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An increasingly accepted paradigm in ecology, conservation 
and land management attributes many ecological condi-
tions, habitat types and even global-scale carbon cycle 

changes to past cultural activities1–4. Humans are now inferred to 
have driven ecosystem dynamics for millennia across much of the 
globe, including many areas that were formerly interpreted as pris-
tine or dominated by mature forests5–7. This new perspective has led 
to the conclusion that many valued characteristics of historical and 
modern landscapes, such as high levels of plant and animal diver-
sity—including the occurrence of many rare and endangered spe-
cies—may represent legacies of earlier cultural activities8,9. In many 
forested or potentially forested landscapes, a wide array of openland 
habitats including grasslands, shrublands, heathlands and early suc-
cessional forests have been ascribed to purposeful landscape man-
agement by ancient people10,11.

This human-centred interpretation has led to policies that 
encourage active management of important conservation land-
scapes modelled after, or seeking to achieve, many of the physical 
effects of cultural processes that are no longer operative12,13. These 
policies include the prescription of disturbances, especially fire, but 
also forest clearance and varied mechanical treatments, to mimic 
the impacts of inferred past human activities. This stewardship is 
supported by the argument that the cessation of ancient cultural 
disturbances has been accompanied by significant changes in land-
scape structure and function, such as reforestation and succession, 
accompanied by a loss in critical habitat and biodiversity14,15. The 
scientific, historical and conservation literature1,6,10 and popular 
environmental books16–18 widely embrace this thinking.

Often overlooked in such sweeping cultural interpretations 
of nature is the great geographical and temporal variation in the 

importance of human versus environmental controls on ecosystem 
patterns and processes. To improve our understanding and steward-
ship of modern landscapes for specific goals, conservation strategies 
need to be grounded in strong, interdisciplinary, retrospective sci-
ence on past environments, socioecological systems and ecosystem 
dynamics. Here we report results from an integrated palaeoecologi-
cal, palaeoenvironmental, archaeological and historical study that 
seeks to test the cultural management paradigm in one of its source 
regions, southern New England, and thereby inform the under-
standing of landscape dynamics and application of conservation 
practices at the regional scale.

Origin and application of the anthropogenic paradigm
Ecological and conservation thinking in New England shifted dra-
matically in the twentieth century from a wild to humanized inter-
pretation of the past, representing an early and powerful precursor to 
the much broader acceptance of the anthropogenic paradigm. This 
shift arguably commenced with the seminal paper ‘The Indian as an 
ecological factor in northeastern forests’ by Day19 in 1953 and became 
solidly established and popularized in the 1980s with the elaboration 
of these ideas in Cronon’s Changes in the Land20. Both works argued 
that purposeful landscape management by horticulturally based 
native people sought to increase plant and animal resources by creat-
ing a diverse landscape mosaic, including non-forested habitats and 
successional forests. The use of fire by the indigenous people of New 
England has received particular attention in subsequent academic 
and popular writings. For example, Mann16 suggested that pre-
contact Native Americans “reshaped entire landscapes to suit their 
purposes”, using fire as a “principal tool”. Similarly, Poulos21 wrote 
in a recent synthesis that “Native Americans used fire as a means 
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for generating a mosaic of resources across the landscape”. Spurred 
by these and other compelling accounts9,22, stewards of public and 
private conservation lands routinely manage vegetation today with 
fire and mechanical means to create and maintain open and early 
successional habitats. Given that these habitats have declined pre-
cipitously over the past century23–25, we address the question of when 
they appeared and what factors created them and controlled their 
abundance and distribution in the landscape.

New England provides an ideal setting to examine the empiri-
cal underpinnings of the anthropocentric paradigm in ecology and 
conservation as it: (1) features a high density of sites with detailed 
reconstructions of postglacial climate, vegetation, fire and human 
activity; (2) supported high concentrations of native people begin-
ning at least 8,000 yr bp26; (3) provides among the most widely cited 
early written records used to formulate and support the interpreta-
tion of widespread indigenous use of fire in eastern North America27; 
and (4) continues to be recognized as a region where the drivers and 
consequences of past fire require further study21,22,28.

interdisciplinary study design
We collected sediment cores from 21 lakes across southern New 
England (Supplementary Table 1), concentrated along the coast 
from Long Island to Cape Cod, the adjacent islands (Elizabeth 
Islands and Martha’s Vineyard) and adjoining areas of Connecticut 
and Massachusetts (Fig. 1a). The lakes are relatively small (mean 
4.9 ha; range 1–26 ha), augmenting local pollen and charcoal signals 
and yielding landscape-scale records of vegetation and fire29,30. The 
study area features cold winters, warm summers and even precipi-
tation throughout the year (totalling 1,000–1,500 mm yr−1). Acidic 
soils occur on glacial till and granitic or metamorphic bedrock in 
inland parts of the region, whereas sandy soils occur on glacial out-
wash and glaciolacustrine kame-delta deposits in the Connecticut 
River Valley and on Long Island, Cape Cod and Martha’s Vineyard. 
The regional vegetation is dominated by deciduous hardwood trees, 
including Quercus (oak), Carya (hickory), Betula (birch), Acer 
(maple) and Fagus grandifolia (beech). Pinus strobus (white pine) 
and Tsuga canadensis (eastern hemlock) are common on mainland 
sites, and P. rigida (pitch pine) is prevalent on sandy soils31. European 
colonization began from the coast in the 1620s, with deforestation 
and agriculture opening 40–80% of the landscape through the mid-
nineteenth century, when farmland abandonment and succession 
led to the largely forested condition that prevails today32.

Thirteen of the lake-sediment records begin between 14,000 and 
9,600 calibrated 14C yr bp; the other eight records cover the past 1,600–
2,000 yr. We analysed pollen and charcoal, calculating pollen percent-
ages and charcoal accumulation rates (pieces cm−2 yr−1; CHAR) and 
interpolating the pollen and CHAR data to 50-yr intervals. We then 
calculated CHAR z scores (CHAR-z) and compared the charcoal and 
pollen data with palaeoclimate32 and archaeological records25,33,34. 
Lacustrine and marine records show that the region has experienced 
a steady increase in effective moisture since the early Holocene  
(Fig. 2e), with a peak in temperatures occurring 8,000–6,000 yr bp 
(Fig. 2d)35. Reconstructions of relative human population levels 
for the northeastern United States34 and coastal New England25,33  
are based on syntheses of 14C dates from archaeological materials 
(Fig. 2c) and numbers of sites assigned to different archaeological 
periods, respectively (Fig. 2b). Both reconstructions indicate peaks 
in human population during the Late Archaic and Middle–Late 
Woodland periods. We also interpret the palaeoecological data in the 
context of site-level spatial distributions of Middle–Late Woodland 
subsistence activities for coastal New England25,33 (Fig. 1b).

Results
The charcoal records exhibit considerable temporal variation, but 
similar CHAR values suggest that they capture changes in fire sever-
ity36 in a consistent way. The mean pre-European CHAR values  

are <12 pieces cm−2 yr−1 (Supplementary Table 1) for all but one 
site (Fresh-Falmouth; 28 pieces cm−2 yr−1). The CHAR-z time series 
feature similar temporal trends that are interpretable in terms of  
the regional history of climate, vegetation and human activities 
(Figs. 2 and 3).

New England climate was cool and dry and the indigenous, 
Palaeo-Indian population was low during the late glacial period 
and the beginning of the Holocene34,35,37 (Fig. 2). Initially, at 14,000–
12,000 yr bp, CHAR-z values were also low when P. banksiana and 
Picea-dominated boreal forest prevailed regionally38. The CHAR-z 
values increase at some sites during 12,000–10,000 yr bp, when  
P. strobus became prevalent, but mean CHAR-z values remain low.

Temperature and precipitation increased region-wide 10,000–
8,000 yr bp, with precipitation remaining considerably lower than 
at present35 (Fig. 2). This change in climate brought about shifts 
in plant functional types, fuels and fire. An increase in CHAR-z 
values at nearly all sites indicates higher fire activity as Quercus 
increased and P. banksiana and P. strobus declined38 (Fig. 3). 
Elevated abundances of Ambrosia and Poaceae pollen indicate the 
presence of openlands or an open forest structure maintained by 
fire and dry conditions (precipitation 600–1,000 mm yr−1), much 
like that found historically along the eastern margin of the Great 
Plains35,39 (Fig. 2). Human population levels remained low during 
this Early Archaic interval34.

CHAR-z values declined 8,000–6,000 yr bp as moisture increased 
and temperature reached a postglacial maximum35 (Fig. 2). Fagus 
and Carya expanded across the region as Quercus remained abun-
dant and Ambrosia and Poaceae declined to trace amounts38. The 
pollen and charcoal data portray a landscape of closed-canopy 
mesic hardwood forests with little fire, even though the Middle 
Archaic human population was apparently larger than that of the 
Early Archaic33,34,37,40.

The middle Holocene (6,000–3,000 yr bp) featured cooler, 
wetter climates than 8,000–6,000 yr bp, yet with drier conditions 
than today35 (Fig. 2). Across the southern New England coast and 
broader region, human populations increased dramatically, reach-
ing a peak during this Late Archaic period25,33,34. Closed-canopy for-
ests persisted regionally and around all study sites, with no evidence 
of grass or weed-dominated openlands or successional woodlands. 
Despite the substantially larger human population, mean CHAR-z 
values remained lower than 10,000–8,000 yr bp, indicating that fire 
was less widespread than during the earlier, drier period. Peaks in 
CHAR-z values appear at several sites (West Side, Umpawaug, Ware 
and Black ponds), suggesting local areas of higher fire severity, per-
haps related to human activity.

Charcoal values declined further during 3,000–1,500 yr bp, an 
interval in which precipitation continued to increase35 (Fig. 2). 
The Early Woodland human population was low relative to that of 
the Late Archaic34. Subtle shifts in forest composition, including a 
decline in Quercus and an increase in P. rigida38, seem to be driven 
by changing climate.

A second peak in the indigenous population occurred during 
the Middle–Late Woodland period, 1,500–500 yr bp (Figs. 2 and 4). 
Across the Northeast, this increase has often been attributed to the 
emergence of horticulture of native plants and tropical cultigens, 
especially maize34. However, New England archaeological data 
indicate that horticulture was adopted relatively late and played 
a minimal role in subsistence before the European arrival41 (Fig. 
1b). Similar to the Late Archaic, CHAR-z values and pollen abun-
dances of Ambrosia and Poaceae remain low during the Middle–
Late Woodland. Umpawaug and Deep-Falmouth ponds feature  
peaks in CHAR-z at 700–600 yr bp, a pattern suggesting land-
scape-scale heterogeneity of fire in a region characterized by a low 
occurrence of fire overall. Indeed, some sites with local evidence 
of intensive and extended human occupation, such as Black Pond 
on Martha’s Vineyard25,42,43, exhibit no rise in CHAR-z or pollen  
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evidence for open, non-forested vegetation during the Late 
Holocene. Middle–Late Woodland subsistence practices, such as 
hunting, fishing, plant gathering and small-scale farming (Fig. 1b), 
apparently resulted in local ecological impacts without transform-
ing the broader forested landscape.

The widespread European deforestation and agriculture that 
commenced in the seventeenth century and continued into the mid-
nineteenth century produced a decline in Quercus abundance and 
abruptly increasing pollen percentages for Ambrosia and Poaceae, 
exceeding the highest values of the early Holocene (Figs. 2 and 4). 
CHAR-z values also rose sharply at this time, with the values at 
half of the sites (7 of 13) exceeding the high values recorded during 
10,000–8,000 yr bp.

Discussion
Humans were present across southern New England and thus could 
act as ignition sources throughout the postglacial interval, but fire 
regimes in the region were controlled primarily by climate interact-
ing with vegetation. Fire was most prevalent 10,000–8000 yr bp, when 
the climate was as dry as modern Minnesota35 and open Quercus 
woodlands expanded regionally, creating an environment, fuels and 
forest conditions conducive to burning (Fig. 3). From 8,000 yr bp 
until European arrival, increases in Fagus and Carya, high levels 

of arboreal pollen and low abundances of Ambrosia, Poaceae and 
charcoal indicate the regional dominance of increasingly mesic, 
closed-canopy forests and a decline in fire. Archaeological evi-
dence indicates a dense pre-contact population that used a range 
of upland, estuarine, near-shore and marine resources (Fig. 1b), 
undoubtedly resulting in fine-scale ecological impacts. Charcoal 
peaks at some sites (4 of 13) during the Late Archaic and, to a lesser 
extent (2 of 21), the Middle–Late Woodland suggest a dispersed 
pattern of fire that may represent local human influence. Broadly, 
however, the charcoal and pollen data and archaeological record do 
not support the interpretation of significant indigenous impact—
including human-set fire, forest clearance and horticulture—as a 
regional-scale driver of vegetation composition and structure. The 
regional flora bolsters this interpretation. The majority of species 
display generalized disturbance adaptations that facilitate recovery 
from physical and biological disturbances including windthrow, 
stem and branch break, ice damage, defoliation, browsing and tree-
felling by beaver, whereas fire-specific adaptations such as serotiny 
are exceedingly rare44,45. Moreover, a recent synthesis of work on the 
efficacy of prescribed fire for maintaining openland habitats con-
cluded that “there has been no study that found fire alone to be a 
viable long-term management solution; rather, fire in combination 
with other tools is necessary”46.
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The pollen data suggest that mature, closed-canopy forests 
dominated New England for the eight millennia before European 
colonization. Four centuries ago this situation changed abruptly 
as deforestation, widespread grazing by sheep and cattle, and 
intensive use of the remaining woodlands created a pastoral land-
scape of expansive pastures, hayfields, croplands, shrublands and  

successional forests32. European disturbance of the New England 
landscape included intentional and accidental fires, as reflected by 
the increases in CHAR-z values at that time, but the primary mecha-
nisms for creating and maintaining openland habitats included tree-
felling, animal grazing, mowing and ploughing. Long-lived trees, 
such as Quercus and Carya in the south and Tsuga and Fagus in 
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the north, declined as successional taxa (including Betula, P. strobus 
and P. rigida) increased31. Plant, mammal, bird and insect species 
of open, grassy, disturbed and successional habitats increased and 
thrived through the late nineteenth century when natural reforesta-
tion followed a regional decline in farmland to create the forested 
conditions prevailing today47. Viewed in terms of global carbon 
dynamics3,4, the regrowth of New England forests is taking up some 
of the carbon that was lost to the atmosphere during the period of 
European deforestation48.

Across New England, a rich array of non-forested habitats that 
support many rare and threatened openland taxa is cultural in 
origin but dates back centuries rather than millennia. Using inter-
disciplinary science and history as a guide, human land use could 
continue to be of great value in conservation stewardship, although 
the tools engaged would be chainsaws, cattle and sheep grazing, and 
hay production, rather than fire. The growing movement towards 
local agricultural production of grass-fed meat and dairy, diversi-
fied fruits and vegetables, and the use of local timber and fuelwood 
have the potential to expand and revitalize open and successional 
habitats regionally49.

These findings confirm the great variability in the relative 
importance of human and environmental controls on ecosystems 
across space and time, highlighting the need for conservation 
strategies and land management to be informed by interdisci-
plinary, retrospective science. In regions like New England, land 
managers seeking to emulate pre-contact conditions should take 
advantage of the naturally reforested landscape, de-emphasize the 
role of human disturbance and anticipate climate-driven change; 
those seeking to maintain important openland habitats should 
apply the broad range of colonial-era agricultural approaches, 
including grazing, mowing and cutting woody vegetation, rather 
than burning.

Methods
Chronological control for the sediment cores was provided by accelerator mass 
spectrometry 14C analysis of plant macrofossils and bulk sediments, pollen evidence 
for European deforestation and, in some cases, 210Pb analysis (Supplementary Table 
2)38. The 14C dates were calibrated with the IntCal13 calibration curve50, and age 
models were constructed using Bchron v.3.251.

Sediment samples (1–2 cm3) were prepared for the pollen analysis following 
standard procedures52, mounted in silicone oil and analysed at ×400 magnification. 
Pollen percentages were calculated relative to the sum of pollen and spores of 
upland plant taxa. The abundances of P. rigida and P. banksiana pollen were 
determined following Oswald et al.38. For charcoal analysis, 1-cm3 subsamples 
were soaked in KOH and washed through a 200-µm sieve; all charcoal fragments 
>200 µm were counted at ×40 magnification53.

Site-level archaeological data for >1,800 locations across the study region (Figs. 
1b and 2b) were obtained from all available cultural resource management reports 
from the coastal areas of Massachusetts, Rhode Island, Connecticut and New 
York, as well as from journal articles and other publications25,33. The archaeological 
report from each site was evaluated and then coded for the presence or absence of 
various subsistence activities during different time periods33.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon request.
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