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Abstract. Land use and climate change have complex and interacting effects on naturally
dynamic forest landscapes. To anticipate and adapt to these changes, it is necessary to
understand their individual and aggregate impacts on forest growth and composition. We
conducted a simulation experiment to evaluate regional forest change in Massachusetts, USA
over the next 50 years (2010–2060). Our objective was to estimate, assuming a linear
continuation of recent trends, the relative and interactive influence of continued growth and
succession, climate change, forest conversion to developed uses, and timber harvest on live
aboveground biomass (AGB) and tree species composition. We examined 20 years of land use
records in relation to social and biophysical explanatory variables and used regression trees to
create ‘‘probability-of-conversion’’ and ‘‘probability-of-harvest’’ zones. We incorporated this
information into a spatially interactive forest landscape simulator to examine forest dynamics
as they were affected by land use and climate change. We conducted simulations in a full-
factorial design and found that continued forest growth and succession had the largest effect
on AGB, increasing stores from 181.83 Tg to 309.56 Tg over 50 years. The increase varied
from 49% to 112% depending on the ecoregion within the state. Compared to simulations with
no climate or land use, forest conversion reduced gains in AGB by 23.18 Tg (or 18%) over 50
years. Timber harvests reduced gains in AGB by 5.23 Tg (4%). Climate change (temperature
and precipitation) increased gains in AGB by 17.3 Tg (13.5%). Pinus strobus and Acer rubrum
were ranked first and second, respectively, in terms of total AGB throughout all simulations.
Climate change reinforced the dominance of those two species. Timber harvest reduced
Quercus rubra from 10.8% to 9.4% of total AGB, but otherwise had little effect on
composition. Forest conversion was generally indiscriminate in terms of species removal.
Under the naı̈ve assumption that future land use patterns will resemble the recent past, we
conclude that continued forest growth and recovery will be the dominant mechanism driving
forest dynamics over the next 50 years, and that while climate change may enhance growth
rates, this will be more than offset by land use, primarily forest conversion to developed uses.

Key words: aboveground biomass; climate change; current trends; forest carbon sequestration; future
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INTRODUCTION

Climate and land use changes are two major global

ecological concerns with the potential to transform

forest landscapes. The combined influence of these large-

scale anthropogenic forces is being superimposed onto

naturally (and culturally) dynamic systems. Too often

the ecological consequences of these forces are consid-

ered independently (Dale 1997). Scientists and policy

makers require integrated analyses of multiple interact-

ing processes in order to anticipate and adapt to future

global change. We have conducted a series of landscape

simulations that incorporate and project forward the

current trends in forest growth and succession, land use,

and climate change over the next 50 years (2010–2060)

for the state of Massachusetts in the northeastern

United States. Within the simulations, we monitored

the relative influence of each of these factors on tree

species composition and the stores of live aboveground

biomass (AGB), which is the most dynamic and

manageable pool of forest carbon (Fahey et al. 2010).

The current position of northeastern forests along

their successional trajectory is largely attributable to the

region’s land use history (Foster et al. 1998). The legacy

of widespread agricultural clearing during European

settlement (ca. 1600–1800) followed by old-field succes-

sion is thought to be a principle mechanism responsible

for modern species structure and composition (Motzkin

et al. 1996, Fuller et al. 1998, Cogbill et al. 2002, Hall et

al. 2002) and rates of carbon storage and sequestration

(Caspersen et al. 2000, Houghton 2003, Albani et al.

2006). The modern forest landscape is dominated by
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generalist and early- to mid-successional tree species

such as red maple (Acer rubrum), white pine (Pinus

strobus), and red oak (Quercus rubra), with lesser

amounts of late-successional, longer-lived species such

as beech (Fagus grandifolia), which dominated the pre-

colonial forest. (Fuller et al. 1998, Cogbill et al. 2002,

Hall et al. 2002). Although a diversity of conditions

certainly exists, the region’s typical forest is relatively

young (80–120 years), aggrading, and even aged (Kelty

et al. 2003). Continued forest succession, in the absence

of disturbance, will drive changes in structure (larger

trees) and composition as short-lived species are

replaced by longer-lived and shade-tolerant species.

Succession is also anticipated to be a dominant

mechanism driving carbon sequestration over the

coming decades (Albani et al. 2006, Keeton et al., in

press). However, the scarcity of remaining old-growth

forests to use as reference conditions makes predictions

regarding future stand development uncertain. Conven-

tional wisdom and ecological theory, largely born out of

early forest simulation (gap) models, suggest that

biomass will peak when forests are younger than 200

years and that ‘‘steady state’’ biomass dynamics will

dominate thereafter (Bormann and Likens 1979).

However, several recent studies of remnant old-growth

stands suggest that maximum biomass will not be

reached until much later, and that stands .350 years

old have not reached equilibrium (Luyssaert et al. 2008,

Lichstein et al. 2009, Keeton et al., in press). This

suggests that forest growth and succession in the

Northeast could continue to serve as a carbon sink for

many decades into the future.

Understanding the degree to which future forest

dynamics in the Northeast will be attributable to

continued growth and succession is complicated by

anthropogenic climate change. Alterations in patterns of

precipitation and growing season can interact with

forest succession and affect species composition and

biomass dynamics. Observed changes in climate over the

past century in the Northeast have largely mirrored

global trends, including a 0.88C increase in air surface

temperature and more variable precipitation patterns

(Hayhoe et al. 2007). Climate change projections for the

region suggest that the temperature will continue to

increase by 2.1–5.38C over the next century, depending

on the level of increase in atmospheric greenhouse gas

concentrations. Precipitation is projected to increase by

as much as 30%, mostly in the winter months (Hayhoe et

al. 2008). In the longer term (.100 years) climate change

in the region will have a profound influence on tree

migration, reproduction, and establishment success

(Iverson and Prasad 1998, Mohan et al. 2009). Most

tree species will shift northward or succumb to climate

stress (including indirect effects such as changing

disturbance regimes), increased competition, or other

pressures. These studies notwithstanding, the full

consequences of climate change and its indirect impacts

on forests remain far from certain. The interacting

effects of climate-related issues such as CO2 fertilization,

drought stress, and proliferation of forest pests,

pathogens, and invasive species confound reliable

predictions (Campbell et al. 2009, Dukes et al. 2009).

In the shorter term (,100 years), most tree species are

expected to persist in their current range even as their

optimal climate envelopes shift northward. Beyond

persistence, forests in the Northeast may experience

increased growth rates and carbon sequestration owing

to warmer temperatures, a longer growing season, and

potential CO2-driven increases in photosynthesis and

water-use efficiency (Ollinger et al. 2008). An optimistic

perspective is that climate-related gains in carbon

sequestration will act as a significant negative feedback

in the climate system, with the potential to offset some

of hazards posed by accelerating carbon emissions.

Any climate-related increase in carbon sequestration

rates must be weighed against reductions in sequestra-

tion and storage capacity owing to changing land use

patterns and intensity. Throughout much of the late

19th and all of the 20th century, the dominant land

cover transition in the eastern United States was from

agriculture to forest, which resulted in a substantial gain

of forest area (Ramankutty and Foley 1999). While

agricultural land cover continues to decline throughout

the region, land cover transitions to developed uses now

override reforestation and culminate in a net loss of

forest cover (Drummond and Loveland 2010). Indeed,

exurban forest conversion to low-density housing (6–25

homes/km2) is the fastest growing form of land cover

change in the United States. Between 1950 and 2000, the

portion of rural low-density housing area increased from

5% to 25%, with some of the most rapid rates of forest

conversion to developed uses found in Northeast forests

(Brown et al. 2005). After more than a century of

increasing forest area, each New England state is now

losing forest cover (Foster et al. 2010). The effect of land

use change on forest composition and carbon stores is

regulated not only by its total footprint but also by its

spatial distribution. For example, fragmentation of

forest landscapes may reduce the amount of forest and

alter forest patch configuration, which, in turn, reduces

the density of mature, reproducing individuals that can

regenerate (Iverson et al. 2004). In addition, forest losses

in productive regions have a greater impact on long-

term carbon dynamics than the equivalent area lost in

less productive regions. Spatial patterns of land cover

change, such as deforestation, are driven by socioeco-

nomic as well as biophysical factors (Lambin et al.

2001). In the Northeast, like most industrialized regions,

the rate and pattern of forest conversion to developed

uses is often associated with economic growth and with

the distance to urban centers and other amenities

(Schneider and Pontius 2001, McDonald et al. 2006,

Theobald 2010).

Less conspicuous land uses, such as timber harvest,

also affect tree composition and forest carbon dynamics.

Timber harvest intensities vary widely, but typically

JONATHAN R. THOMPSON ET AL.2426 Ecological Applications
Vol. 21, No. 7



have a lesser impact on forest ecosystems than the ‘‘hard

deforestation’’ associated with conversion to developed

uses. Nonetheless, even partial harvest can affect species

composition and ecosystem carbon budgets over time

(Nunery and Keeton 2010), as well as the conditions for

regeneration and successional change. A lack of high-

quality spatial data sets describing regional harvest

activities often hinders efforts to assess the impact of

timber harvest regimes on forest conditions. Although

regional inventory data confirm that timber harvest is

occurring across the landscape, specific characteristics

and the spatial distribution of harvest activities are

typically unavailable. Data are especially hard to obtain

for private lands, which dominate forest ownership in

the Northeast. Fortunately, a unique database exists for

Massachusetts that describes the spatial pattern and

volume of tree species removed for every cutting event

conducted in the state over a 20-year period (1984–2003;

McDonald et al. 2006). From this database we know

that temporal trends in harvest have been consistent

over this period, with total harvest volume typically

;450 000 m3/yr. Red oak and white pine are consistently

the most harvested species. Spatially, the percentage of

forests harvested varies widely across the state, ranging

from 0.01% to 1.5% of forests annually, depending on

the region. Harvest activity in Massachusetts, as in other

regions dominated by private ownership, is most intense

in rural areas and is generally negatively correlated with

urbanization (Wear et al. 1999, Munn et al. 2002,

McDonald et al. 2006).

The effects of succession, climate change, urbaniza-

tion, and timber harvest on forest ecosystems are

complex and interacting. Scientists and policy makers

need to understand the probable impacts of these

forcings in combination. As an example, the 10-state

cap-and-trade Regional Greenhouse Gas Initiative

(RGGI), of which Massachusetts is a signatory, requires

states to minimize their emissions by 10% by the year

2018 (RGGI available online).6 To help achieve this goal,

carbon sequestered in forests can be calculated and then

sold to greenhouse gas polluters in order to meet 3.3% of

their compliance obligation. For now, only afforestation

programs are allowed; however, there may be opportu-

nities to include reduced deforestation in the future if

there are reliable ways to account for it. Analyses that

integrate climate and land use change are an important

step in that direction.

Spatially explicit landscape simulation models offer a

tractable way to integrate multiple interacting and

stochastic processes (Scheller and Mladenoff 2007),

and are particularly useful for examining scenarios of

forest growth and land use across complex, multi-owner

regions (Thompson et al. 2006). We used LANDIS-II

(Scheller et al. 2007), a well-established forest landscape

succession and disturbance model, to simulate regional

forest dynamics as they are affected by climate change,

timber harvest, and conversion to non-forest over the

next 50 years. In this paper, our objective was to

estimate, based on recent trends, the relative influence of

continued growth and succession, climate change, forest

conversion to developed uses (hereafter ‘‘conversion’’),

and timber harvest on forest composition and above-

ground forest biomass (and, therefore, carbon) in

Massachusetts. In future analyses, we plan to use this

parameterization of the model as a basis to explore

alternative scenarios of landscape change, such as

scenarios incorporating biomass energy, invasive insect

defoliators, and forest conservation.

METHODS

Study area

We examined forest dynamics throughout the state of

Massachusetts, in the northeastern United States (69.9–

73.58 E, 41.3–42.98 N; see Plate 1). Simulations were

restricted to the 12 000 km2 classified as forests within

the land use database derived from the Resource

Mapping Project at the University of Massachusetts,

maintained by the Massachusetts Geographic Informa-

tion System (available online).7 Land-cover data were

manually classified from 1:25 000 color aerial photogra-

phy for the years 1985 and 1999. We focused on forest

conversion to non-forest but acknowledge that some

non-forest land may convert to forest in the future;

however, this is, and will likely continue to be, a rare

land cover transition and it was not considered in this

analysis. Within our study, we utilized the U.S.

Environmental Protection Agency’s Level III ecoregions

to delineate areas of distinct climatic and edaphic

conditions (EPA 2010). There are 13 Level III eco-

regions within the state (Fig. 1). The western ecoregions

are mostly mountainous and forested, with granitic and

metamorphic bedrock, with the exception of the

Marbled Valley and Vermont Piedmont, portions of

which are underlain by calcareous bedrock. Forest cover

is typically lower (and urban cover typically higher) in

the eastern ecoregions (especially Boston Basin and

Cape Cod and Islands), where the topography is gentler.

Within our simulations, we treated the forest environ-

ment within an ecoregion as homogeneous in terms of

soil water-holding capacity and climatic conditions now

in and the future (Table 1).

LANDIS-II model parameterization

We simulated forest and land use dynamics using the

spatially interactive landscape model, LANDIS-II

(Scheller et al. 2007). LANDIS-II is designed for

simulating forest dynamics over mesoscales (104–107

ha), including establishment, competition, growth,

decomposition, and biomass accumulation, while also

integrating multiple disturbances such as wind, timber

6 hhttp://rggi.orgi 7 hhttp://www.mass.gov/mgis/i
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harvest, and, as shown for the first time here, forest

conversion. Because LANDIS-II simulates forest dy-

namics over large scales, it does not track individual

trees; instead, it utilizes species 3 age cohorts to achieve

computational tractability (Scheller et al. 2007). Within

LANDIS-II, forests are represented as a grid of

interacting sites (cells). Each site is assigned to an

ecoregion within which climate and soils are assumed to

be homogenous. Within each site, the live aboveground

biomass of each species 3 age cohort is tracked as it is

influenced by growth, senescence, and various types and

intensities of disturbance. Each site can serve as a seed

source for mature species located on that site, with the

probability of seed dispersal declining exponentially

with distance from the site (Ward et al. 2005).

We modeled the 25 most abundant tree species as

determined by stem counts in the U.S. Forest Service’s

Forest Inventory and Analysis (FIA) database (Woodall

et al. 2010). Species attributes such as shade tolerance,

seeding distance, and sprouting ability were determined

from the literature (see Table 2 for values and citations).

The duration required for ANPP (aboveground annual

net primary productivity) to reach maximum potential

varied with species’ shade tolerance; less shade-tolerant

species achieved maximum ANPP faster, as indicated by

the ‘‘ANPP-shape’’ parameter (Scheller and Mladenoff

2004). Within LANDIS-II, cohort biomass is a function

of each species’ maximum ANPP (maxANPP) and its

maximum achievable live aboveground biomass (max-

Biomass), the cohort’s age, and inter- and intraspecific

competition (Scheller and Mladenoff 2004). MaxANPP

and maxBiomass are input parameters. We calculated

maxANPP using the PnET-II generalized ecosystem

process model (Aber et al. 1995) in a manner similar to

that of Gustafson et al. (2009), Ravenscroft et al. (2010),

and Scheller and Mladenoff (2004). The PnET family of

models have been widely applied and validated in the

northeastern United States (Aber et al. 1997, Ollinger et

al. 1998, 2002, Smith et al. 2002, Ollinger and Smith

2005). To parameterize PnET-II, we obtained species

specific estimates of foliar nitrogen concentrations and

specific leaf mass for each species from the literature (see

Table 2 for citations) and from the Northeastern

Ecosystems Research Cooperative, Foliar Chemistry

Database (available online).8 All other inputs into PnET-

II were derived from the generic conifer and northern

hardwood values presented in Ollinger and Smith

FIG. 1. Ecoregions used in LANDIS-II simulations in Massachusetts, USA (Scheller et al. 2007). For the purposes of our
simulations, climate and soils are assumed to be homogeneous within an ecoregion. Abbreviations are defined in Table 1.

TABLE 1. Descriptions of the Level III ecoregions used to
delineate areas of unique climatic and edaphic characteristics
in Massachusetts, USA.

Ecoregion name Abbreviation
Forest
cover

WHC
(cm/m depth)

Berkshire Highlands BerkHigh 88% 12
Berkshire Transition BerkTran 85% 11
Boston Basin Bost 16% 9
Bristol Lowland BrisLow 51% 11
Cape Cod and Islands CCIsle 43% 6
Connecticut River Valley CRV 42% 15
Lower Berkshire Hills LowBerk 87% 11
Lower Worcester Plateau LWP 69% 12
Southern New England

Coastal
SNECOAST 48% 12

Taconic Mountains Tac 92% 8
Vermont Piedmont Peid 77% 11
Marble Valley Marb 51% 13
Worcester Plateau WP 81% 11

Note: WHC is water-holding capacity (USDA 1995). 8 hhttp://www.folchem.sr.unh.edu/index.htmli
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(2005). Estimates for the maximum achievable biomass

for each species were determined from old-growth

stands reported in the literature (see Table 2 for values

and citations). Maximum biomass estimates were

impossible to obtain for each ecoregion; therefore,

relying on the known relationship between ANPP and

maximum biomass (Keeling and Phillips 2007), we

assigned the maximum reported biomass for each

species to the ecoregion with the highest ANPP for that

species and then scaled the other ecoregions downward

proportionately (Table 2). Similarly, because maximum

achievable biomass under future climates is unknown,

we assumed that the relationship between ANPP and

maximum biomass held and scaled linearly into the

future.

The initial forest condition was based on a spatial

imputation of 591 field plots conducted by the FIA

program using the gradient nearest neighbor method

(B. T. Wilson and A. J. Lister, unpublished manuscript).

The native resolution of the imputation map was 250 m,

but we resampled to 100 m (using the nearest neighbor

method) to better match the scale of the land use

processes. We subset the imputation map to the area

classified as forest in the MassGIS 1999 land use

database. The FIA field plots represented within the

imputation map only contain age information for one

dominant tree (Woodall et al. 2010). To establish the

species 3 age cohort information required to parame-

terize LANDIS-II, we estimated the age of all other trees

based on their height and the site class using equations

in Carmean et al. (1989). We adjusted the site class for

each species based on conversion factors published by

Dixon and Keyser (2008). Once ages were estimated for

all trees, they were binned into 10-year species 3 age

class cohorts for use in the model. At the onset of each

simulation, LANDIS-II goes through a ‘‘spin-up’’ phase

to calculate the starting biomass for each cell, wherein

each species3age cohort is ‘‘grown’’ from establishment

to its age at the beginning of the simulation (year 0). To

evaluate our parameterization of LANDIS-II and its

ability to simulate forest biomass dynamics in Massa-

chusetts, we compared the biomass estimates as mea-

sured in the FIA field data to the LANDIS-II initial

estimates (at year 0) using a Pearson’s correlation

coefficient and the root mean squared error (RMSE).

The probability that a species will establish on a given

site (Pest) is a model input that varies spatially by

ecoregion and temporally by changing climatic condi-

tions. At a given site, simulated establishment is affected

by light conditions, availability of seed or sprouting, and

TABLE 2. Characteristics of the 25 species used within the LANDIS-II simulations.

Species
Species
code Common name

Longevity
(yr)

Shade
tolerance

Foliar
nitrogen

(%)

Max.
leaf mass
(g/m2)

maxANPP
(g/m2)

maxBiomass
(Mg/ha)

Abies balsamea ABBA balsam fir 200 5 1.55(1) 203(3) 858 (637–1033) 109 (76–125(10))
Acer rubrum ACRU red maple 235 4 1.92(1) 60(3) 588 (423–703) 209 (150–250(10))
Acer saccharum ACSA3 sugar maple 300 5 1.93(1) 56(3) 586 (428–705) 249 (182–300(10))
Betula alleghaniensis BEAL yellow birch 300 4 2.37(1) 66(3) 908 (672–1093) 208 (153–250(11))
Betula lenta BELE sweet birch 250 4 2.50(1) 75(3) 975 (791–1171) 213 (172–250(11))
Betula papyrifera BEPA paper birch 150 1 2.13(1) 74(3) 842 (605–1019) 206 (148–250(11))
Betula populifolia BEPO gray birch 150 1 2.37(1) 74(4) 942 (755–1136) 213 (170–250(11))
Carya glabra CAGL pignut hickory 200 3 2.47(1) 75(5) 970 (784–1164) 204 (189–250(11))
Carya ovata CAOV shagbark hickory 250 3 1.76(1) 75(5) 580 (404–683) 212 (147–250(11))
Fagus grandifolia FAGR American beech 350 5 2.24(1) 54(3) 787 (551–939) 251 (176–300(13))
Fraxinus americana FRAM2 white ash 300 2 2.23(1) 61(3) 812 (569–972) 259 (181–300(13))
Nyssa sylvatica NYSY blackgum 300 4 1.90(2) 54(6) 610 (431–728) 209 (148–250(11))
Ostrya virginiana OSTR hophornbeam 110 4 2.12(1) 37(6) 420 (300–508) 182 (130–200(13))
Picea rubens PIRU red spruce 350 5 1.69(1) 247(7) 973 (822–1162) 184 (154–200(10))
Pinus rigida PIRI pitch pine 200 1 1.69(1) 242(8) 921 (620–1112) 147(123–175 (14))
Pinus strobus PIST eastern white pine 400 2 1.30(1) 173(3) 710 (410–835) 319 (189–350(12))
Populus grandidentata POGR4 bigtooth aspen 110 1 2.37(1) 67(3) 917 (680–1096) 184 (137–200(13))
Populus tremuloides POTR5 quaking aspen 110 1 2.45(1) 83(4) 949 (731–1141) 186 (143–200(13))
Prunus serotina PRSE2 black cherry 200 2 2.96(1) 53(3) 1029 (823–1225) 189 (150–200(10))
Quercus alba QUAL white oak 400 3 2.10(1) 80(8) 859 (604–1031) 212 (159–250(10))
Quercus coccinea QUCO2 scarlet oak 150 2 1.90(2) 95(8) 855 (641–1028) 208 (155–250(11))
Quercus prinus QUPR2 chestnut oak 300 3 1.90(2) 88(9) 855 (641–1028) 212 (159–280(10))
Quercus rubra QURU northern red oak 250 3 2.05(1) 79(3) 828 (613–1005) 230 (170–280(10))
Quercus velutina QUVE black oak 120 3 2.22(1) 80(9) 895 (630–1093) 253 (196–300(10))
Tsuga canadensis TSCA eastern hemlock 500 5 1.26(2) 169(3) 679 (301–814) 375 (138–450(10))

Notes: For shade tolerance, 1 is least tolerant, and 5 is most tolerant. Values for maxANPP and maxBiomass are given as means
with range in parentheses. Maximum annual net primary productivity (maxANPP) was calculated for each of the 13 ecoregions
using the PnET-II ecosystem model. Maximum biomass values were obtained from the literature and then scaled proportionately
with maxANPP values. See Methods for details. Superscript numbers in parentheses refer to literature sources where values were
obtained: 1, NERC (2010); 2, Ollinger and Smith (2005) for average northern hardwood and conifer values when values for foliar N
were not available in NERC database or in the literature; 3. Smith and Martin (2001); 4, Reich et al. (1995); 5, Green et al. (2003);
6, Abrams and Kubiske (1990); 7, Richardson et al. (2001); 8, Woodwell (1974); 9, Kloeppel et al. (1993); 10, Lichstein et al. (2009);
11, maxBiomass was set to 250 Mg/ha when an estimate was unavailable in the literature; 12, Whitney (1993); 13, Pastor et al.
(1984); 14, Vose and Swank (1993).
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the Pest input parameter. Following methods described
in detail within Scheller et al. (2005) and Gustafson et al.

(2009), we used a simulation approach to develop Pest.
In brief, 300 years of weather conditions were stochas-

tically simulated using the climate data, which were then
used to develop the establishment modifiers (tempera-

ture, soil moisture, and minimum January temperature)

developed by Pastor and Post (1985). These data, in
combination with the species vital attributes, drought

tolerance, cold tolerance, and soil nitrogen tolerance,
were used to estimate Pest for each species in each

ecoregion and climatic condition.
We included small-scale wind disturbance within the

simulations but, because it was not among the processes

that we were explicitly considering in this study, we took
a simple approach to its parameterization. Using the

LANDIS wind disturbance module (Scheller and
Mladenoff 2004), we set the wind rotation period to

350 years for inland ecoregions and 200 years for coastal
ecoregions. The mortality probability associated with a

wind event increased monotonically as a species cohort
approached its maximum longevity. The average size of

wind events was set to 0.1 ha, with few larger wind

events allowed.
We performed a sensitivity analysis of nine key

parameters within the model parameterization. We
varied their values by 10%, or by one unit in the case

of ordinal categorical variables, and assessed the
corresponding impact on the total biomass at year 0

and year 50. This approach to sensitivity analysis is

useful for gauging the relative importance of parameters

and for assessing whether the state variables depend

linearly on input parameters (Drechsler 1998).

Climate change

LANDIS-II was explicitly designed to simulate climate

change effects on forested landscapes (Scheller and

Mladenoff 2008). Within the LANDIS-II/PnET-II

framework previously described, climate variables affect

maxANPP, maxBiomass, and Pest. We obtained all

climate data (minimum temperature, maximum temper-

ature, and precipitation) from the Northeast Climate

Impacts Assessment Group (available online).9 For

scenarios without climate change, we used their average

data from the period 1960–1999. For the scenarios that

include climate change, we used projections for the

period spanning 2010–2039 and 2040–2069 and divided

the observed changes into decadal increments (Fig. 2).

The data are from an average of three general cir-

culation models, all portraying the Intergovernmental

Panel on Climate Change (IPCC) B1 emissions scenario:

U.S. National Oceanographic and Atmospheric Admin-

istration/Geophysical Fluid Dynamics Laboratory

CM2.1 (Delworth et al. 2006), United Kingdom

Meteorological Office Hadley Centre Climate Model

version 3 (Pope et al. 2000), and U.S. Department of

Energy/National Center for Atmospheric Research

Parallel Climate Model (Washington et al. 2000). The

model average was statistically downscaled to one-eighth

FIG. 2. Climate values used to estimate maximum annual net primary productivity (maxANPP), maximum biomass values
(maxBiomass), and the probability that a species will establish on a given site (Pest). Dark lines represent the average values across
the 13 Massachusetts ecoregions, and lighter shading depicts an envelope spanning from the minimum to maximum ecoregions.
Climate data are from the Northeast Climate Impacts Assessment Group (Hayhoe et al. 2008). See Methods for details.

9 hwww.northeastclimatedata.orgi
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degree by Hayhoe et al. (2008). A detailed comparison of
predicted vs. observed values is given by Hayhoe et al.

(2007). The IPCC B1 emissions scenario is among the
most optimistic in terms of the degree of future warming
(Nakicenovic 2000).

Land use

We made no attempt to predict the exact locations of
future timber harvests or forest conversion. Instead, we

created ‘‘probability of harvest’’ and ‘‘probability of
conversion’’ zones, based on the past land use patterns

in relation to several social and biophysical variables,
which then dictated the spatial distribution of land use.
To do this, we took a random sample of 10 000 points

within the region classified by MassGIS as forest in
1985. In a GIS, we extracted information about each

point that was described, whether it had since been
converted to developed uses (based on the 1999

MassGIS Land Use Layer), or had been subject to
timber harvest (based on state harvest permits during

1984–2003 (McDonald et al. 2006)). We then identified
a suite of potential predictor variables that have been

associated with forest conversion and timber harvest in
other studies conducted in the region (Table 3; see
Schneider and Pontius 2001, Tyrrell et al. 2004,

McDonald et al. 2006). In a GIS we extracted the
values for all of the predictor variables at the location of

the sample points. We used regression tree analysis
(RTA), fitting one tree with forest conversion as the

response variable and one tree with timber harvest as the
response, to identify the relationships between the land

use activities and the predictor variables. RTA is a
nonparametric technique that recursively partitions a
data set into subsets that are increasingly homogeneous

with regard to the response (De’ath and Fabricius 2000).
We used an implementation of RTA, called conditional

inference trees, that is available within the PARTY
library (Hothorn et al. 2009) within the R statistical

language (R Development Core Team 2006). Condi-
tional inference trees establish partitions based on the

lowest statistically significant P value that is obtainable

across all levels of all predictor variables, as determined
from a Monte Carlo randomization test with 9999

permutations; this technique minimizes bias and pre-
vents over-fitting and the need for pruning (Hothorn et
al. 2006). We used the probability at terminal nodes of

the regression trees, weighted by the proportion of area
that they represented within the landscape, to define

‘‘probability of harvest’’ and ‘‘probability of conversion’’
zones throughout the study area.

We used the Massachusetts harvest permit records
(McDonald et al. 2006) and an understanding of private

landowner tendencies (Belin et al. 2005, Finley and
Kittredge 2006) to develop four different timber harvest

prescriptions (Table 4) that emulate the recent harvest
regime in terms of their annual extent, size of harvest,
and the species and age classes removed. State records

indicate that the annual harvested area has ranged from
8500 to 14 000 ha/yr with no temporal trend. Accord-

ingly, we simulated 10 500 ha of timber harvest per year,
distributed across the state according to the probability

zones we have described. Harvesting focused on older
cohorts of economically valuable species (i.e., Pinus

stobus, Quercus sp., Tsuga canadensis, and Acer saccha-
rum).

LANDIS-II had not previously been used to simulate

forest conversion. To accommodate this, we modified
the existing timber harvest module (Gustafson et al.

2000) such that when a site is identified for conversion, a
user-specified amount of forest biomass is removed

across all species on the site, future establishment is
prevented, and the maximum achievable biomass

(maxBiomass) on that site is permanently reduced. For
example, assume that a ‘‘Small development’’ prescrip-
tion (0.25 ha) is scheduled to occur on a site at year 10,

at which time the site contains 100 Mg of biomass and
has a maximum achievable biomass of 200 Mg; at that

point in the simulation, 25 Mg of biomass is removed,
no new forests may establish on that site for the rest of

the simulation, and the maximum achievable biomass is
permanently reduced by 25% to 150 Mg. This approach

allowed us to emulate patterns of rural forest conversion

TABLE 3. Units and sources of predictor variables used within the regression tree models describing the probability of forest
conversion to developed uses and the probability of timber harvest.

Predictor variable Units Source

Median house price U.S. dollars U.S. Census (2000)
Population density no. people/km2 U.S. Census (2000)
Commute time minutes U.S. Census (2000)
Housing density no./km2 Radeloff et al. (2005)
Protected open space yes/no MassGIS Open Space Layer
Slope percent 30-m digital elevation model from MassGIS
Distance from water km calculated using MassGIS Stream Layer
Distance from built km calculated using MassGIS Land use Layer
Distance from urban km calculated using MassGIS Land use Layer
Distance from primary road km calculated from U.S. Census Tiger Shapefiles (2000)
Distance from any road km calculated from U.S. Census Tiger Shapefiles (2000)
Road density km/km2 calculated from U.S. Census Tiger Shapefiles (2000)
Distance from Boston km calculated using MassGIS Land use Layer
Topographic roughness StdDev(Elevation (m)) 30-m digital elevation model from MassGIS

Note: MassGIS is a Massachusetts state government agency that disseminates geographic data hhttp://mass.gov/mgisi.
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at scales smaller than our 1-ha grain size and it allowed
continued, albeit reduced, biomass accumulation on

sites that had experienced some level of conversion.
To estimate the annual amount of forest converted to

developed uses, we divided the total number of hectares
that were classified as ‘‘forest’’ in 1985 and ‘‘developed’’

in 1999 (total ¼ 68 432 ha) by the number of years

between the interpretations (total ¼ 14 years), which
resulted in 4888 ha/yr. This level of annual forest

conversion was spatially distributed according to the
RTA-derived probability zones we have described. Of

course, forestland that is converted to developed uses
often retains significant residual tree cover (Nowak and

Crane 2002). To emulate the past level of residual tree
cover within converted sites, we randomly selected 300

areas that had been converted to developed uses in the
period between 1985 and 1999 and examined the

proportion of residual tree cover within them using
GoogleEarth. Within each polygon, we randomly placed

10 points and counted the proportion that overlayed tree
canopies. We used the resulting distribution to help set

the proportion of forest biomass removed within the
land use footprint (Table 4).

The simulation experiment

To estimate the relative influence of forest succession,

climate change, forest conversion to developed uses, and
timber harvest on species composition and biomass, we

conducted a series of simulations in a full-factorial

design (where climate change, conversion, and harvests
were incorporated as ‘‘treatments’’). This required eight

different scenarios. A power analysis indicated that
replicating each scenario five times was sufficient to

capture the between-run variability. The low number of
required replicates reflects the fact that the many

stochastic components operating within LANDIS-II
stabilize to their average when measured at the scale of

the entire study area. We described and analyzed
simulation results at years 25 and 50.

We used a three-way factorial ANOVA to assess the

relative influence of treatments on total aboveground
biomass, including the main effects and interactions of

climate change, forest conversion, and timber harvest.
We also summarized changes in biomass 3 species rank

abundance and, to assess the relative influence of
treatments on tree species composition, we used

nonparametric multivariate analysis of variance (i.e.,
PerMANOVA) using the ‘‘adonis’’ function and a Bray

Curtis distance matrix to describe community composi-
tion within the Vegan Community Ecology Package

(Oksanen et al. 2009) in the R statistical language (R
Development Core Team 2006). This technique is well-

suited for partitioning distance matrices among multiple
sources of variation and fitting linear models to distance

matrices, particularly when multivariate normality

cannot be assured and there are more species than
replicates (Legendre and Anderson 1999). The method

uses a permutation test and pseudo-F ratios to estimate

TABLE 4. Characteristics of land use simulated within the LANDIS-II model.

Development category

Forest conversion
prescriptions (total area
affected ¼ 4888 ha/yr) Harvest category

Timber harvest
prescriptions� (total area
affected ¼ 10 500 ha/yr)

Small development (50%) Within a 1-ha pixel, remove
25% of all species 3 age
cohorts and suppress all
future regeneration.

Small harvest type A (33%) Remove 100% of PIST
.100 yr old and 100%
of QURU, ACRU,
TSCA, ACSA .80 yr
old. Harvest size 8–12
ha.

Medium development (25%) Within a 1-ha pixel, remove
50% of all species 3 age
cohorts and suppress all
future regeneration.

Large harvest type A (33%) Remove 100% of PIST .
100 yr old and 100% of
QURU, ACRU, TSCA,
ACSA . 80 yr old.
Harvest size 17–22 ha.

Large development (20%) Within a 2-ha area, remove
50% of all species 3 age
cohorts and suppress all
future regeneration.

Small harvest type B (17%) Remove 100% of PIST .
60 yr old and 100% of
QURU, ACSA . 80 yr.
Harvest size
8–12 ha.

Very large development (5%) Within a 4-ha area, remove
50% of all species 3 age
cohorts and suppress all
future regeneration.

Large harvest type B (17%) Remove 100% of PIST .
60 yr old and 100% of
QURU, ACSA . 80 yr.
Harvest size 17–22 ha.

Notes: Development and harvest categories include (in parentheses) the percentage of the total area affected. Forest conversion
prescriptions describe the size and intensity of forest removal simulated in LANDIS-II to emulate recent trends in forest conversion
to developed uses. Timber harvest prescriptions describe the species and ages of forest cohorts removal and the size of the harvest
units simulated in LANDIS-II to emulate the recent trend in state timber harvests. Each year the total area affected by all the forest
conversion prescriptions is set to 4888 ha. Of that total, 50% (2444 ha/yr) is ‘‘developed’’ using the ‘‘Small development’’
prescription (simulating small house lots). Likewise, 25% of the total (or 1222 ha/yr) is affected by the ‘‘Medium development’’
prescription, and so forth. For the right-hand ‘‘harvest’’ regime, with 10 500 ha/yr affected, 33% harvest is equivalent to 3500 ha/yr.
Species codes are defined in Table 2.

� For any stand to be eligible for timber harvest, at least 40% of the stand must contain harvestable trees.
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P values. We performed separate PerMANOVA tests on

the total AGB by species data and on the relative

proportions of species’ AGB.

RESULTS

Initial forest condition and model sensitivity

At the scale of the entire state, the LANDIS-II spin-

up of the initial forest condition resulted in an estimate

of 181.83 Tg of AGB, which was within 15% of the total

biomass estimated from the imputation of the FIA data

conducted by B. T. Wilson and A. J. Lister (unpublished

manuscript). At the plot scale, the Pearson’s correlation

between predicted (LANDIS-II) and observed (FIA

field plots) AGB was 0.69 with a root mean square error

of 44 Mg/ha (Fig. 3). There were no apparent biases

associated with different dominant tree species within a

site.

Overall, our parameterization of LANDIS-II was not

overly sensitive to any of the individual parameters

tested; that is, the percentage change in AGB associated

with a 10% change (or one unit change for categorical

variables) in a given input parameter was typically

,10% (Table 5). The ANPP shape parameter that

controls the time that it takes a new cohort to achieve

maxANPP was the most influential input parameter

during the ‘‘spin-up’’ phase of the model (i.e., AGB at

year 0). A 10% change in the ANPP shape parameter

was associated with a 12–13% change in initial AGB.

However, this effect was diminished by simulation year

50, when a 10% change was associated with a 4.5–6.5%
change. Maximum ANPP was also a relatively influen-

tial parameter, with a 10% change resulting in a 7.6%
change in AGB at year 0 and a 3.5–4.2% change in AGB

at year 50. A 10% change in the maximum achievable

biomass parameter had a relatively small effect at year 0

(2.2–2.5%), but by year 50 it was among the more

influential parameters (5.8–6.5%). Adjustments of 10%
(or one unit) in all other parameters resulted in ,2%
changes in AGB at year 0 or year 50.

Land use

The RTA describing factors associated with forest

conversion to developed uses identified six statistically

significant (P , 0.001) partitions using six different

predictor variables, which resulted in a tree with seven

terminal nodes (Fig. 4). Forests conserved as protected

open space had a zero probability of conversion; thus,

FIG. 3. A comparison of field-measured and modeled live aboveground biomass (AGB) estimates, respectively derived from
591 USDA Forest Service Inventory plots (FIA is the Forest Inventory and Analysis database) and the LANDIS-II year 0 ‘‘spin-
up’’ representation of those plots. Unlike the imputation map used in the simulations, each plot is represented only once in this
figure. The line represents a 1:1 perfect fit. Species codes in the key are identified in Table 2.
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this was the best predictor variable that we evaluated.

The distance from forestland to non-forestland was the

next most important predictor. The terminal node in the

regression tree with the highest probability of conversion

included those forests that were not protected, were

close to existing built areas (,283 m), on shallow slopes

(,7.9%), and in census blocks with comparatively high

human population densities (.460 people/km2). Forests

meeting these criteria were predominantly in the eastern,

coastal part of the state, with a lesser component in the

urbanized Connecticut River Valley. Forests with the

lowest probability of conversion (aside from those under

TABLE 5. Results of sensitivity analysis for nine parameters, where AGB is aboveground biomass.

Parameter Parameter change

Year 0 Year 50

AGB (Tg) Change (%) AGB (Tg) Change (%)

Original 0 181.83 0.00 315.03 0.00

Maximum ANPP �10% 167.55 �7.85 301.54 �4.28
Maximum ANPP 10% 195.64 7.60 326.21 3.55

Maximum biomass �10% 177.18 �2.56 294.36 �6.56
Maximum biomass 10% 185.98 2.28 333.56 5.88

ANPP shape �10% 204.50 12.47 329.44 4.57
ANPP shape 10% 158.72 �12.71 294.20 �6.61
Mortality shape �1 180.46 �0.75 308.87 �1.96
Mortality shape 1 182.22 0.22 318.08 0.97

Establishment probability �10% 181.83 0.00 311.99 �0.97
Establishment probability 10% 181.83 0.00 317.92 0.91

Shade tolerance �1 181.83 0.00 310.27 �1.51
Shade tolerance 1 181.83 0.00 319.05 1.27

Species longevity �10% 181.18 �0.36 309.74 �1.68
Species longevity 10% 182.15 0.18 318.75 1.18

Wind mortality probability �10% 181.83 0.00 315.54 0.16
Wind mortality probability 10% 181.83 0.00 314.37 �0.21
Wind rotation period �10% 181.83 0.00 314.28 �0.24
Wind rotation period 10% 181.83 0.00 315.48 0.14

Note: Continuous parameters were altered by 10% while categorical parameters were altered by 1 unit.

PLATE 1. Forest conversion in southern New England. Photo credit, D. R. Foster.
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permanent protection) were those characterized by

greater distances to non-forest areas, with low housing

densities (,36.9 houses/km2) and low road densities

(,1.3 km/km2).

The aerial photo interpretation of residual tree

canopy cover within sites recently converted from forest

to developed uses in the land cover map resulted in a

canopy cover of 55% 6 22% (mean 6 SD; Fig. 5). There

was no significant relationship between patch size and

tree cover (P¼0.214, R2 0.04). We used this information

to set the intensity of forest removal within the five

forest conversion prescriptions described in Table 4.

The RTA describing factors associated with past

timber harvests identified seven significant partitions (P

FIG. 4. Regression tree used to create probability (color-coded percentages) of future forest conversion zones used within the
LANDIS-II simulations. The regression tree model used the pattern of forest conversion observed in the period spanning 1985–
1999 in relation to the predictor variables described in Table 3. Terminal nodes of regression trees were scaled by their area on the
landscape and were used to spatially allocate forest conversion within simulations. Units for the predictor variables are given in
Table 3.
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, 0.001) using five predictor variables, which resulted in

eight terminal nodes (Fig. 6). Road density was

identified as the best predictor variable. Areas with a

low density of roads (,2.17 km/km2) generally had

higher rates of timber harvest. Within this lower road

density group, forestland within census blocks where the

median home values were less than $171900 were

associated with the highest probability of timber

harvest. Most forestland meeting these criteria was west

of the Connecticut River Valley ecoregion. Forestlands

with higher road density (,2.17 km/km2) and shallow

slopes (,6.2%) or high median home values (.$187000)

were associated with the lowest rates of harvest and were

generally found in the eastern one-third of the state.

Overall, the probability of timber harvest was strongly

and negatively correlated with the probability of forest

conversion.

Changes in AGB and species composition

Continued forest growth and succession resulted in net

positive changes in total AGB throughout all simulations

(Fig. 7). Excluding any of the three treatments (i.e.,

climate, timber harvest, and forest conversion), total

AGB increased from 181.83 Tg to 259.56 Tg at year 25 (a

42% increase) and to 309.56 Tg at year 50 (a 70%
increase) (Fig. 7). Of the three treatments, forest

conversion to other uses had the largest effect on AGB

(Table 6). Compared to the no-treatment run, forest

conversion reduced AGB by 9.39 Tg at year 25 and by

23.18 Tg at year 50. Timber harvest also reduced total

AGB when compared to the ‘‘growth only’’ simulation,
albeit by a much lesser amount. By year 25, Timber

harvests reduced total AGB by 3.89 Tg by year 25, and
by 5.23 Tg by year 50. Climate change had a positive

effect on growth, increasing total AGB by 5.33 Tg at year
25 and 17.3 Tg at year 50. The factorial ANOVA
indicated that, at year 25, all of the main effects were

significant (P , 0.001), but there were no significant
interactions among treatments. By year 50, the main

effects remained significant and there were also small,
but significant, interactions between climate and the two

land use variables. Differences in AGB that were
attributable to the treatments strongly reflected the

spatial distribution of land use. The largest differences
between the ‘‘growth only’’ runs and ‘‘current trends’’

runs (which included climate change, conversion, and
harvest) were within the Boston Basin, Bristol Lowlands,

and Connecticut River Valley, respectively (Fig. 8).
Although the treatments had significant effects on

total AGB, their effects on relative composition were
comparatively minor. P. strobus and A. rubrum were

ranked first and second, respectively, in terms of their
total AGB throughout all simulations (Table 7). Climate

change reinforced the dominance of those two species.
The PerMANOVA of treatment effects on total biomass
at year 25 and year 50 indicated that forest composition

was most significantly impacted by forest conversion,
followed by climate (Table 8). The PerMANOVA of

treatment effects on relative species composition identi-
fied no significant differences (Table 8). Forest conver-

sion was generally indiscriminate in terms of species
removal. Timber harvesting reduced Q. rubra from

10.8% to 9.4% of total AGB, but otherwise had little
effect on composition (Table 7).

DISCUSSION

Biomass and species composition

In these simulations, the largest changes in AGB (and
therefore carbon) arose from continued stand growth
and succession, irrespective of any climate or land use

changes. This finding reflects the fact that the average
forest carbon density present in the landscape is well

below what is seen in old-growth forests. This process of
continued AGB accrual is operationalized within the

model vis-à-vis the initial forest biomass condition,
which is based on forest inventory plots, and the

maximum biomass parameters, which are based on
empirical estimates taken from a sparse sample of old-

growth forests, then adjusted downward based on
estimated productivity of the ecoregion. Our analysis

suggests that sustained forest recovery, owing to the
legacy of agricultural abandonment, reductions in

widespread forest harvesting, and regrowth following
the 1938 hurricane and associated timber salvage, will
continue to be the most important mechanism affecting

forest carbon dynamics. Indeed, even assuming a
continuation of the current trends in land use and

FIG. 5. Distribution of tree cover within 300 randomly
selected areas identified by MassGIS (a Massachusetts state
government agency that disseminates geographic data; see
hhttp://mass.gov/mgisi) as having been converted from ‘‘forest’’
to ‘‘developed uses’’ between 1985 and 1999. Tree cover was
measured by counting the proportion of 10 randomly
positioned points overlaid on a tree canopy within aerial
imagery in GoogleEarth.
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climate change, the simulations predicted a 65% increase

in AGB over the coming 50 years. This finding, if born

out, has significant implications for climate change

mitigation and climate policy.

Of course, our modeling framework is simplistic as

compared to actual forest landscape dynamics, and the

capacity of the northeastern forest carbon sink remains a

subject of considerable uncertainty and interest. One

important counter perspective comes from long-term

studies at the Hubbard Brook Experimental Forest in

central New Hampshire, where researchers have found

that forests recovering from intensive harvest, dating to

FIG. 6. Regression tree used to create probability (color-coded percentages) of future timber harvest zones used within the
LANDIS-II simulations. The regression tree model used the pattern of forest harvest observed in the period spanning 1985–2004 in
relation to the predictor variables described in Table 3. Terminal nodes of regression trees were scaled by their area on the
landscape and were used to spatially allocate timber harvest within the simulations. Units for the predictor variables are given in
Table 3.
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the early 20th century, have stopped accumulating

biomass at ;70–80 years, having accrued just 95–100

Mg/ha (Fahey et al. 2005), which is well before and well

below the saturation point expected within our simula-

tions. Notably, the northern hardwood forests at

Hubbard Brook contain few biomass-dense species (such

as Quercus spp.) and have biogeochemical limitations

resulting from shallow soils and decades of acid rain

(Campbell et al. 2007). A contrasting example comes

from slightly older forests just 100 km to the south at the

Harvard Forest in central Massachusetts, where the

forests continue to accumulate biomass at a rate of 4–6

Mg�ha�1�yr�1, a rate that appears to be an accelerating

(Foster et al. 2010; S. C. Wofsy and J. W. Munger,

personal communication). The Harvard Forest plot is on a

rather low-productivity site compared to the average

productivity within the state of Massachusetts, which

suggests that there is a potential through most of the

study area for continued carbon storage over the coming

decades. Other modeling and empirical studies support

this perspective. For example, the length of the recovery

period within our simulations is consistent with predic-

FIG. 7. Average change in live aboveground biomass for each of the simulations used within the factorial experiment, which
treated climate change (CC), forest conversion to developed uses (FC), and timber harvests (Harv.) as treatments relative to a static
climate (SC). The inset histogram shows change in AGB from year 0 to year 50 for each scenario, A–H.

TABLE 6. Summary of results from a three-way factorial ANOVA used to assess the effect of climate change, forest conversion,
and timber harvest on aboveground biomass.

Variable

Simulation year 25 Simulation year 50

AGB estimate
(Tg)

Variation
explained (%) P

AGB estimate
(Tg)

Variation
explained (%) P

Climate 5.33 22.49 ,0.001 17.30 33.86 ,0.001
Harvest �3.89 10.45 ,0.001 �5.23 2.58 ,0.001
Development �9.39 67.05 ,0.001 �23.18 63.50 ,0.001
Climate 3 harvest �0.02 0.00 NS 0.17 0.00 0.003
Climate 3 conversion �0.06 0.00 NS �1.02 0.03 ,0.001
Harvest 3 conversion 0.05 0.00 NS 0.11 0.00 ,0.001
Climate 3 harvest 3 conversion 0.00 0.00 NS �0.01 0.00 NS

Notes: The ‘‘Estimate’’ columns describe the difference, in aboveground biomass, between the treatment and the growth-only
simulation. The P values describe a test of the hypothesis that the response between levels is equal.
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tions for the entire eastern United States made by the

Ecosystem Demography (ED) model (Albani et al. 2006),

which estimates maximum biomass as an emergent

property of ecosystem processes, rather than a user input

based on old-growth data. Expectations based on the ED

model have biomass increasing at least until the end of

the 21st century (Albani et al. 2006). There are also

observational studies that have examined old forest and

suggested a protracted biomass recovery period in the

Northeast. For example, a study of remnant old-growth

northern hardwood–conifer stands in New York showed

that old-growth stands (250–400 years) contain .40%

more aboveground biomass than mature stands (100–150

years) (Keeton et al., in press). Similarly, Brown et al.

(1997) and Lichstein et al. (2009) have compared the

upper end of the biomass distribution within the FIA

database to values from old-growth stands and have

concluded that there is potential for the landscape to

accrue significant quantities of additional biomass.

Because we did not simulate hurricanes, ice storms, or

insect outbreaks, and only included a moderate amount

of wind disturbance, actual biomass accrual over the next

50 years will probably lag behind our simulations.

Nonetheless, given the range of supporting evidence, the

pattern of forest biomass accrual owing to continued

forest growth and succession that was estimated by these

simulations seems reasonable.

After growth and succession, forest conversion to

developed uses had the largest impact on AGB stores.

By year 50, forest conversion reduced the total AGB by

23.18 Tg compared to the growth-only run. This effect

was more than four times that of timber harvest, despite

the fact that timber harvest occurred over twice the land

area annually. This finding emphasizes the full costs of

permanent forest conversion. Whereas timber harvest

removes a portion of the forest biomass stored on a site,

it does not necessarily affect the longer-term capacity for

growth. In contrast, permanent forest conversion

removes the stored biomass and the capacity for future

growth. This is highlighted by the diminishing incre-

mental effect from year 25 to year 50 for timber harvest

(�3.9 to�5.2 Tg) vs. the increasing incremental effect for

forest conversion (�9.4 to �23.2 Tg; Table 6). It is also

worth noting that forest conversion occurred predom-

inately in the eastern ecoregions, where forest produc-

tivity was the lowest, whereas timber harvest tended to

be concentrated in the more productive ecoregions in the

western part of the state. Had our simulations been

aspatial or had we distributed land use randomly across

the state, the effect of forest conversion on AGB stores

would have been higher and the effect of harvest would

have been lower.

The LANDIS-II simulations are consistent with

others that suggest that future anthropogenic climate

change, at least as it affects temperature and precipita-

tion, will have a net positive impact on growth and

biomass stores (Campbell et al. 2009). Total AGB at

year 50 was 5.5% higher when climate change was

simulated than when climate was held static. Despite this

finding, the full effects of climate change remain far

FIG. 8. Percentage of year-0 aboveground biomass at simulation year 50 by ecoregion for the ‘‘Current Trends’’ scenario, which
included forest growth, climate, conversion, and timber harvest (top number) and for the ‘‘Growth Only’’ scenario, which included
only forest growth (bottom number) of each pair.
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from certain. On the one hand, CO2 fertilization, which

we did not consider, could accelerate growth even above

what we suggest here (Ollinger et al. 2008); on the other

hand, increasing variability in environmental parameters

such as sunlight, precipitation, and temperature could

lead to lower rates of productivity that override the

broadscale trends (Medvigy et al. 2010). Also, potential

indirect effects of climate change, such as increased

hurricane intensity, ice storm frequency and intensity,

and the proliferation of insect pests, could reduce or

reverse any climate-related increases in biomass storage.

The largest sources of uncertainty, with regard to

climate change effects on forest growth, are the

emissions and climate predictions. For simplicity’s sake,

we only modeled one emission scenario: the IPCC B1. In

this scenario, it is assumed that CO2 concentrations are

stabilized near 550 ppm (Nakicenovic 2000), which is a

rather optimistic perspective, given the societal response

to climate forecasts thus far. Although uncertainties

seem to dominate our consideration of climate impacts

on the forest biomass of Massachusetts, it seems likely,

even given our somewhat simple portrayal, that any

positive feedbacks associated with climate change-

related increases in carbon sequestration will not be

sufficient to override the losses of forest biomass due to

land use change.

With regard to tree species composition, our simula-

tions suggested only minor changes in relative abun-

dance, irrespective of the effects of climate or land use

change. This finding largely reflects the difference

between the longevity of the trees (typically . 200

years) relative to the length of the simulation (50 years).

Many studies have demonstrated the important impacts

that climate change will have on tree species distribu-

TABLE 8. Summary of results from a permutation-based multivariate analysis of variance used to assess the effect of climate
change, forest conversion to developed uses, and timber harvests on tree species community composition.

Variable or interaction

Simulation Year 25 Simulation Year 50

Variation explained (%) P Variation explained (%) P

A) Change in total AGB

Climate 25.40 ,0.001 36.30 ,0.001
Harvest 21.40 ,0.001 10.50 ,0.001
Conversion 53.20 ,0.001 51.80 ,0.001
Climate 3 harvest 0.00 NS 0.00 NS
Climate 3 conversion 0.00 NS 1.40 ,0.001
Harvest 3 conversion 0.00 NS 0.00 NS
Climate 3 harvest 3 development 0.00 NS 0.00 NS

B) Change in proportion of AGB

Climate 0.00 NS 0.10 NS
Harvest 0.05 NS 1.20 NS
Conversion 0.01 NS 0.04 NS
Climate 3 harvest 0.00 NS 0.00 NS
Climate 3 conversion 0.00 NS 0.00 NS
Harvest 3 conversion 0.00 NS 0.00 NS
Climate 3 harvest 3 development 0.00 NS 0.00 NS

Notes: Tree species community composition is measured in panel (A) as total aboveground biomass (AGB) by species and in
panel (B) as the proportion of AGB by species. NS indicates not significant at a¼ 0.05.

TABLE 7. Relative tree species composition, by aboveground biomass (AGB), at the beginning (year 0) and end (year 50) of the
eight LANDIS-II simulations used within the factorial experiment.

Year 0 total
AGB (Tg) and
species (%)

Total AGB (Tg) and species (%) at Year 50,
by LANDIS-II simulation

CC þ FC þ Harv. CC þ FC CCþ Harv. CC SC þ FC þ Harv.

AGB ¼ 181.8 Tg 298.6 Tg 302.8 Tg 321.9 Tg 327.0 Tg 282.0 Tg
PIST (15.5) PIST (13.5) PIST (13.4) PIST (13.3) PIST (13.4) PIST (14.0)
ACRU (13.4) ACRU (11.5) ACRU (11.2) ACRU (11.6) ACRU (11.3) ACRU (11.7)
QURU (10.2) TSCA (10.2) TSCA (10.2) BELE (10.0) QURU (10.2) TSCA (10.1)
BELE (9.8) BELE (10.1) QURU (10.1) TSCA (9.9) TSCA (9.9) QURU (9.2)
TSCA (9.0) QURU (8.6) BELE (9.8) QURU (8.6) BELE (9.7) BELE (8.9)
ACSA3 (7.1) ACSA3 (7.5) ACSA3 (7.6) ACSA3 (7.2) ACSA3 (7.3) ACSA3 (7.9)
QUVE (5.1) FAGR (5.6) FAGR (5.4) QUAL (5.5) QUAL (5.3) FAGR (5.9)
FAGR (4.3) QUAL (5.2) QUAL (5.1) FAGR (5.3) FAGR (5.2) QUAL (5.3)
QUAL (4.2) FRAM2 (4.8) FRAM2 (4.7) FRAM2 (4.7) FRAM2 (4.6) FRAM2 (5.0)
FRAM2 (4.1) QUVE (3.6) QUVE (3.5) QUVE (3.7) QUVE (3.6) QUVE (3.7)

Notes: Values within parentheses are percentage of total AGB contributed by each species. Species codes are defined in Table 2.
‘‘CC’’ is climate change, ‘‘SC’’ is static climate, ‘‘FC’’ is conversion of forest to developed uses; ‘‘Harv.’’ is timber harvest.
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tions in the Northeast, but these typically have model
horizons out 100 years or more (e.g., Iverson et al.

2004). In general, our simulations suggest that the
landscape is very slowly shifting dominance to late-
successional species (i.e., Tsuga canadensis, Fagus

grandifolia). Also significant in our simulations was
the impact of the timber harvest regime on Quercus
rubra. At year 50, in the full current trends runs, Q.

rubra makes up 8.6% of the forest AGB, but with
harvesting removed Q. rubra increases to 10.1% (a
difference of 4.9 Tg of AGB). Q. rubra is a valuable

timber species and is consistently among the most
sought after in Massachusetts (McDonald et al. 2006).
The effect of timber harvest on its landscape abundance,

while marginal, should be considered in light of the
region-wide trend of diminishing recruitment of Quer-
cus, as evidenced in the FIA database and elsewhere

(e.g., Abrams 2003, McEwan et al., in press). Further
study is needed to understand how (or if ) the timber
harvest regime is exacerbating the other causes for

regional oak decline. The full utility of having species-
level interactions in this parameterization of LANDIS-
II will come in our next stage of research, when we will

incorporate scenarios of invasive pests and pathogens
(i.e., the hemlock woolly adelgid, Adelges tsugae) that
affect particular species.

Limitation and challenges of simulating coupled natural
and human systems

Our simulations are not to be interpreted as predic-
tions or forecasts of any kind. Coupled natural and
human systems are characterized by complex interac-

tions, feedbacks, and time lags, which tend to manifest
as surprises, rendering true prediction impossible (Liu et
al. 2007). Rather, the simulations represent the decom-

position of one rather basic scenario that portrays a
linear continuation of current trends in land use and
climate change. ‘‘Current trends’’ or ‘‘business as usual’’

scenarios are popular and are useful as a type of null
model or straw man from which we can build suites of
alternative scenarios, which may then help to bound the

range of plausible futures. The ‘‘current trends’’

represented in our simulations capture a period in

history (1985–1999) when the economy of Massachu-

setts was growing quickly and commercial and residen-

tial development rates were comparatively high

(DeNormandie 2009). As such, the rate of forest

conversion within these simulations should be interpret-

ed in context of the robust economic environment. If,

for example, the ‘‘current trends’’ emulated the period

between 2008 and 2010, when a national recession

slowed rates of new building construction, there would

be far less forest conversion. The rate and intensity of

timber harvest, in contrast, has been relatively consistent

over time and it appears to be less sensitive to the larger

economic context (McDonald et al. 2006). Nevertheless,

past stability could belie future trends in timber harvest

if, say, the current initiatives to build biomass energy

plants were to gain traction.

Our approach for modeling the spatial distribution of

land use differs from most land use change simulations,

which tend to focus on precise spatial allocations of land

change, where the probability of change is dynamic

throughout the simulations (e.g., Silva and Clarke 2002,

Verburg et al. 2002). These approaches explicitly

acknowledge that patterns of land use are reactive to

land use in the time steps before. We took a coarser

approach and defined probability of land use zones that

were static over the duration of the simulation and

within which land use was allocated randomly. This

approach, which does not permit creeping patterns of

sprawl, resulted in densities of forest conversion within

the high-probability zones that were probably unrealis-

tically high by the end of the simulations. However,

given that our objectives were outside any efforts in land

use planning, this approach was an effective way to

capture the broad spatial structure of land use.

Moreover, efforts to model the precise spatial distribu-

tion of future land use are more often wrong than right

(Pontius et al. 2008).

In addition to the uncertainties associated with the

land use and climate change scenarios and the simplified

approach to allocating land use, there are other

limitations of our approach that must be acknowledged.

Importantly, the parameterization of the LANDIS-II

and PnET-II models are, by definition, simplifications of

complex processes and they are limited by the data

available in the literature. At their best, models such as

these should be interpreted as formalizations of the

current state of knowledge regarding several interacting

processes. To reiterate, our results should not be

interpreted as predictions or forecasts of the future;

instead they highlight the relative importance of

different processes and offer a platform for testing

assumptions.

CONCLUSIONS

The continued growth of forests within Massachu-

setts, like much of the eastern United States, has a

strong element of inertia that has been building since the

TABLE 7. Extended.

Total AGB (Tg) and species (%) at Year 50,
by LANDIS-II simulation

SC þ FC SC þ Harv. SC

286.4 Tg 304.4 Tg 309.6 Tg
PIST (14.0) PIST (13.9) PIST (14.0)
ACRU (11.4) ACRU (11.8) ACRU (11.5)
QURU (10.6) TSCA (9.7) QURU (10.8)
TSCA (10.1) QURU (9.4) TSCA (9.7)
BELE (8.7) BELE (8.8) BELE (8.6)
ACSA3 (8.0) ACSA3 (7.6) ACSA3 (7.7)
FAGR (5.7) FAGR (5.7) FAGR (5.5)
QUAL (5.2) QUAL (5.6) QUAL (5.4)
FRAM2 (4.9) FRAM2 (4.9) FRAM2 (4.8)
QUVE (3.6) QUVE (3.8) QUVE (3.7)
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era of agricultural abandonment (circa 1850–1900). Our

simulations suggest that this century-old legacy of land

use change will remain the dominant mechanism

controlling forest biomass and tree compositional

dynamics for at least the next 50 years. To be sure, the

modern land use regime does affect the forest landscape,

and these impacts reduce the amount of forest biomass

and have some impact on tree species composition.

What is more, in the case of forest conversion, the loss is

significant in terms of both the biomass removed and the

loss of capacity to recover and grow in the future.

However, the modern land use regime affects less than

1.5% of the forested landscape per year, and within that

footprint much of the forest cover remains. As a result,

modern land use pales in comparison to the inertia of

forest growth. Our simulations suggest a similar story

with regard to the influence of anthropogenic climate

change on forest biomass and tree composition. It seems

likely that climate change will have a positive effect on

growth and carbon sequestrations rates if, as the climate

models suggest, growing seasons lengthen and precipi-

tation rates increase. However, the effect of climate

change will be small relative to the background rate of

growth that is attributable to the age and vigor of the

forest. Although climate change is undoubtedly shifting

the optimal establishment windows for tree species, for

now and for the next 50 years, the existing forest will

largely just continue to grow. Of course, over longer

time frames or in the face of large disturbances (e.g.,

hurricanes or infestations), compositional shifts will be

more apparent.
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