of software/hardware solutions to help people with visual impairments. Lerner
received a PhD in computer science from Carnegie Mellon. Contact her at blerner@mtho-
lyoke.edu.

Emery R. Boose is an information manager and senior scientist at the Harvard Forest
Long-Term Ecological Research Site. His research interests include data provenance, ecoin-
formatics, hurricane modeling, meteorology, and hydrology. Boose received a PhD in San-
skrit and Indian studies from Harvard University. Contact him at boose@fas.harvard.edu.

123July/August 2018 www.computer.org/cise

 COMPUTING IN SCIENCE & ENGINEERING

Mercè Crosas is the chief data science and technology officer at the Institute for Quantita-
tive Social Science (IQSS) at Harvard University. She has more than 10 years of experience
leading the Dataverse project, and more than 15 years of experience building data manage-
ment and analysis systems in academia and biotechnology companies. She is part of numer-
ous committees and working groups focused on data sharing, research data management,
data citation, and data standards. Crosas received a PhD in astrophysics from Rice Univer-
sity. Contact her at mcrosas@iq.harvard.edu.

Aaron M. Ellison is the senior research fellow in ecology in Harvard’s Department of Or-
ganismic and Evolutionary Biology and a senior ecologist at the Harvard Forest Long-Term
Ecological Research Site. His research focuses on the assembly, disassembly, and reassem-
bly of ecosystems following natural and anthropogenic disturbances, and on the relationship
between ecology and modernism. He is a senior editor for Methods in Ecology and Evolu-
tion, and the author of several books, including A Primer of Ecological Statistics, Stepping
in the Same River Twice: Replication in Biological Research, Vanishing Point, and Carniv-
orous Plants: Physiology, Ecology, and Evolution. Ellison received a PhD in ecology and
evolutionary biology from Brown University. Contact him at aellison@fas.harvard.edu.

Margo Seltzer is the Herchel Smith Professor of Computer Science and the faculty director
for the Center for Research on Computation and Society in Harvard’s John A. Paulson
School of Engineering and Applied Sciences. In September 2018, she will assume a Canada
150 Research Chair and the Cheriton Family Chair in Computer Systems at the University
of British Columbia. Her research interests include systems, construed quite broadly: sys-
tems for capturing and accessing provenance, file systems, databases, transaction processing
systems, storage and analysis of graph-structured data, new architectures for parallelizing
execution, and systems that apply technology to problems in healthcare. Seltzer received a
PhD in computer science from the University of California at Berkeley. Contact her at
margo@eecs.harvard.edu.

124July/August 2018 www.computer.org/cise

