Show Me a Picture, Tell Me A Story

Harvard Forest Schoolyard Ecology Program:

Date	Sampled	Fallen
$9 / 22 / 2004$	10	0
$9 / 29 / 2004$	10	0
$10 / 6 / 2004$	10	0
$10 / 13 / 2004$	10	0
$10 / 19 / 2004$	10	0
$10 / 27 / 2004$	10	0
$11 / 4 / 2004$	5	5
$9 / 28 / 2005$	24	3
$10 / 5 / 2005$	24	3
$10 / 12 / 2005$	24	8
$10 / 19 / 2005$	24	10
$10 / 26 / 2005$	24	13
$11 / 2 / 2005$	24	20
$11 / 10 / 2005$	24	24
$9 / 20 / 2006$	24	2
$9 / 27 / 2006$	18	6
$10 / 4 / 2006$	24	11
$10 / 11 / 2006$	24	16
$10 / 18 / 2006$	24	17
$10 / 25 / 2006$	24	18
$11 / 1 / 2006$	24	23
$11 / 8 / 2006$	12	12
$9 / 12 / 2007$	24	4
$9 / 19 / 2007$	24	4
$9 / 26 / 2007$	24	9
$10 / 3 / 2007$	24	13
$10 / 10 / 2007$	24	20
$10 / 17 / 2007$	24	21
$10 / 24 / 2007$	24	23
$10 / 31 / 2007$	6	6

Level II \& III Data Analysis Workshop

© Cartoonbank.com

Thursday, January 9, 2014
Harvard Forest, Petersham, MA

Morning Presentation

- Schoolyard Data
- Preparing data for analysis
- Data analysis
- Graphing considerations
- Kinds of graphs - examples from HF research and Schoolyard Ecology data

Level 2 teachers - Creating graphs by hand or using Excel - structured exercises Level 3 teachers - Organizing your students' data and creating and interpreting graphs of the data

After Lunch

- Additional practice graphing schoolyard data
- Opportunity to practice making calculations and graphing the modified data
- Sharing graphs, ideas, questions

Evaluation and feedback

Schoolyard Science phenology data set in comma-delimited text (.csv) format, as on the Harvard Forest Schoolyard Science website, and in a spreadsheet.

.CSV

School,Teacher,Date,Julian,TreeID,Species,Ltotal,Lfallen,Tcolor ARM,Miller,2004-09-06,250,2,CH,5,0,NA ARM,Miller,2004-09-22,266,1,YB,10,0,NA ARM,Miller,2004-09-22,266,2,CH,10,0,NA ARM,Miller,2004-09-22,266,3,RM,5,0,NA ARM,Miller,2004-09-22,266,4,RM,5,0,NA ARM,Miller,2004-09-22,266,5,CH,10,0,NA ARM,Miller,2004-09-22,266,6,WH,10,0,NA ARM,Miller,2004-09-22,266,7,RM,5,0,NA ARM,Miller,2004-09-29,273,1,YB,10,0,NA ARM,Miller,2004-09-29,273,2,CH,5,0,NA ARM,Miller,2004-09-29,273,3,RM,5,0,NA ARM,Miller,2004-09-29,273,4,RM,5,0,NA ARM,Miller,2004-09-29,273,5,CH,10,0,NA ARM,Miller,2004-09-29,273,6,WH,10,0,NA ARM,Miller,2004-09-29,273,7,RM,5,0,NA ARM,Miller,2004-10-06,280,1,YB,10,0,NA ARM,Miller,2004-10-06,280,2,CH,10,0,NA ARM,Miller,2004-10-06,280,3,RM,5,2,NA

spreadsheet

School	Teacher	Date	Julian	TreeID	Species	Ltotal	Lfallen	Tcolor
ARM	Miller	$9 / 6 / 2004$	250	2	CH	5	0	NA
ARM	Miller	$9 / 22 / 2004$	266	1	YB	10	0	NA
ARM	Miller	$9 / 22 / 2004$	266	2	CH	10	0	NA
ARM	Miller	$9 / 22 / 2004$	266	3	RM	5	0	NA
ARM	Miller	$9 / 22 / 2004$	266	4	RM	5	0	NA
ARM	Miller	$9 / 22 / 2004$	266	5	CH	10	0	NA
ARM	Miller	$9 / 22 / 2004$	266	6	WH	10	0	NA
ARM	Miller	$9 / 22 / 2004$	266	7	RM	5	0	NA
ARM	Miller	$9 / 29 / 2004$	273	1	YB	10	0	NA
ARM	Miller	$9 / 29 / 2004$	273	2	CH	5	0	NA
ARM	Miller	$9 / 29 / 2004$	273	3	RM	5	0	NA
ARM	Miller	$9 / 29 / 2004$	273	4	RM	5	0	NA
ARM	Miller	$9 / 29 / 2004$	273	5	CH	10	0	NA
ARM	Miller	$9 / 29 / 2004$	273	6	WH	10	0	NA
ARM	Miller	$9 / 29 / 2004$	273	7	RM	5	0	NA
ARM	Miller	$10 / 6 / 2004$	280	1	YB	10	0	NA
ARM	Miller	$10 / 6 / 2004$	280	2	CH	10	0	NA
ARM	Miller	$10 / 6 / 2004$	280	3	RM	5	2	NA

Harvard Forest Schoolyard Ecology
Buds, Leaves, and Global Warming

Autumn Student Data Sheet

School Teacher Date (Julian) TreeID Species Ltotal Lfallen Tcolor

Total number of study leaves observed per branch (fallen and not fallen)	
Total number of leaves fallen	

Teacher note: Remember that the branch total above must be added with branch totals from all branches on the same tree to get the total number of leaves dropped per tree to submit to Harvard Forest to post online.

Optional Field Notes:

Student Research Teams Could Track Their Data

Research Team: CH5
Teacher: Mrs. Miller
Year: 2004
Branch: 1

Tree ID\# 5
Tree Species: Chestnut

Date	\# of Leaves Observed	\# of Leaves Fallen
$9 / 22$	10	0
$9 / 29$	10	0
$10 / 6$	10	0
$10 / 13$	10	0
$10 / 19$	10	1
$10 / 26$	10	8
$10 / 27$	5	4
$11 / 05$	10	10

Project: Buds, Leaves, Global Warming - Fall

> KEY
> $0=$ not fallen
> $1=$ fallen

Year: 2010
Team: Rachel, Emily, Thomas, Carlos
Tree \#: 4 Species: White ash
Branch: A

Project: Buds, Leaves, Global Warming -- Fall

> KEY
> $0=$ not fallen

Team: Rachel, Emily, Thomas, Carlos
Tree \#: 4 Species: White ash
Branch: A

Date:	Time (EDT):		Lf 1	Lf 2	Lf 3	Lf 4	Lf 5			$\#$ obsd.	fallen	$\%$ fallen	Comments
Sept 30	$10: 00$		0	0	0	0	0			5	0	0	hot and sunny
Oct 7	$10: 15$		0	0	0	0	0			5	0	0	
Oct 14	$10: 05$		0	0	0	0	0			5	0	0	
Oct 21	$10: 20$		0	0	0	0	0			5	0	0	
Oct 28	$10: 00$		0	0	0	0	0			5	0	0	
Nov 4	$11: 10$		1	0	1	1	0			5	3	60	very windy yesterday
Nov 11	$11: 15$		1	1	1	1	0			5	4	80	
													AM assembly,
Nov 18	$14: 30$		1	1	1	1	0			5	4	80	

2010 Date:	Length Lf 1	Length Lf 2	Length $\text { Lf } 3$	Length Lf 4	Length Lf 5	$\begin{array}{\|c} \text { color } \\ 1 \end{array}$	$\begin{gathered} \text { color } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { color If } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { color If } \\ 4 \\ \hline \end{gathered}$	color If	avg. color
Sept 30	15	17	16.5	10	12	1	1	1	1	1	1
Oct 7	Color Key: $1-0-25 \%$ not green $3-5-51-75 \%$ $4-76-100 \%$					1	1	1	1	1	1
Oct 14						1	1	1	2	1	1
Oct 21						1	1	2	2	1	1.4
Oct 28						4	4	4	4	4	4
Nov 4						na	4	na	na	4	4
Nov 11						na	na	na	na	4	4
Nov 18						na	na	na	na	4	4

Leaf Color, Tree \#4, Branch A, Fall, 2010

	\# color			
Date:	\# color 2	\# color 3	\# color 4	
Sept 30	5	0	0	0
Oct 7	5	0	0	0
Oct 14	4	1	0	0
Oct 21	3	2	0	0
Oct 28				
Nov 4	0	0	4	1
Nov 11	0	0	0	2

color If 1	$\begin{gathered} \text { color } 1 \\ 2 \end{gathered}$	color If	$\begin{array}{\|c\|} \hline \text { color If } \\ 4 \end{array}$	color If 5	avg. color
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	2	1	1
1	1	2	2	1	1.4
4	4	4	4	4	4
na	4	na	na	4	4
na	na	na	na	4	4
na	na	na	na	4	4

	\# color	\# color		
Date:	\# color			
3	\# color			
4				
			0	0
Sept 30	5	0		
Oct 7	5	0	0	0
Oct 14	4	1	0	0
Oct 21	3	2	0	0
Oct 28				
Nov 4	0	0	4	1
Nov 11	0	0	0	2

Leaf-color Change, Tree \#4, Branch A, Fall, 2010

color If 1	color Ifcolor If 2	color If 4	color If 5	avg. color	
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	2	1	1
1	1	2	2	1	1.4
4	4	4	4	4	4
na	4	na	na	4	4
na	na	na	na	4	4
na	na	na	na	4	4

School	
Teacher	
Year	
Research Team	
Tree Species	
Tree ID	
Branch ID	

Leaf \#	Leaf length	Date of length measurement	Date when leaf had fallen from branch
1			
2			
3			
4			
5			
6			
7			
8			

Harvard Forest LTER Schoolyard Program Buds, Leaves and Global Warming Student Data Sheet - Spring
School
Teacher
Date
(Julian)
TreeID
Species
Btotal
Bopen
Llength
Names:
School:
Tree Species:
Tree ID (number):

1. Put a check mark in the correct column below to show the stage of each bud.

	Bud 1	Bud 2	Bud 3	Bud 4	Bud 5	Bud 6
Closed: Bud is closed and not puffy						
Puffy: Bud is swollen or opening with no unfolded leaf						
Open: Bud has opened and whole leaf is visible (budburst)						
Bud Fallen Off						

2. How many buds were observed in all?

Of these, how many were Closed? \qquad Puffy? Open? \qquad
3. Look for the open bud with the largest leaf.

Measure the leaf length in centimeters: \qquad
4. Field notes:

Temperature (degrees Celsius): \qquad
Humidity(\%): \qquad
Circle one: Sunny Cloudy Rainy
Other observations and Notes: \qquad

Teacher Note: Please combine data from all branches on the same tree to create treelevel data for submission to Harvard Forest.

School Teacher Date (Julian) TreeID Health Wool Eggs Growth

Harvard Forest Schoolyard Ecology Hemlock Trees and the Pesky Pest, The Woolly Adelgid

Student Data Sheet

Name(s):			
School:			
Date:			
Site Name/location:			
Tree ID Number:			
Tree Crown health (0-3): \qquad 0 - Healthy-all green 1 -Some bare branches 2 -Unhealthy- half or more bare branches 3 -Dead- no green needles			
ID Tree/Branch number/letter	White wool present(1) Absent(0)	Number of Egg Sacs Per 10 cm segment	New Growth at Branch Tip (cm)
Summary data for Tree Number:	White wool Present(1) Absent (0)	Average Number of Egg Sacs	Average New Growth (cm)

Fieldnotes/comments: Please write field observations re: field conditions such as climate, wildlife, presence of other insects, and other plants on the reverse of this form. Note what other types of trees are nearby and may replace hemlock if it dies.

Crown Health of 10 Hemlock Study Trees, JR Briggs School, Fall 2005

Crown Health of 10 Hemlock Study Trees, JR Briggs School, Fall 2005 - Fall 2008

Spr 06

Fall 06

Spr 08

Fall 07

Fall 08

Crown Health in 10 Hemlock Study Trees, JR Briggs School, Fall 2005 - Fall 2008

\square All green

- Some thinning

Project: Year: Team:	Woolly Bully			
	2010-2011 Jennifer, Bryan, Heather, Dean			
Tree \#:	1			Hemlock
Branches:	1,2,3,4			
Sampling Date: 9/30/2010				
Branch	Wool	Egg Sacs	New Growth	Diameter
1	0	0	10	
2	0	0	14	
3	0	0	17	
4	0	0	5	
whole-tree	0	0	11.5	85

New Growth in Hemlock \#1, September 30, 2010

Project: Woolly Bully

Tree \#: $1 \quad$ Tree Species: Eastern Hemlock
Branches: 1,2,3,4

			Branch Growth					
Diameter change								
Year	Date	1	2	3	4			
2007	$11 / 7 / 2007$	6	11	14	4		80	
2008	$10 / 7 / 2008$	11	15	20	7		83	3
2009	$10 / 12 / 2009$	12	12	18	6		84	1
2010	$9 / 30 / 2010$	10	14	17	5		85	1

Branch \#							
	1	2	3	4	all		
average annual growth	10	13	17	6	11.4	mean annual diameter change since 2007	1.7

Harvard Forest Schoolvard Ecology
Vernal Pool Characteristics Student Data Sheet

Project: Vernal Pools

Team: Rico, Emily, Jeannette, Thomas
Sample Site:
3
Pool: Schoolyard Pool
Year: 2010-2011

Date:	Time (EDT):	Depth	Diameter	Max. Diameter	Difference	Air temp	Water Temp
Sept 30	$10: 00$	0	0	25	-25	22	14
Oct 7	$10: 15$	0	0	25	-25	18	12
Oct 14	$10: 05$	8	1	25	-24	24	14
Oct 21	$10: 20$	18	4	25	-21	18	13
Oct 28	$10: 00$	22	5.5	25	-19.5	14	10
Nov 4	$11: 10$	30	18	25	-7	7	5
Nov 11	$11: 15$	31	19	25	-6	5	5
Nov 18	$14: 30$	31	19	25	-6	15	5

Project: Vernal Pools

Team: Rico, Emily, Jeannette, Thomas
Sample Site:
3
Pool: Schoolyard Pool
Year: 2010-2011

Date:	Time (EDT):	Depth	Diameter	Max. Diameter	Difference	Air temp	Water Temp
Sept 30	$10: 00$	0	0	25	-25	22	14
Oct 7	$10: 15$	0	0	25	-25	18	12
Oct 14	$10: 05$	8	1	25	-24	24	14
Oct 21	$10: 20$	18	4	25	-21	18	13
Oct 28	$10: 00$	22	5.5	25	-19.5	14	10
Nov 4	$11: 10$	30	18	25	-7	7	5
Nov 11	$11: 15$	31	19	25	-6	5	5
Nov 18	$14: 30$	31	19	25	-6	15	5

Depth-Diameter

Water Depth, Fall 2010

Relationships

Presence/Absence of Fauna

2010-11 Date:	Caddis	Back- swimmer	Dragon	Damsel	worm	Midge	Crawl Beetle	Large black beetle		
frood										
eggs									\quad	salaman
:---										
-der										
eggs		fairy								
:---										
shrimp	\quad	daphnia								
:---:										

Data Analysis - Understanding Results of Sampling

- Spreadsheets and Tables
- Graphs and Figures
- Statistics

Considerations for Analyzing \& Graphing Data

- What do you have for data?
- What do you want to find out? (What are the questions you are asking of your data?)
- What kind of graphs(s) [or statistics] can help you address your questions?
- What graphs [or statistics] can help you tell your story effectively?

a. Line graph - not appropriate

b. Bar graph - appropriate

Aquatic Macroinvertebrates in a Cape Cod Vernal Pool in April, 1996. Data from EA Colburn

Age and diameter of trees on Mt Wachusett. Data from DA Orwig.

Spring leaf emergence and autumn leaf fall in four tree species at the Harvard Forest. Data from J O'Keefe

Fall:
___ Date of 50% leaf drop

Spring:

- - - - Date of 75\% leaf development
__ Date of 50\% bud break

Stream discharge and environmental variables at Upper Bigelow Brook, Harvard Forest, Petersham, MA, Spring-summer, 2008. Data from E Boose.

Stream discharge and environmental variables at Upper Bigelow Brook, Harvard Forest, Petersham, MA, Spring-summer, 2008. Data from E Boose.

- Soil temperature
- Air temperature
- Stream discharge
- Solar radiation

Tree species sampled in a schoolyard phenology study. ARM Schoolyard data. a. Pie graph. b. Stacked bar graph. (Species codes as in a.) c. Bar graph.

Leaf fall in one tree over four years of sampling. ARM Schoolyard data.

Leaf fall in Multiple Trees. ARM Schoolyard data.

Leaf fall in Multiple Trees. ARM Schoolyard Data.

Egg production in Hemlock Woolly Adelgid in Three Hemlock Trees, 2004. WWE schoolyard data.

Stream depth at 4 sampling locations, 2006-2007. PES Schoolyard data.

Water Depth and Pool

Diameter In two vernal pools. JRB and PCS Schoolyard data.

Before Data Analysis:

Look at data

Evaluate for:

- errors
- missing information
- corrections that are necessary

Adjust accordingly

Extract additional information - e.g., length of growing season, percent of leaves fallen, etc.

Calculating Growing Season Length From Schoolyard Data

Growing Season Calculation:

1. Determine 50% bud burst and 50% leaf-fall dates for each tree, or Alternatively, you could calculate the average for each species, or average for all trees at a site, depending on your analysis goals.
2. Subtract budburst date from leaf-fall date; this gives the number of days in the growing season for the selected tree(s)
3. This approach could also be used to estimate average duration of flooding in some vernal pools, if data are available on both the increase in water depth in spring, and the decline in water levels as the hydrologic year progresses

Calculating Julian Date from Standard Date: use the Excel formula below

Estimating date of 50\% leaf fall, bud burst, pool filling or drying, or other event

Date of measurement (Julian day)

Use data measuring change in factor of interest -- water depth, growth, leaf fall, etc.
Look at the data, and choose two points bracketing the 50\% level -- the formula below finds the 50% point between them
d 1 and d 2 are the julian days when measurements were made before and after the 50% level was reached
p 1 and p 2 are the percent of leaf-fall estimated for measurement dates d 1 and d 2 , respectively
Plug the values for $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{p} 1$, and p 2 into the following formula:
50% Leaf-fall or bud-burst Julian Date:
d1+[(d2-d1)(50-p1)/(p2-p1)]

Date	Julian
$4 / 8 / 1992$	99
$5 / 7 / 1999$	127
$6 / 4 / 1998$	155
$2 / 2 / 2002$	33
$5 / 5 / 1988$	126
DATE	\#VALUE!
DATE	\#VALUE!
DATE	\#VALUE!

> Julian Date:
> =K6-DATE $(\operatorname{YEAR}(\mathrm{K} 6), 1,0)$

NOTE: "K6" refers to the cell with the standard date

REPLACE "DATE" IN COLUMN A WITH AN ACTUAL DATE, AND THE JULIAN DAY WILL BE CALCULATED IN COLUMN B

EXAMPLE: Spring

| $d 1=95$ | $d 2=122$ | 50% bud burst $=95+((122-95)(50-47) /(62-47))=100.4$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $p 1=47$ | $p 2=62$ | | |
| $d 1=277$ | $d 2=284$ | 50% | |
| $p 1=46$ | $p 2=67$ | | |

If 50\% bud-burst was at day 100 (April 10 in a non-leap year), and if 50% leaf-fall was day 278, then 278-100 = 178: the growing season was 178 days long for this particular tree or group of trees

INSERT YOUR SPRING AND FALL DATA:					
	d1	p1	d2	p2	50\%
Spring					\#DIV/0!
Fall					\#DIV/0!

What next?

Go over data set to be used in making graphs (Level 2, download data from HF Schoolyard website).

Level 2 teachers: Work on graphing exercises:

1. Simple pie chart of tree species, by hand or by selecting an Excel data table
2. Stacked bar graph of tree species, by hand or Source Data dialog boxes.
3. Simple bar graph by species, by hand or using Chart Type dialog to change an existing graph.
4. Graph leaf-fall in a single tree over a four-year period, by hand or using the Source Data dialog boxes. (a) calculate percent of leaves fallen and remaining on tree. (b) graph data.
5. Graph first and last leaf-fall dates for one tree over a four-year period
6. If time permits, graph leaf-fall in multiple trees, your own data, or other data.
${ }^{12}$ Number of Trees of Each Species

Progression of Leaf fall in Yellow Birch \#1 over Four Years of Study

Level 3 teachers: Create and interpret graphs of your own data

LUNCH at 12:30
Continue after lunch until 2:30; HF staff will load Level 3 graphs for projection
2:40-3:15 Teachers share graphs/insights/questions
3:15 Evaluation and wrap-up.

Go to Harvard Forest website, Click on Educational Opportunities, Select K-12 and Schoolyard, Click on Schoolyard LTER Database

Choose Download Data

tone >

Schoolyard LTER Database

 dote and to view current hets of s s.
new data or edit submitted data.
Instructions - how to use this web page

$$
\text { Dowronad Data - elecet and dommload data to your competer } \square \square
$$

- Groph Data - select data and create a groph
- Schools - see a list of partiopatino schools
- Teochers - see a bit of partiopating toacticrs

$$
\begin{aligned}
& \text { - Teachers - see a bit of participating toacticrs } \\
& \text { - Tree spectes - see a list of tuee species names and codes }
\end{aligned}
$$

- Submit Dota - submit new data or edif submitted data (looin required)

Select Fall Phenology

Schoolyard LTER Database

ownload Data

Choose Athol Royalston (ARM)

Schoolyard LTER Database

Fall Phenology
Sclect a different project
Summary of al dota for this project

an end date When your selections are completa, press submit.

Download and work with data set

Schoolyard LTER Database

School Code	Teacher	Date	Julian	Tree ID	Species Code	Total Leaves	Fallen Leaves	Tree Color
ARM	Miller	$9 / 6 / 2004$	250	2	CH	5	0	NA
ARM	Miller	$9 / 22 / 2004$	266	1	YB	10	0	NA
ARM	Miller	$9 / 22 / 2004$	266	2	CH	10	0	NA

1. Download ARM data set from Buds, Leaves, Global Warming part of Schoolyard Webpage

- Go to the Harvard Forest website, and go to Schoolyard Program webpage (click on K thru 12 Schoolyard LTER in left column on Home page, and Harvard Forest Schoolyard Program on the next page)
- Select the Buds, Leaves, and Global Warming, and click on Data, Protocols
- Go down to the bottom of the page under Data, and double click on ARM to download it to your computer.
- Save the Excel file as an xls file. You may want to name it "PracticeGraphs"
- We will be making a variety of modifications to these data during the session

2. Become familiar with basic Excel graphing tools on your computer

- Open Excel to a blank spreadsheet
- Find the Insert Tab and go to Insert Chart
- Look at the different options for (1) Pie Charts
(2) Bar (Column) Graphs
(3) Scatter Plots

Creating a Graph: (1) Click a blank cell, select Insert Chart, choose the type of graph

Excel 2004, Mac

Excel 2000, PC

Excel 2011, Mac

Excel 12 (2007), PC

Example: Insert a Pie Chart onto your blank Excel Worksheet - what will appear is a blank template that you can fill in with the data of your choice.

In Excel 2011 (Mac), the top of the screen looks different. Choosing the type of graph and selecting data are done under the Charts tab. Formatting is done under the Charts Layout and Format tabs, as in Excel 2007/2008.

Formatting Command Choices in Pre-2007 Versions of Excel.

Top: Chart menu options change the type of graph; the data being graphed; the appearance of axes, gridlines, data labels, and a separate data legend; and axis and graph titles.

Bottom: Format menu options for selected parts of graphs change the color and patterns of the graph background and border, fonts, and the shape of the graph.

