Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem

Jennie Sirotaa, Benjamin Baiserb, Nicholas J. Gotelli, and Aaron M. Ellisonb,1

aDepartment of Biological Sciences, North Dakota State University, Fargo, ND 58102; bHarvard Forest, Harvard University, Petersham, MA 01366; and 1Department of Biological Sciences, University of Vermont, Burlington, VT 05405

Edited by Stephen R. Carpenter, University of Wisconsin, Madison, WI, and approved April 2, 2013 (received for review December 4, 2012)

Slow changes in underlying state variables can lead to “tipping points,” rapid transitions between alternative states (“regime shifts”) in a wide range of complex systems. Tipping points and regime shifts are increasingly being documented in long-term observational datasets and modeling studies. An early warning is necessary to reliably conclude that a tipping point has been passed (14). The emphasis on tipping points is perhaps unsurprising because, if a tipping point can be detected far enough in advance, a regime shift may be averted (3–6). However, modeling studies have shown that the lead time required to avert a regime shift can be unacceptably long (5, 6), so additional attention must be paid to understanding dynamics before and after state changes as a first step toward determining how to manage or reverse them (e.g., refs. 18, 19). The now-standard retrospective analyses of lengthy time series of observational data can identify tipping points, demonstrate that an early warning was available if it had been looked for, and document alternative states (1, 3, 4, 20). Prospective forecasting, however, requires a different approach.

Experimental induction of regime shifts would provide a workable platform from which researchers could generate detailed knowledge of initial and final states and the tipping point between them. An experimental system also would facilitate the development, testing, and analysis of early-warning indicators of tipping points, prospective interventions to delay or prevent regime shifts, and methods to shift the system between alternative states. Unfortunately, such experiments are rare (2), and mathematical modeling of tipping points and regime shifts has far outpaced observational data. A large body of theoretical work has identified a number of statistical early-warning indicators for a tipping point, defined as the point in time when a system shifts from one regime to another (7). Less attention has been paid to systematic changes in the dynamics of systems on either side of a tipping point (8), although demonstrations that alternative states exist in a system are necessary to reliably conclude that a tipping point has been passed (14). The emphasis on tipping points is perhaps unsurprising because, if a tipping point can be detected far enough in advance, a regime shift may be averted (3–6). However, modeling studies have shown that the lead time required to avert a regime shift can be unacceptably long (5, 6), so additional attention must be paid to understanding dynamics before and after state changes as a first step toward determining how to manage or reverse them (e.g., refs. 18, 19). The now-standard retrospective analyses of lengthy time series of observational data can identify tipping points, illustrate that an early warning was available if it had been looked for, and document alternative states (1, 3, 4, 20). Prospective forecasting, however, requires a different approach.

Experimental induction of regime shifts would provide a workable platform from which researchers could generate detailed knowledge of initial and final states and the tipping point between them. An experimental system also would facilitate the development, testing, and analysis of early-warning indicators of tipping points, prospective interventions to delay or prevent regime shifts, and methods to shift the system between alternative states. Unfortunately, such experiments are rare (2), and mathematical modeling of tipping points and regime shifts has far outpaced available empirical data (7, 21). However, three recent micromos studies have experimentally induced tipping points in populations of single species of microorganisms and tested whether “critical slowing down” (CSD) of population density indicates a rapidly
approaching tipping point (22–24). These studies revealed that signals of a tipping point could be detected as early as eight generations before a transcritical threshold was crossed (22), that systemic stochasticity could reduce the signal-to-noise ratio in early warning indicators of tipping points (23), and that fold bifurcations in system dynamics occurred as a catastrophic threshold between different system states was crossed (24). Although consistent with theoretical predictions, these studies on single species in highly simplified environments are not easily extrapolated to more complex ecosystems, such as eutrophic lakes or ponds.

In this study, we experimentally induced a tipping point and a regime shift from an aerobic to an anaerobic state in an entire aquatic ecosystem: the aquatic assemblage of microbes and invertebrates found in the leaves of the northern pitcher plant, Sarracenia purpurea L. (25). This Sarracenia “microecosystem” is ideal for studying tipping points and regime shifts for three reasons. First, it is a naturally occurring yet tractable and replicable experimental system in which water-filled pitchers host a well-characterized, five-trophic level, detritus-based food web (26, 27). Second, its carbon (photosynthetic) and nutrient-cycling dynamics are well characterized and understood (28–30), so mechanistic linkages can be made between organic-matter loading (i.e., prey addition) and persistence of, or transitions between, aerobic and anaerobic states (SI Appendix, A Model of the Sarracenia System). Finally, because it naturally exists in aerobic and anaerobic states, the Sarracenia system can be viewed as a model system for understanding eutrophication in freshwater ponds and lakes, which have provided some of the best examples of tipping points and regime shifts. Most systems studied so far, including the Sarracenia system, can shift between regimes or eventually recover from apparently catastrophic shifts (19). Moreover, our perception of the apparent long-term stability of many systems may not reflect the underlying drivers of system change (14). For these reasons, we avoid here the use of the word “stable” in “alternative stable state,” and instead focus on the statistical properties of systems that emerge from controlled and replicated experiments.

Sarracenia Microecosystem

S. purpurea is a widespread, long-lived, perennial, North American carnivorous plant (31). The plant has pitcher-shaped leaves that open during the growing season, fill with rainwater, and capture and digest primary consumers (32). This resource base of captured prey supports a five-trophic level food web that includes bacteria, protozoa, the bdelloid rotifer Habrotrocha rosa Donner, and larvae of several obligate Diptera (25, 33, 34). The Sarracenia food web has been characterized as a processing chain model (33), but the top predators in the system—larvae of the pitcher plant mosquito, Wyeomyia smithii (Coq.), and the pitcher plant flesh-fly, Fletcherrinia fletcheri (Aldrich)—are not critical for breakdown of prey and translocation of nutrients to the plant; the microbes by themselves efficiently decompose and mineralize nearly all of the captured prey biomass (29).

Depending on the photosynthetic activity of the plant, the quality and quantity of captured prey, and the structure of the food web within the pitcher, the oxygen content of the liquid in pitcher in the field can vary greatly from well-oxygenated to nearly anaerobic (SI Appendix, A Model of the Sarracenia System). In aerobic conditions, captured prey is rapidly shredded by larvae of the pitcher plant midge, Metriocnemus knabi (Coq. and subsequently processed by aerobic bacteria whose populations are regulated by higher trophic levels in the food web (35). The respired carbon dioxide from the food web is taken up by the plant, which in turn releases oxygen back into the water as it photosynthesizes (28). In contrast, anaerobic conditions occur following a rapid accumulation of excess prey (often from a single pulsed input; e.g., ref. 36) that cannot be processed with sufficient speed by the animal food web (SI Appendix, Fig. S2). The daily input of O2 to the aquatic microecosystem from plant photosynthesis and diffusion from the atmosphere cannot compensate for the slower breakdown of prey by anaerobic microbes, and concentration of dissolved O2 remains at persistent low levels. In other words, when prey input is excessive, the Sarracenia ecosystem resembles lakes, streams, estuaries, and other aquatic ecosystems that have experienced increased biological oxygen demand following eutrophication (9, 11, 12).

Results and Discussion

In unfed controls, [O2] (expressed in percent, where percent O2 in the atmosphere = 20.95 ± 1.26 g/L O2 at 25 °C at Harvard Forest, 334 m above sea level) in all replicates exhibited a regular diurnal cycle associated with daytime photosynthesis and nocturnal plant respiration (Fig. 1A and SI Appendix, Fig. S1). In all of these control time series, there also was a slight trend toward increasing [O2] over the course of each 4-d experiment (SI Appendix, Fig. S6). In the two lowest prey-addition treatments (0.125 mg·mL⁻¹·d⁻¹ or 0.25 mg·mL⁻¹·d⁻¹ added prey), diurnal cycles of [O2] became irregular and illustrated a complex pattern of fluctuations (Fig. 1B and C). At the two highest prey-addition treatments (0.5 mg·mL⁻¹·d⁻¹ or 1.0 mg·mL⁻¹·d⁻¹ added prey), the diurnal cycle of [O2] was restored, albeit with a greatly diminished amplitude and at a substantially lower overall [O2] level (Fig. 1 D and E). The frequency distribution of daytime [O2] was distinctly multimodal (Fig. 2), and depended on prey addition and not photosynthetically active radiation (PAR), which was unimodal with a single daytime mode of 388 μmol·m⁻²·s⁻¹ (SI Appendix, Figs. S10–S12 and Table S2). As in many other systems, these prominent modes are most parsimoniously explained as resulting from nonlinear responses of the pitcher plant microecosystem to variation in prey availability and its subsequent decomposition (SI Appendix, Analysis of Frequency Distribution of Daytime Oxygen Concentration). In short, experimental additions of organic-matter created and sustained aerobic and anaerobic states, and initiated a transition from aerobic to anaerobic states.

A loess model effectively detrended and decycled the control time-series data of [O2], yielding nearly constant residuals in these time series (Fig. 1F and SI Appendix, Figs. S13–S16). The [O2] time series of all prey-addition treatments still exhibited some periodicity relative to the controls (Fig. 1 G–J), but quantitative analysis of structural changes between different regimes in each time series revealed statistically significant break points only in the two highest prey-addition treatments (0.5 mg·mL⁻¹·d⁻¹ and 1.0 mg·mL⁻¹·d⁻¹ added prey). In each of these two treatments, tipping points were detected in five of six replicates (temporal locations of individual time series indicated by the vertical cyan lines in Fig. 1 I and J; break points of the averaged time series indicated by vertical red lines in Fig. 1 I and J). The break point in the two highest prey-addition treatments occurred, on average, 44.6 h after the start of the feeding experiment and differed between treatments on average by only 114 min (t[4] = 0.8655; P = 0.4, paired t test), despite a doubling of the food addition rate. These results suggest that there is a threshold concentration of organic-matter loading at ~0.5 mg·mL⁻¹·d⁻¹ that can reliably induce a tipping point and regime shift in the Sarracenia microecosystem.

In addition to differences in time-series dynamics, the statistical moments and trends of the [O2] time series differed significantly among the four prey-addition treatments and the controls (Fig. 3 and Table 1). With increasing prey addition, there were decreases in the skewness and temporal trends of [O2] (Fig. 3), and the variance of the [O2] time series increased with increasing prey additions until the system shifted from an aerobic to an anaerobic state (SI Appendix, Fig. S16). Within the 0.5 mg·mL⁻¹·d⁻¹ prey-addition treatment—the lowest feeding level for which we observed a state change—the time-series mean was significantly higher [t(5) = 8.84; P < 0.001] before the regime shift than afterward, and the temporal trend in [O2] shifted from declining before the system shifted from aerobic to anaerobic to flat after the
Fig. 1. Analysis of the time series of [O2] concentration (in percent; on this scale, atmospheric [O2] = 20.95 ≡ 1.26 g/L in our greenhouse) in *Sarracenia* microecosystems as a function of experimental organic-matter loading through prey addition: 0 (control), 0.125, 0.25, 0.5, or 1.0 mg·mL⁻¹·d⁻¹ dry mass of ground wasps (*n* = 5,734 observations of [O2] per replicate within each treatment). (A–E) Mean raw data [O2] time series (blue line) and 95% CIs (gray region) for each treatment across six replicates. (F–J) Mean decycled and detrended time series (blue line) and 95% CIs (gray region) for each treatment across six replicates. The five vertical cyan lines show the break points for the [O2] residuals of each replicate (one of the six replicates did not display a significant break point); the vertical red line in each treatment shows the break point for the mean of all of the series within a treatment. (K–O) Relationships between the primary environmental driver (PAR, in μmol·m⁻²·s⁻¹) and average (residual) [O2]. Lines of different colors correspond to the 4 d of each trial run: dark blue represents day 1, light blue represents day 2, yellow represents day 3, and brown represents day 4. The red circles in N and O indicate the times of the switches from aerobic to anaerobic states in the two highest prey-addition treatments.
regime shift \(t_{(5)} = 3.76; P = 0.007 \); compare colored box plots in Fig. 3]. A statistically stronger, but qualitatively similar, result was found in the 1.0 mg mL\(^{-1}\) d\(^{-1}\) prey-addition treatment: all three statistical moments were higher, and the temporal trend in \([O_2]\) was significantly more negative, before the regime shift than after it [mean, \(t_{(5)} = 7.28; P < 0.001 \); variance, \(t_{(5)} = 5.46; P = 0.001 \); skewness, \(t_{(5)} = 4.93; P = 0.002 \); slope, \(t_{(5)} = 3.39; P = 0.01 \)]. We note, however, that these patterns do not necessarily indicate CSD. Deterministic dynamics could cause manipulated microecosystems to simply diverge further from the controls, leading to an increase in variance that would be unrelated to CSD. Thus, evidence for CSD would be better identified from analysis of individual time series or of replicate time series within each treatment (SI Appendix, Supplemental Analysis of Time-Series Data).

The relationship between \([O_2]\) and light available for photosynthesis—the primary driver of \(O_2\) production by the plant—differed between the two states (Fig. 1 K–O and SI Appendix, Figs. S13 and S14). In the unfed controls, the trajectory in phase space was virtually identical for all 4 d of the time series (Fig. S13), and illustrated normal diurnal cycling of photosynthesis and respiration. As the prey-addition rate was increased, the replicated trajectories became more separated for the early and later parts of each time series (Fig. 1 L and M). At the two highest feeding levels, the different regimes were distinctly separated (either side of the red circle in Fig. 1 N and O). Such changes in the relationships between drivers and response on either side of a tipping point are consistent with theoretical and empirical studies of alternative states in ecological systems (14, 18, 19).

Conclusions

The results presented here illustrate that, with modest organic-matter loading, we can predictably induce a regime shift in a fully functioning, multilithic, detritus-based (i.e., donor-controlled) ecological system. Although there was some variability between replicate ecosystems receiving the same prey additions, the variance within treatments was relatively small, and the system responded in characteristic and repeatable ways to increases in the feeding rate (Figs. 1 and 2 and SI Appendix, Figs. S12 and S14). These results suggest that organic-matter loading not only triggers the state change from the aerobic to the anaerobic state, but that decomposition of prey (35) and biological oxygen demand are the primary drivers that control the dynamics before and after a tipping point (Fig. 3 and SI Appendix, Figs. S3 and S7–S9).

The experimental induction of alternative states in the \(S.\) \(purpurea\) microecosystem provides some support for theoretical predictions of increasing variance in time series before a regime shift. More importantly, however, this study highlights the possibilities of a tractable experimental system with which to explore tipping points, regime shifts, and alternative states. Future work with this system will involve the identification of biologically based early-warning indicators of tipping points. We hypothesize that such biomarkers, including genomic and proteomic markers derived from microbial activity (37), can provide more lead time for intervention than measurements of traditional environmental variables such as \([O_2]\), which may be easier to measure but are themselves driven by underlying biological processes.

Materials and Methods

We explored the dynamics of aerobic to anaerobic state changes in the pitcher plant system by using mathematical modeling (SI Appendix, A Model of the \(S.\) \(purpurea\) System) and a controlled greenhouse experiment. Replicate \(S.\) \(purpurea\) pitchers were inoculated with liquid collected from field plants that contained the naturally occurring bacterial community. We then varied the prey fed to each pitcher and continuously monitored \([O_2]\). Each individual \(S.\) \(purpurea\) leaf functioned as an independent ecosystem in which the response of an environmental variable ([\(O_2\)]) was monitored as a function of an environmental driver (organic-matter addition). We report \([O_2]\) as a percentage, e.g., the percent \(O_2\) in the atmosphere is 20.95. The greenhouse at Harvard Forest in which we did the experiment is at 334 m above sea level, where the atmospheric pressure is 0.964 that of sea level. Thus, the atmospheric density of \(O_2\) in the greenhouse at 25 °C (within 0.5 °C of the average air and pitcher-fluid temperatures during the experiment, as detailed later) is 1.26 g/L.

Experimental Treatments. Pitcher plants were purchased from Meadowview Biological Station (Woodward, VA) in 2010, and maintained in the Harvard Forest greenhouse for 2 y before the experiments were initiated in June 2012. For each of six experimental trials, we randomly selected five plants and used the most recently fully formed pitcher (leaf) on each plant as the focal pitcher for a randomly assigned treatment. We filled the focal pitcher on each plant with pitcher fluid collected on the first day of each trial from pitchers growing in a naturally occurring \(S.\) \(purpurea\) population at Tom Swamp Bog in Petersham, MA (42°20′ N, 72°11′ W), 6 km from the greenhouse. To remove macrobes and debris larger than 30 μm in diameter, pitcher fluid was filtered first through sterile Whatman filter paper, and then through sterile Poly-Prep chromatography columns (Bio-Rad Laboratories). Focal pitchers were filled to
slightly below their rim with homogenized filtrate. Focal pitchers varied in volume from 4 mL to 18 mL, and the volume of pitcher fluid dispersed into each leaf was recorded. Nonfocal pitchers on each plant were filled with deionized water.

At 12 noon each day for four consecutive days, treated plants were fed an aliquot (0.125, 0.25, 0.5, or 1.0 mg mL\(^{-1}\) d\(^{-1}\)) of dried, finely ground vespid wasp \textit{(Dolichovespula maculata)\textit{ Fabr.}}\) tissue that has a percentage C of 51.5, a C:N ratio of 5.99:1, and N:P:K ratios (10.7:1.75:1.01) nearly identical to those of ant species (C:N, 5.9; N:P:K, 12.1:1.52:0.93) that are the most common prey item of pitcher plants (30). The \textit{O2} in the pitcher fluid was measured at 1-s intervals with D-166MT-15 microelectrodes (Lazar Research Laboratories); 1-min averages were recorded with a CR-1000 data logger (Campbell Scientific). Each day when the plants were fed, oxygen electrodes were recalibrated in accordance with the manufacturer’s instructions. Temperature in the pitcher fluid and the surrounding air were measured simultaneously with thermistors (mean air temperature, 25.45 °C; mean water temperature, 25.18 °C; and PAR (in nmol m\(^{-2}\) s\(^{-1}\)) was measured 5 cm below the tops of the plants with an LI-190SA PAR sensor (Li-COR).

We ran six of these 4-d experimental trials. Each trial consisted of five plants assigned randomly to one of five different prey-addition levels (0 [unfed controls], 0.125, 0.25, 0.5, and 1.0 mg mL\(^{-1}\) d\(^{-1}\)) and a represented a temporal smooth function to a series. In time-series analyses, data are typically detrended and decycled by fitting smoother functions to a series and then calculating residuals from the fitted trend line (38). In this study, however, the control time series represents the explicit null hypothesis against which state changes caused by organic-matter additions are properly measured. Thus, rather than detrending each time series in isolation, for comparative purposes, we detrended the time series of data from the prey-addition treatments relative to the control series. Detrending against the controls is important because, in the absence of organic-matter loading, the \textit{O2} series for the microecosystem exhibits diurnal periodicity (Fig. 1A). We then characterized and displayed the data from the enriched series by subtracting the predicted (loess values of the standardized control time series from the observed, standardized values of each time series of fed pitchers. Alternative analyses of the raw time series and of time series that were detrended and decycled individually (as opposed to relative to the controls) are presented in SI Appendix, Supplemental Analysis of Time-Series Data. These supplemental analyses gave results that were qualitatively similar to those based on a detrending of each food-addition time series relative to the control series.

We used the struchange library in R (40) to test statistically for the presence of break points in each of the time series (including the controls). Struchange should be applied to detrended, decycled series; a time series without breaks is flat (i.e., slope of 0) and has mean (i.e., intercept) of 0. Struchange then applies a moving window across a time series to identify the optimal number of break points (i.e., change in intercept) on the basis of the residual sum of squares and Bayesian information criterion; the latter imposes a penalty for the identification of multiple break points, and the optimal number of break points may equal 0. We used a conservative 2-SD

![Box plots of statistical moments and least-squares regression slope coefficients of the time series of \textit{O2}. Gray boxes represent replicates from treatments with no break points (0, 0.125, 0.25 mg mL\(^{-1}\) d\(^{-1}\) added prey). Blue and brown boxes represent the values for these variables in each of the two different states of the system induced by the higher levels of organic-matter loading (0.5 and 1.0 mg mL\(^{-1}\) d\(^{-1}\) added prey). Table 1 shows statistical summaries of treatment effects.](image)

Table 1. Results of randomized-block ANOVA on effects of prey addition on each of four statistical moments and linear trend of time series of \textit{O2}

<table>
<thead>
<tr>
<th>Metric/variable</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>P ≤ F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Trial (block)</td>
<td>0.0002</td>
<td>5</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>Prey addition</td>
<td>0.0002</td>
<td>4</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>0.92</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Variance</td>
<td>Trial (block)</td>
<td>0.69</td>
<td>5</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Prey addition</td>
<td>12.13</td>
<td>4</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>5.43</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Skewness</td>
<td>Trial (block)</td>
<td>1.93</td>
<td>5</td>
<td>8.87</td>
</tr>
<tr>
<td></td>
<td>Prey addition</td>
<td>21.99</td>
<td>4</td>
<td>8.87</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>12.40</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>Trial (block)</td>
<td>123.84</td>
<td>5</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Prey addition</td>
<td>237.43</td>
<td>4</td>
<td>3.95</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>300.65</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Trend</td>
<td>Trial (block)</td>
<td>0.21</td>
<td>5</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Prey addition</td>
<td>2.11</td>
<td>4</td>
<td>11.41</td>
</tr>
<tr>
<td></td>
<td>Residuals</td>
<td>0.92</td>
<td>20</td>
<td>—</td>
</tr>
</tbody>
</table>

There was no significant block (i.e., trial) effect on any of the test statistics (Table 1).

Data Analysis. For each of the 30 plants, we generated a time series of 1-min averages of \textit{O2} and PAR; lengths of the time series ranged from 5,734 to 5,862 observations. To facilitate averaging across replicates, we truncated the terminal observations in each series to match the shortest time series (5,734 min). During daily feeding and recalibration, the \textit{O2} series was interrupted; we used linear interpolation to fill in these missing values, which constituted <2% of each time series.

Statistical detection and analysis of tipping points and alternative states normally is done on detrended and decycled time series of standardized data (7). We centered and scaled individual measurements \(x_i (i = 1 \text{ to } t; t = 5,734)\) of \textit{O2} in each time series as \(z_i = \frac{x_i - \bar{x}}{\sigma}\). In time-series analyses, data are typically detrended and decycled by fitting smoother functions to a series and then calculating residuals from the fitted trend line (38). In this study, however, the control time series represents the explicit null hypothesis against which state changes caused by organic-matter additions are properly measured. Thus, rather than detrending each time series in isolation, for comparative purposes, we detrended the time series of data from the prey-addition treatments relative to the time-series data from the control plant within each block. Detrending against the controls is important because, in the absence of organic-matter loading, the \textit{O2} series for the Sarracenia microecosystem exhibits diurnal periodicity (Fig. 1A), reflecting the daily cycle of plant photosynthesis and respiration (28). Such periodicity can obscure early-warning indicators of tipping points (39). We fit a smoothed local regression model to each of the standardized control series by using the loess function in the stats library of R (version 2.13.1). We then decycled and detrended data from the enriched series by subtracting the predicted (loess) values of the standardized control time series from the observed, standardized values of each time series of fed pitchers. Alternative analyses of the raw time series and of time series that were detrended and decycled individually (as opposed to relative to the controls) are presented in SI Appendix, Supplemental Analysis of Time-Series Data. These supplemental analyses gave results that were qualitatively similar to those based on a detrending of each food-addition time series relative to the control series.
criterion to distinguish statistically significant break points (14). Break points were identified for time series only in the two highest prey-addition treatments, and for these we used a simple t test to compare the average time to the break point.

Following the approach of Dakos et al. (7), we examined metric-based indicators of tipping points in each time series. For the [O2] residuals of each time series, we estimated the statistical moments (mean, variance, skewness) and the least-square regression slope of the residuals versus time (a simple index of a linear temporal trend). Models of tipping points suggest that there should be an increase in the variance (SI Appendix, Fig. S16) or skewness as a break point is approached (7); evidence for CSD is best assessed by analyzing individual time series and replicate time series within each treatment (SI Appendix, Supplemental Analysis of Time-Series Data). We first used a randomized-block ANOVA to test for the effect of prey-addition level on each metric calculated for the entire time series (Table 1). Next, for the two highest prey-addition treatments that exhibited statistical break points, we used a matched-pairs one-sample t test to test for the effects of pre- vs. post-break point differences in each metric.

In addition to the break point tests and comparisons of statistical metrics, we visually examined plots of [O2] as a function of PAR (as in ref. 14). These plots trace the temporal dynamics of both variables simultaneously over the 4-d time series, and illustrate the separation of the time series into distinctive alternative states in the fed treatments. Fig. 1 illustrates residuals of [O2] as a function of PAR; SI Appendix, Fig. S14, illustrates the [O2]/PAR relationship for raw [O2] data.

Data Availability. All raw data and R code for the analyses and mathematical code for the Sarracenia model are available from the Harvard Forest Data Archive (http://harvardforest.fas.harvard.edu/data-archive), dataset HF205.

ACKNOWLEDGMENTS. The authors thank Mark Van Scoy for assisting with setting up the instrumentation, Michael Lavine for discussion of statistical analyses with the corresponding author, and two anonymous reviewers and the academic editor for providing thorough and helpful comments that greatly improved the final paper. This work was supported by National Science Foundation Division of Environmental Biology Grants 11–44055 (to N.J.G.), 10–03938 (to A.M.E.), and 11–44056 (to A.M.E.).
Supporting Online Material

Organic-matter loading determines regime shifts and alternative states in an aquatic ecosystem

Jennie Sirotaa, Benjamin Baiserb, Nicholas J. Gotellic, and Aaron M. Ellisona

aNorth Dakota State University, Fargo, ND 58102
bHarvard Forest, Harvard University, Petersham, MA 01366
cDepartment of Biological Sciences, University of Vermont, Burlington, VT 05405

Contents

1. A model of the \textit{Sarracenia} system ... 2
 1.1. Equations .. 2
 1.2. Details of the model .. 3
 1.3. Model behavior ... 7
 1.4. Programming and availability of code ... 10
2. Additional statistical analyses .. 10
 2.1. Analysis of frequency distribution of daytime oxygen concentration 10
 2.2. Supplemental analysis of time-series data ... 12
3. References .. 17
1. A model of the *Sarracenia* system

1.1 Equations

Classical (and still widely-used) models for oxygen dynamics in lakes and streams are linear and lack feedbacks (1). In contrast, the detritus-based, pitcher-plant (*Sarracenia purpurea* L.) food web (including the bacteria) occurs in a pool of water inside a living (and photosynthesizing) plant, providing an opportunity for (nonlinear) feedbacks between the food web and the plant itself (2).

Scheffer et al. (3) described a minimal model for a system that can exhibit alternative (stable) states and hysteresis between them:

\[
\frac{dx}{dt} = a - bx + rf(x).
\]
(Equation S1)

In Equation S1, \(x\) is the ecosystem property of interest, \(a\) is an environmental factor that promotes \(x\), \(b\) is the decay rate of \(x\) in the system, and \(r\) is the rate at which \(x\) recovers as a function \(f\) of property \(x\). We apply this model to the pitcher-plant system, in which the ecosystem property of interest, \(x\) (concentration of dissolved oxygen \([O_2]\) in mg ml\(^{-1}\)) is a function of interactions between the plant and its decomposing prey (\(w\)):

\[
\frac{dx}{dt} = A - f(w, x) + g(x).
\]

By analogy with Equation S1, \(A\) is the environmental factor that promotes oxygenation in the pitcher-plant liquid, \(f(w, x)\) is the decay (loss) rate of oxygen in the pitcher-plant liquid, and \(g(x)\) is a positive feedback loop by which oxygen concentration in the pitcher fluid recovers as a function of available oxygen, which increases from photosynthesis (which may be augmented by mineralized nutrients), but decreases from plant and animal respiration.

The full model is a pair of coupled equations:

\[
x_{t+1} = \frac{a_t \cdot \sin(2\pi f_t)}{A(t)} - \left\{ m + a_t \left[\frac{w_{t-1}}{f(w,x,t)} \right] \right\} + D_t(x_t, a'_t)
\]
(Equation S2)

\[
a'_t = \left\{ \frac{a'_{\text{max}} - a'_{\min}}{1 + \exp(-s n_t - d)} + a'_{\min} \right\}
\]

We discuss each of \(A, f(*)\), and \(g(*)\) in turn; individual terms are summarized in Table S1.
Table S1 – Interpretation and units of terms in the model of oxygen dynamics within pitcher-plant fluid (Equation S2).

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_t)</td>
<td>maximum amount of oxygen infused at mid-day (amplitude of sine wave for diurnal release of (O_2))</td>
<td>mg/L</td>
</tr>
<tr>
<td>(a', a'{\text{min}}, a'{\text{max}})</td>
<td>photosynthesis as a result of nutrient uptake from organic-matter decomposition</td>
<td>mg/L</td>
</tr>
<tr>
<td>(a'_{\text{max}})</td>
<td>inflection point of the sigmoidal curve relating photosynthesis by organic-matter decomposition</td>
<td>mg</td>
</tr>
<tr>
<td>(d)</td>
<td>additional nutrients to augmentation of photosynthesis by organic-matter decomposition</td>
<td>mg</td>
</tr>
<tr>
<td>(D_t)</td>
<td>Recovery of oxygen as a function of available oxygen (diffusion) and photosynthesis (augmented by bacterial activity), offset by respiration</td>
<td>mg/L</td>
</tr>
<tr>
<td>(f)</td>
<td>constant adjusting sine wave of diurnal release of (O_2) for frequency of measurements</td>
<td>1/t</td>
</tr>
<tr>
<td>(K_w)</td>
<td>half-saturation constant for prey consumption</td>
<td>mg/min</td>
</tr>
<tr>
<td>(m)</td>
<td>amount of oxygen used for basal metabolism of bacteria</td>
<td>mg/L</td>
</tr>
<tr>
<td>(n_t)</td>
<td>quantity of nutrients released from organic-matter decomposition; it is a function of (w_t) and (x_t)</td>
<td>mg/L</td>
</tr>
<tr>
<td>(s)</td>
<td>steepness of the sigmoidal curve relating additional nutrients to augmentation of photosynthesis by organic-matter decomposition</td>
<td>dimensionless</td>
</tr>
<tr>
<td>(t)</td>
<td>time (frequency of model iterations)</td>
<td>minutes</td>
</tr>
<tr>
<td>(w_t)</td>
<td>mass of prey at time (t)</td>
<td>mg</td>
</tr>
<tr>
<td>(x_t)</td>
<td>concentration of oxygen in the pitcher fluid</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

1.2 Details of the model

\(A\) – The proximal environmental factor \(A(t)\), which determines baseline oxygen concentration, is diurnal photosynthesis: pitcher-plant leaves take up \(CO_2\) from the water and release \(O_2\) back into it (4, 5). We approximate diurnal release of \(O_2\) (in mg/L) as a zero-truncated sine wave (Figure S1), with a daily peak at mid-day and no \(O_2\) release at night:

\[
A(t) = a \cdot \sin(2\pi ft)
\]

(Equation S2.1)

where \(a\) is amplitude (equal to the maximum amount of oxygen infused at midday). The constant \(f\) within the sine function adjusts for frequency of measurements (iterations in the model), which we make every minute (\(t\) is in units of minutes). Hence, \(f = 1/1440\) (the reciprocal of number of minutes per day). Without loss of generality, we initialize \(a = 10\) (see below, Equation S2.5), start our time series at sunrise (\(t = 1\)), set day-length at 12 hours, and truncate \(A(t) = 0\) at night, *i.e.*, for \(t \in \{720, 1440\}.*
Oxygen is lost from the system rapidly as prey is consumed by bacteria; this respiration is equivalent to biological oxygen demand (BOD). Because both aerobic and anaerobic bacteria will digest organic matter with more-or-less equal efficiency (6), we assume sufficient, equilibrial numbers of bacteria to process prey at a fixed, negative exponential rate:

$$w(t + 1) = ae^{-b[w(t)]}$$ \hspace{1cm} (Equation S2.2)

This model is sensible because easily digested parts of prey, such as fat bodies, are processed first, whereas difficult to digest parts, such as chitin, break down more slowly and are processed later (7); field observations suggest that a single 75-µg wasp can be completely consumed over a 48-hour period in a pitcher with 5 ml of liquid. Thus, in our initial model runs, we set $a = 20$ mg and $b = 4$ (mg mg$^{-1}$ d$^{-1}$) (Figure S2).

We model oxygen lost from the system due to prey consumption ($= 1 –$ BOD) to be a saturating (Holling Type-II) function of prey remaining, which itself is a function of the maximum amount of oxygen infused at midday (a from Equation S2.1, iteratively augmented by a' as detailed below using Equations S2.4 and S2.5); the mass of prey remaining (w); a half-saturation constant for prey consumption (K_w), which determines how much prey is leftover each day and would be carried over to the next day; and the amount of oxygen used for basal metabolism of bacteria (m):

$$O_2 \text{ lost}(t) = f(w, x, t) = m + a \left[\frac{w(t-1)}{K_w + w(t-1)} \right]$$ \hspace{1cm} (Equation S2.3)

In our initial model runs, we set $m = 1$ and $K_w = 0.1, 0.01, \text{ or } 0.001$ (Figure S3).
nutrients by the plant, and the use of these nutrients to increase photosynthetic rate (9). Dead insect prey (ground wasps in our experiment) is a mixture of carbon and mineral nutrients (the C:N ratio is ≈ 6:1). As prey are broken down and mineralized, nutrients are slowly released by the bacteria and in turn, these nutrients (especially ammonia) are taken up readily by the plant (5). Numerous observations and experiments have demonstrated that carnivorous plants are nutrient (primarily nitrogen) limited (10), and that photosynthetic rates of pitcher plants are enhanced following prey additions (10). We model these processes with a pair of equations.

First, the amount of nutrients released, \(n \), is a function of prey mass \((w) \) and available oxygen \((x) \) used by bacteria to break down and mineralize the prey (Figure S4):

\[
n(t) = \frac{w(t)x(t)}{c} \tag{Equation S2.4}
\]

where \(c \) is a scaling constant (we set \(c = 100 \)).

\(g(x) \) – Oxygen is replenished in the system in three ways. First, there is some diffusion from the atmosphere into the pitcher fluid. Second, there is oxygen production through daily photosynthesis (2). Because diffusion only happens at the surface of the pitcher fluid, and the “mouth” area of the pitcher is nearly 10× smaller than the surface area of the pitcher itself (8), the amount of oxygen replenished by diffusion is likely to be much less than that provided by photosynthesis; in our model runs, we considered only replenishment from photosynthesis (Equation S2.1).

Most importantly, there is a positive feedback loop described by the \(a' \) term in Equation S2 that relates prey mineralization to the uptake of mineralized
Because nutrients taken up by the plant could be used to make additional enzymes involved in photosynthesis (8), we model uptake as a sigmoidal, saturating relationship between additional nutrients and an augmentation of the peak rate of photosynthesis (a) in Equation S2.1 (Figure S5).

$$a'(t) = \frac{a'_{\max} - a'_{\min}}{1 + \exp\left[-s(n(t) - d)\right]} + a'_{\min}$$ \hspace{1cm} (Equation S2.5a)

$$a(t + 1) = a(t) \times a'(t)$$ \hspace{1cm} (Equation S2.5b)

In Equation S2.5a, a'_{\min} is the minimum possible augmentation of photosynthesis, which we initially set = 0; a'_{\max} is the maximum possible augmentation, which we initially set = 2, s is the steepness of the increase (= 10), and d is the inflection point of the curve (= 0.5). Augmentation evolves as leftover prey (i.e., prey not completely broken down on one day) accumulates (within the $n(t)$ term) and is further mineralized.

Equation S2.5b iteratively updates the maximum possible photosynthetic rate (a in Equation S2.1). Because this mineralization and conversion is assumed to be a slow process, the update occurs only once each day, as shown in Figure S6.

Figure S5 – Modeled (Equation S2.5a) effects of nutrients released by decomposition of prey on augmentation factor (a') by which maximum photosynthetic rate a (in Equation S2.1) would be increased.

Figure S6 – Simulated infusion of oxygen into a pitcher plant leaf with photosynthetic rate increased daily following mineralization of prey (using Equations S2.4 – S2.5b).
1.3 Model behavior

Model behavior for three levels of organic-matter loading – none, low, and high – and three levels of half-saturation constants K_w (from Equation S2.3; see Figure S3) are shown in Figures S7-S9. Model runs began at sunrise (0600 hrs) and prey was added at noon (red triangles in Figure S7). Five days of runs are shown using different colors for each day. Because we modeled both PAR and oxygen evolution (photosynthesis) using a sine wave, there is a gradual and continuous increase or decrease in $[O_2]$ with diurnal PAR in the control (no prey addition). This differs from the behavior of real plants, in which photosynthesis would follow a Michaelis-Menten-type function with rapid saturation (and which could be modeled as a square wave). We also neglect stochasticity in the system. Regardless of whether photosynthesis is modeled as a sine wave or a square wave, when prey is added, two alternative states (alternate attractors) are visible, with a strong tipping point following

![Figure S7](image-url) – Dynamics of the pitcher-plant model (Equations S1 – S2.5), for three levels of prey loading (none, low, high prey additions) with prey half-saturation constant K_w (Equation S3) = 0.1. The left column shows the diurnal oxygen concentration for the three prey-additions, with timing of prey addition indicated by inverted red triangles. The rapid drop in $[O_2]$ following prey addition is caused by high BOD, but the recovery is equally rapid because of the high value of K_w. Each 24-hour segment in the time series is illustrated with a different color (day 1 = blue, day 5 = brown). The right column shows the corresponding relationship between $[O_2]$ and PAR for each time series.
prey addition. The magnitude of the half-saturation constant controls in large part the difference between the control (aerobic) state and the alternative (anaerobic) state, because it determines how much organic matter is not broken down and is carried over to the next day for additional decomposition. A large half-saturation constant (Figure S7) results in prey being broken down rapidly and the system recovering relatively quickly. As the half-saturation constant decreases, immediate oxygen loss (BOD) increases (Figure S3), and the system collapses rapidly into an anaerobic state (Figure S9).

Figure S8 – Dynamics of the pitcher-plant model (Equations S1 – S2.5), for three levels of prey loading (none, low, high prey additions) with prey half-saturation constant K_w (Equation S3) = 0.01. The left column shows the diurnal oxygen concentration for the three prey-additions, with timing of prey addition indicated by inverted red triangles. The rapid drop following prey addition is caused by high BOD, but the recovery is slowed because of the lower value of K_w. Each 24-hour segment in the time series is illustrated with a different color (day 1 = blue, day 5 = brown). The right column shows the corresponding relationship between $[O_2]$ and PAR for each time series.
Figure S9 – Dynamics of the pitcher-plant model (Equations S1 – S2.5), for three levels of prey loading (none, low, high prey additions) with prey half-saturation constant K_w (Equation S3) = 0.001. The left column shows the diurnal oxygen concentration for the three prey-additions, with timing of prey addition indicated by inverted red triangles. The rapid drop following prey addition is caused by high BOD, but the recovery is even slower than in Fig S8 rapid because of the very low value of K_w. Each 24-hour segment in the time series is illustrated with a different color (day 1 = blue, day 5 = brown). The right column shows the corresponding relationship between $[O_2]$ and PAR for each time series. As in Figure S8, there is a clear second attractor in this example. In the high organic-matter loading simulation (bottom), the second attractor is a tight point at the lower right corner of the plot, not even a small cycle (as in the low organic-matter loading simulation).
1.3 Programming and availability of code

The model was coded in Mathematica v8.0. Model code is available from the Harvard Forest Data Archive, dataset HF-205 (http://harvardforest.fas.harvard.edu/data-archive).

2. Additional statistical analyses

2.1 Analysis of frequency distribution of daytime oxygen concentration

The combined frequency distribution of a system can illustrate how it is affected by environmental drivers. If the underlying environmental driver is unimodal, then multiple modes of the frequency distribution suggest locations of the basins of attraction of alternative states of the system (11-12).

In our experimental system, baseline $[O_2]$ is controlled by the plant’s photosynthesis, and the primary environmental driver is photosynthetically active radiation (PAR) (Equation S2.1 and Figure S2.1, above). Daytime PAR during our experiment was unimodal (Figure S10), but Fig. 1 and Fig. S13 (next section) in the main text illustrate that the “normal” relationship between diurnal PAR and diurnal $[O_2]$ breaks down as prey (organic matter) is added to the aquatic Sarracenia microecosystem.

The number of modes in the combined frequency distribution of $[O_2]$ of the different treatments was identified with normal mixture modeling and model-based clustering using the mclust package in R, version 3.4 (13). With 7090 total observations, the Bayesian Information Criterion (BIC) identified 4-9 modes as equally plausible (Figure S11); BIC declined rapidly with fewer modes (Figure S11). Thus, parsimony suggests that the overall distribution would be best fit with a four-modal distribution (Figures S12; Table S2).
Figure S11 – BIC of the number of modes in the joint frequency distribution of $[O_2]$.

Figure S12 – Probability density functions (red) for each of the modes identified in the joint distribution of $[O_2]$ in the prey-addition experiments. The best-fit (based on BIC) overall probability density function (green) has four modes.
Table S2 – Best-fit combinations of normal distributions fitted to the frequency distribution of [O₂] in the prey-addition experiment (Fig. S12).

<table>
<thead>
<tr>
<th>Mode</th>
<th>μ</th>
<th>σ</th>
<th>proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.682</td>
<td>1.070</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>7.554</td>
<td>3.322</td>
<td>0.38</td>
</tr>
<tr>
<td>3</td>
<td>12.146</td>
<td>1.378</td>
<td>0.26</td>
</tr>
<tr>
<td>4</td>
<td>16.272</td>
<td>0.605</td>
<td>0.15</td>
</tr>
</tbody>
</table>

2.2 Supplemental analysis of time-series data

The time-series analysis presented in Figure 1 of the main text presents means and confidence intervals of raw data (main text Figures 1A-1E) and then time-series analysis of residuals following detrending relative to the controls. Although detrending relative to the controls does allow for comparisons among the effects of different prey-addition treatments, observed increases in temporal variance following such detrending are not evidence for critical slowing down (csd). Rather, evidence for csd should be sought by analysis of individual time series or of replicate time series within a given treatment. Here we illustrate the raw data, followed by analysis of individual time series detrended and decycled relative to themselves.

The raw time series and the mean for each prey-addition treatment and the diurnal cycle in photosynthetically available radiation (PAR: μmol m⁻² s⁻¹) are shown in Figure S13. As suggested by Figures 1A-1E in the main text, the differences among replicates are generally small (except for one replicate within the highest prey-addition treatment), and variance among treatments exceeds variance within treatments (main text Table 1). The diurnal re-oxygenation of the pitcher-plant fluid predominantly associated with photosynthesis (and PAR; bottom time series in Figure S13) is clear in the controls, but falls apart to different degrees in the four prey-addition treatments. This is seen more clearly in the plots of [O₂] as a function of PAR (Figure S14; these plots of raw [O₂] show qualitatively similar, albeit more exaggerated, patterns as seen in Figures 1K-1O of the main text, in which we plotted the residuals (relative to controls) of [O₂] as a function of PAR).
Figure S13 – Untransformed time series of \([\text{O}_2]\) in pitcher-plant microecosystems in response to five experimental prey-addition treatments (top five panels) and PAR (lowest panel). In each panels, the light lines are the six individual replicates, and the dark line is the mean response to treatment.
Figure S14 – Plots of $[O_2]$ as a function of PAR for each prey-addition treatment (top to bottom: controls to 1.0 mg ml$^{-1}$ d$^{-1}$. Gray-scale indicates the four days of prey additions, from day 1 (light gray) through day 4 (black). Plots in the left column are the means of all six replicates in each treatment, whereas plots in the right column shows time-series traces of all six individual replicates.
Each individual time-series from a given replicate was detrended and decycled using local regression (loess in R), with the span set = 0.125. We chose this moving window (12.5% of the data) because it corresponds to approximately 12 hours and appropriately smooths a daytime (or night-time) cycle. The individual traces and the averages for each treatment are shown in Figure S15. As expected, all such detrended and decycled time series have mean ≈ 0, and periodicity was eliminated from all of the time series because of the chosen span for the local regression.

Figure S15 – Time-series of residuals of [O$_2$] in pitcher-plant microecosystems in response to five experimental prey-addition treatments. Residuals for each replicate time-series were calculated as the difference between the raw data and a local regression (loess) on the data. In each panel, the light lines are the six individual replicates, and the dark line is the mean response to treatment.
Last, we examined changes in the temporal variance of the detrended and decycled time series (Figure S16) as a potential indicator of csd (11).

Figure S16 – Temporal variance (rolling window, size = 100 minutes) of the six individual time series (light lines) and of the average time series (dark lines) of \([O_2]\) in each of the five prey-addition treatments, detrended and decycled as illustrated in Figure S15.
Although Figure S16 illustrates daily noise in $[O_2]$ associated with biological oxygen demand following daily prey addition (Equation S2.3 and Figure S3), that quickly dissipates in the control treatment (no prey addition). The three intermediate prey additions show more variance across the time series, as well as a pronounced uptick in variance towards the end of the experiment. In contrast, the highest prey addition treatment (bottom panel of Figure S16) shows little change in variance after the first day. In this treatment, variance is highest on the first day, suggesting that the treatment tipped the system into a new regime after either the first feeding (0 minutes in Figure S16) or the second feeding (1441 minutes in Figure S16).

References