Harvard Forest Schoolyard Ecology Connections to Next Generation Science Standards

Pamela Snow 2015

The best way that Harvard Forest Schoolyard Ecology assists teachers in meeting the NGSS standards is by providing a way for your students to engage in authentic *science practices*.

Practice 1 Asking Questions and Defining Problems

Students at any grade level should be able to ask questions of each other about the texts they read, the features of the phenomena they observe, and the conclusions they draw from their models or scientific investigations. (NRC Framework 2012, p. 56)

Grades 3-5	Grades 6-8	Grades 9-12
Asking questions and	Asking questions and defining	Asking questions and defining
defining problems in 3–5	problems in 6–8 builds on K–5	problems in 9–12 builds on K–8
builds on K–2 experiences	experiences and progresses to	experiences and progresses to
and progresses to	specifying relationships between	formulating, refining, and evaluating
specifying qualitative	variables, and clarifying	empirically testable questions and
relationships	arguments and models.	design problems using models and
 Ask questions about what 	 Ask questions o that arise from 	simulations.
would happen if a variable	careful observation of phenomena,	 Ask questions o that arise from
is changed. • Identify	models, or unexpected results, to	careful observation of phenomena,
scientific (testable) and	clarify and/or seek additional	or unexpected results, to clarify
non-scientific	information. o to identify and/or	and/or seek additional information. o
(nontestable) questions.	clarify evidence and/or the	that arise from examining models or
• Ask questions that can be	premise(s) of an argument. or to	a theory, to clarify and/or seek
investigated and predict	determine relationships between	additional information and
reasonable outcomes	independent and dependent	relationships. o to determine
based on patterns such as	variables and relationships in	relationships, including quantitative
cause and effect	models. o to clarify and/or refine a	relationships, between independent
relationships.	model, an explanation, or an	and dependent variables. o to clarify
	engineering problem. or that	and refine a model, an explanation,
	require sufficient and appropriate	• Evaluate a question to determine if
	empirical evidence to answer. o	it is testable and
	that can be investigated within the	relevant.
	scope of the classroom, outdoor	 Ask questions that can be
	environment, and museums and	investigated within the scope of the
	other public facilities with	research facilities, or field (e.g.,
	available resources and, when	outdoor environment) with available
	appropriate, frame a hypothesis	resources and, when appropriate,
	based on observations and	frame a hypothesis based on a model
	scientific principles. or that	or theory.
	challenge the premise(s) of an	• Ask and/or evaluate questions that
	argument or the interpretation of a	challenge the premise(s) of an
	data set.	argument, the interpretation of a
		data set, or the suitability of a
		design.

Practice 3 Planning and Carrying Out Investigations Students should have opportunities to plan and carry out several different kinds of investigations during their K-12 years. At all levels, they should engage in investigations that range from those structured by the teacher—in order to expose an issue or question that they would be unlikely to explore on their own (e.g., measuring specific properties of materials)— to those that emerge from students' own questions. (NRC Framework, 2012, p. 61)

Grades 3-5	Grades 6-8	Grades 9-12
Planning and carrying out	Planning and carrying out	Planning and carrying out
investigations to answer	investigations in 6-8 builds on	investigations in 9-12 builds on K-
questions or test solutions	K-5 experiences and	8 experiences and progresses to
to problems in 3–5 builds	progresses to include	include investigations that provide
on K–2 experiences and	investigations that use	evidence for and test conceptual,
progresses to include	multiple variables and	mathematical, physical, and
investigations that control	provide evidence to support	empirical models.
variables and provide	explanations or solutions.	 Plan an investigation or test a
evidence to support	 Plan an investigation 	design individually and
explanations or design	individually and	collaboratively to produce data to
solutions.	collaboratively, and in the	serve as the basis for evidence
• Plan and conduct an	design: identify independent	supporting explanations for
investigation	and dependent variables and	phenomena. Consider possible
collaboratively to produce	controls, what tools are	confounding variables or effects
data to serve as the basis	needed to do the gathering,	and evaluate the investigation's
for evidence, using fair	how measurements will be	design
tests in which variables	recorded, and how many data	 Plan and conduct an
are controlled and the	are needed to support a claim.	investigation individually and
number of trials		collaboratively to produce data to
considered.	 Conduct an investigation 	serve as the basis for evidence,
	and/or evaluate and/or revise	and in the design: decide on types,
• Evaluate appropriate	the experimental design to	how much, and accuracy of data
methods and/or tools for	produce data to serve as the	needed to produce reliable
collecting data.	basis for evidence that meet	measurements and consider
	the goals of the investigation.	limitations on the precision of the
 Make observations 		data (e.g., number of trials, cost,
and/or measurements to	• Evaluate the accuracy of	risk, time), and refine the design
produce data to serve as	various methods for collecting	accordingly.
the basis for evidence for	data.	 Plan and conduct an
an explanation of a		investigation in a safe and
phenomenon or test a	• Collect data to produce data	ethical manner including
design solution.	to serve as the basis for	considerations of environmental,
	evidence to answer scientific	social, and personal impacts.
 Make predictions about 	questions or test	 Select appropriate tools to
what would happen if a		collect, record, analyze, and
variable changes.		evaluate data.

Practice 4 Analyzing and Interpreting Data

Once collected, data must be presented in a form that can reveal any patterns and relationships and that allows results to be communicated to others. Because raw data as such have little meaning, a major practice of scientists is to organize and interpret data through tabulating, graphing, or statistical analysis. Such analysis can bring out the meaning of data—and their relevance—so that they may be used as evidence. (NRC Framework, 2012, p. 61-62)

Grades 3-5	Grades 6-8	Grades 9-12
Analyzing data in 3–5	Analyzing data in 6–8 builds on Analyzing data in 9–12	
builds on K–2	K–5 experiences and progresses to	on K–8 experiences and
experiences and	extending quantitative analysis to	progresses to introducing more
progresses to	investigations, distinguishing	detailed statistical analysis, the
introducing quantitative	between correlation and	comparison of data sets for
approaches to collecting	causation, and basic statistical	consistency, and the use of
data and conducting	techniques of data and error	models to generate and analyze
multiple trials of	analysis.	data.
qualitative observations.	 Construct, analyze, and/or 	• Analyze data using tools,
When possible and	interpret graphical displays of	technologies, and/or models
feasible, digital tools	data and/or large data sets to	(e.g., computational,
should be used.	identify linear and nonlinear	mathematical) in order to make
	relationships.	valid and reliable scientific
 Represent data in 		claims.
tables and/or various	• Use graphical displays (e.g.,	 Apply concepts of statistics
<mark>graphical displays</mark> (bar	maps, charts, graphs, and/or	and probability (including
graphs, pictographs	tables) of large data sets to	determining function fits to
and/or pie charts) to	identify temporal and spatial	data, slope, intercept, and
reveal patterns that	relationships.	correlation coefficient for linear
indicate relationships.	 Distinguish between causal and 	fits) to scientific and
	correlational relationships in data.	engineering questions and
 Analyze and interpret 	 Analyze and interpret data to 	problems, using digital tools
data to make sense of	provide evidence for phenomena.	when feasible.
phenomena, using	• Apply concepts of statistics and	 Consider limitations of data
logical reasoning,	probability (including mean,	analysis (e.g., measurement
mathematics, and/or	median, mode, and variability) to	error, sample selection) when
computation.	analyze and characterize data,	analyzing and interpreting data.
	using digital tools when feasible.	 Compare and contrast various
 Compare and contrast 	• Consider limitations of data	types of data sets (e.g., self-
data collected by	analysis (e.g., measurement error),	generated, archival) to examine
different groups in order	and/or seek to improve precision	consistency of measurements
to discuss similarities	and accuracy of data with better	and observations.
and differences in their	technological tools and methods	• Evaluate the impact of new
findings.	(e.g., multiple trials).	data on a working explanation
	• Analyze and interpret data to	of a proposed process or
	determine similarities and	system.
	differences in findings.	

Practice 5 Using Mathematics and Computational Thinking

Although there are differences in how mathematics and computational thinking are applied in science..., mathematics often brings these two fields together by enabling engineers to apply the mathematical form of scientific theories and by enabling scientists to use powerful information technologies designed by engineers. Both kinds of professionals can thereby accomplish investigations and analyses and build complex models, which might otherwise be out of the question. (NRC Framework, 2012, p. 65)

Grades 3-5	Grades 6-8	Grades 9-12
Mathematical and	Mathematical and	Mathematical and
computational thinking in 3–5	computational thinking in 6–8	computational thinking in 9-
builds on K–2 experiences and	builds on K–5 experiences and	12 builds on K-8 experiences
progresses to extending	progresses to identifying	and progresses to using
quantitative measurements to	patterns in large data sets and	algebraic thinking and
a variety of physical	using mathematical concepts	analysis, a range of linear and
properties and using	to support explanations and	nonlinear functions including
computation and mathematics	arguments.	trigonometric functions,
to analyze data and compare	 Use digital tools (e.g., 	exponentials and logarithms,
alternative design solutions.	computers) to analyze very	and computational tools for
	large data sets for patterns	statistical analysis to analyze,
• Organize simple data sets to	and trends.	represent, and model data.
reveal patterns that suggest		Simple computational
relationships.	• Use mathematical	simulations are created and
	representations to describe	used based on mathematical
• Describe, measure,	and/or support scientific	models of basic assumptions
estimate, and/or graph	conclusions.	• Use mathematical,
quantities (e.g., area, volume,		computational, and/or
weight, time) to address	• Apply mathematical	algorithmic representations of
scientific questions and	concepts and/or processes	phenomena or design
problems.	(e.g., ratio, rate, percent,	solutions to describe and/or
	basic operations, simple	support claims and/or
	algebra) to scientific questions	explanations.
	and problems.	 Apply techniques of algebra
	-	and functions to represent and
		solve scientific problems.
		• Apply ratios, rates,
		percentages, and unit
		conversions in the context of
		complicated measurement
		problems involving quantities
		with derived or compound
		units (such as mg/mL, kg/m3 ,
		acre-feet, etc.).

Practice 6 Constructing Explanations and Designing Solutions

The goal of science is to construct explanations for the causes of phenomena. Students are expected to construct their own explanations, as well as apply standard explanations they learn about from their teachers or reading. The Framework states the following about explanation: "The goal of science is the construction of theories that provide explanatory accounts of the world. A theory becomes accepted when it has multiple lines of empirical evidence and greater explanatory power of phenomena than previous theories."(NRC Framework, 2012, p. 52)

Grades 3-5	Grades 6-8	Grades 9-12
Constructing	Constructing explanations and	Constructing explanations and
explanations and	designing solutions in 6–8 builds	designing solutions in 9–12 builds
designing solutions in	on K– 5 experiences and	on K–8 experiences and progresses
3–5 builds on K–2	progresses to include	to explanations and designs that are
experiences and	constructing explanations and	supported by multiple and
progresses to the use	designing solutions supported by	independent student-generated
of evidence in	multiple sources of evidence	sources of evidence consistent with
constructing	consistent with scientific ideas,	scientific ideas, principles, and
explanations that	principles, and theories.	theories.
specify variables that	• Construct an explanation that	• Make a quantitative and/or
describe and predict	includes qualitative or	qualitative claim regarding the
phenomena and in	quantitative relationships	relationship between dependent and
designing multiple	<i>between variables that predict(s)</i>	independent variables.
solutions to design	and/or describe(s) phenomena.	• Construct and revise an
problems.	• Construct an explanation using	explanation based on valid and
	models or representations.	reliable evidence obtained from a
• Construct an	• Construct a scientific	variety of sources (including
explanation of	explanation based on valid and	students' own investigations,
observed relationships	reliable evidence obtained from	models, theories, simulations, peer
(e.g., the distribution	sources (including the students'	review) and the assumption that
of plants in the back	own experiments) and the	theories and laws that describe the
yard).	assumption that theories and	natural world operate today as they
• Use evidence (e.g.,	laws that describe the natural	did in the past and will continue to
measurements,	world operate today as they did	do so in the future.
observations, patterns)	in the past and will continue to	• Apply scientific ideas, principles,
to construct or support	do so in the future.	and/or evidence to provide an
an explanation	• Apply scientific ideas,	explanation of phenomena and
	principles, and/or evidence to	solve design problems, taking into
 Identify the evidence 	construct, revise and/or use an	account possible unanticipated
that supports	explanation for realworld	effects. • Apply scientific reasoning,
particular points in an	phenomena, examples, or events.	theory, and/or models to link
explanation.	• Apply scientific reasoning to	evidence to the claims to assess the
	show why the data or evidence is	extent to which the reasoning and
	adequate for the explanation or	data support the explanation or
	conclusion.	conclusion

Practice 8 Obtaining, Evaluating, and Communicating Information

Any education in science and engineering needs to develop students' ability to read and produce domain-specific text. As such, every science or engineering lesson is in part a language lesson, particularly reading and producing the genres of texts that are intrinsic to science and engineering. (NRC Framework, 2012, p. 76)

Grades 3-5	Grades 6-8	Grades 9-12
Obtaining, evaluating, and	Obtaining, evaluating, and	Obtaining, evaluating, and
communicating information	communicating information in	communicating information in
in 3–5 builds on K–2	6–8 builds on K–5 experiences	9–12 builds on K–8 experiences
experiences and progresses	and progresses to evaluating	and progresses to evaluating
to evaluating the merit and	the merit and validity of ideas	the validity and reliability of the
accuracy of ideas and	and methods.	claims, methods, and designs.
methods.	• Critically read scientific texts	• Critically read scientific
 Read and comprehend 	adapted for classroom use to	literature adapted for classroom
grade appropriate complex	determine the central ideas	use to determine the central ideas
texts and/or other reliable	and/or obtain scientific and/or	or conclusions and/or to obtain
media to summarize and	technical information to	scientific and/or technical
obtain scientific and	describe patterns in and/or	information to summarize complex
technical ideas and describe	evidence about the natural and	evidence, concepts, processes, or
how they are supported by	designed world(s).	ngormation presented in a text by
evidence.	• Integrate qualitative and/or	still accurate terms
 Compare and/or combine 	quantitative scientific and/or	• Compare, integrate and evaluate
across complex texts and/or	technical information in	sources of information presented in
other reliable media to	written text with that contained	different media or formats (e.g.,
support the engagement in	in media and visual displays to	visually, quantitatively) as well as
other scientific practices.	clarify claims and findings.	in words in order to address a
 Combine information in 	• Gather, read, and synthesize	scientific question
written text with that	information from multiple	• Gather, read, and evaluate
contained in corresponding	appropriate sources and assess	scientific and/or technical
tables, diagrams, and/or	the credibility, accuracy of	authoritative sources, assessing the
charts to support the	each publication and methods	evidence and usefulness of each
engagement in other	used, and describe how they	source.
scientific practices.	are supported or not supported	• Evaluate the validity and
• Obtain and combine	by evidence.	reliability of and/or synthesize
information from books	• Evaluate data, hypotheses,	multiple claims, methods, and/or
and/or other reliable media	and/or conclusions in scientific	designs that appear in scientific
to explain phenomena	and technical texts in light of	and technical texts or media
• Communicate scientific	competing information or	reports, verifying the data when
and/or technical	accounts.	possible.
information orally and/or in	 Communicate scientific 	• Communicate scientific ana/or
written formats, including	and/or technical information in	multiple formats (i.e. orally
various forms of media as	writing and/or through oral	graphically,
well as tables, diagrams,	presentations.	6 · 1 · · · · · · · · · · · · · · · · ·
and charts		

NGSS Disciplinary Core Idea Progression Core Concepts that relate most closely to Harvard Forest Schoolyard Ecology Projects

Disciplinary	Grades 3-5	Grades 6-8	Grades 9-12
ESS2.E Biogeology	Living things can affect the physical characteristics of their environment.	[Content found in LS4.A and LS4.D]	The biosphere and Earth's other systems have many interconnections that cause a continual coevolution of Earth's surface and life on it
ESS3.A Natural resources	Energy and fuels humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.	Humans depend on Earth's land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes.	Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.
ESS3.C Human impacts on Earth systems	Societal activities have had major effects on the land, ocean, atmosphere, and even outer space. Societal activities can also help protect Earth's resources and environments.	Human activities have altered the biosphere, sometimes damaging it, although changes to environments can have different impacts for different living things. Activities and technologies can be engineered to reduce people's impacts on Earth.	Sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources, including the development of technologies
ESS3.D Global climate change	<i>N/A</i>	Human activities affect global warming. Decisions to reduce the impact of global warming depend on understanding climate science, engineering capabilities, and social dynamics.	Global climate models used to predict changes continue to be improved, although discoveries about the global climate system are ongoing and continually needed.
LS1.B Growth and development	Reproduction is essential to every kind of organism.	Animals engage in behaviors that increase the odds of	N/A

oforganisms	Organisms have	reproduction. An	
	unique and diverse	organism's growth is	
	life cycles	affected by both	
	uje cycles.	genetic and	
		environmental factors	
LSLC	Food provides	Plants use the energy	The hydrocarbon backbones of
Organization	animals with the	from light to make	sugars produced through
for matter and	materials and	sugars through	photosynthesis are used to
energy flow in	energy they need for	photosynthesis Within	make amino acids and other
organisms	hody renair growth	individual organisms	make unino uclus una omer molecules that can be
organisms	warmth and motion	food is broken down	assembled into proteins or
	Plants acquire	through a series of	DNA Through cellular
	material for growth	chemical reactions that	respiration matter and energy
	chiefly from air	rearrange molecules	flow through different
	water and process	and release energy	organizational levels of an
	matter and obtain	und release energy.	organism as elements are
	energy from		recombined to form different
	sunlight which is		products and transfer energy
	used to maintain		products and transfer energy.
	conditions		
	necessary for		
	survival		
	The food of almost	Organisms and	Ecosystems have carrying
Interdenendent	any animal can be	nonulations are	canacities resulting from
relationships	traced back to	dependent on their	biotic and abiotic factors. The
in ecosystems	nlants Organisms	environmental	fundamental tension between
in ecosystems	are related in food	interactions both with	resource availability and
	webs in which some	other living things and	organism populations affects
	animals eat plants	with nonliving factors	the abundance of species in
	for food and other	any of which can limit	any given ecosystem
	animals eat the	their growth	uny given ecosystem.
	animals that eat	Competitive	
	nlants while	nredatory and	
	decomposers restore	mutually beneficial	
	some materials back	interactions vary	
	to the soil	across ecosystems but	
		the patterns are	
		shared	
LS2.B Cycles	Matter cycles	The atoms that make	Photosynthesis and cellular
of matter and	between the air and	up the organisms in an	respiration provide most of the
energy	soil and among	ecosystem are cycled	energy for life processes. Only

transfer in ecosystems	organisms as they live and die.	repeatedly between the living and nonliving parts of the ecosystem. Food webs model how matter and energy are transferred among producers, consumers, and decomposers as the three groups interact within an ecosystem	a fraction of matter consumed at the lower level of a food web is transferred up, resulting in fewer organisms at higher levels. At each link in an ecosystem elements are combined in different ways and matter and energy are conserved. Photosynthesis and cellular respiration are key components of the global carbon cycle
LS2.C Ecosystem dynamics, functioning, and resilience	When the environment changes some organisms survive and reproduce, some move to new locations, some move into the transformed environment, and some die	Ecosystem characteristics vary over time. Disruptions to any part of an ecosystem can lead to shifts in all of its populations. The completeness or integrity of an ecosystem's biodiversity is often used as a measure of its health.	If a biological or physical disturbance to an ecosystem occurs, including one induced by human activity, the ecosystem may return to its more or less original state or become a very different ecosystem, depending on the complex set of interactions within the ecosystem.
LS4.C Adaptation	Particular organisms can only survive in particular environments.	Species can change over time in response to changes in environmental conditions through adaptation by natural selection acting over generations. Traits that support successful survival and reproduction in the new environment become more common.	Evolution results primarily from genetic variation of individuals in a species, competition for resources, and proliferation of organisms better able to survive and reproduce. Adaptation means that the distribution of traits in a population, as well as species expansion, emergence or extinction, can change when conditions change.
LS4.D Biodiversity and humans	Populations of organisms live in a variety of habitats. Change in those habitats affects the organisms living there.	Changes in biodiversity can influence humans' resources and ecosystem services they rely on.	Biodiversity is increased by formation of new species and reduced by extinction. Humans depend on biodiversity but also have adverse impacts on it. Sustaining biodiversity is essential to supporting life on Earth.