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Initializing forest landscape models (FLMs) to simulate changes in tree species composition requires
accurate fine-scale forest attribute information mapped continuously over large areas. Nearest-neighbor
imputation maps, maps developed from multivariate imputation of field plots, have high potential for use
as the initial condition within FLMs, but the tendency for field plots to be imputed over large geographical
distances can result in species being mapped outside of their home ranges, which is problematic. We
developed an approach for evaluating and imputing field plots based on their similarity across multiple
spatial environmental variates, their species composition, and their geographical distance between
source and imputation to produce a map that is appropriate for initializing an FLM. We used this
approach to map 13 million ha of forest throughout the six New England states (Rhode Island,
Connecticut, Massachusetts, New Hampshire, Vermont, and Maine). Using both independent state forest
and, more extensive, ecoregion validation data sets, we compared the imputation map to field inventory
data, based on the dissimilarity of tree community composition and the rank order correlation of tree
species abundance. Average Bray–Curtis dissimilarity between the imputation map and field plots was
0.32 and 0.12, for the state forest and ecoregion validation data sets, respectfully. Average Spearman rank
order correlation was 0.81 and 0.93 for the state forest and ecoregion validation data sets, respectfully.
Our analyses suggest that this approach to imputation can realistically capture regional variation in forest
composition. We expect the imputation map will be valuable for several regional forest studies and that
the approach could be successfully used in other regions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Forest Landscape Models (FLMs) simulate succession and
disturbance over meso-scales (generally 100–10,000 km2) and
incorporate spatially interactive processes represented using inter-
acting raster map cells (pixels) (Scheller and Mladenoff, 2007).
FLMs typically operate at 30–250 m cell resolution. Increasing
use of FLMs to simulate forest change over large spatial and tem-
poral scales is driving demand for fine grain forest attribute data
that is mapped continuously over large areas for use as initial (or
starting) conditions (He, 2008; Keane et al., 2004; Scheller and
Mladenoff, 2007). Because these models simulate processes at
the scale of individual trees or cohorts of trees, they require a level
of detail that is typically only obtainable via field inventories. For
example, the LANDIS-II FLM requires a spatial representation of
tree species-age cohorts (Scheller et al., 2007).
Given a detailed representation of initial forest conditions, FLMs
are frequently used to simulate the effects of natural and human
processes on forests. They offer realistic spatial depictions of future
forest conditions at a similarly high level of detail. The FLM
approach is valuable for understanding how species distributions
and ecosystem conditions may change over large areas and of long
time frames in response to climate change, land-use and other
environmental stressors (Bettinger et al., 2005; Duveneck et al.,
2014a; Gustafson, 2013; Liang et al., 2014; Thompson et al., 2011).

The challenge of model initialization is pronounced for FLMs
relative to other spatially explicit forest models. Unlike models
used to examine aspects of ecological theory (e.g., gap models
(Keane et al., 1996; Shugart et al., 2010)), FLMs are used to examine
landscape changes that are specific to a certain place and time
making a ‘‘spin-up to equilibrium’’ approach potentially unreliable.
Also, because the focus of a FLM is typically on individual species—
whether to infer differences in species distributions or to look at
species-specific disturbances (e.g., pests, pathogens, timber har-
vest)—users cannot rely on simplified representations of plant
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functional types, which is common practice for initializing
dynamic vegetation models (Bonan et al., 2011; Haxeltine and
Prentice, 1996; Moorcroft et al., 2001). Finally, due to the longevity
of trees and the tendency for forests to have strong compositional
inertia, the representation or choice of initial conditions can have
significant consequences for FLM simulation outcomes.

While remote sensing platforms are able to survey large areas;
they are generally unable to discern individual species or stand
structure information (e.g., species age). Forest inventory data,
such as data from the U.S. Department of Agriculture Forest
Service Forest Inventory and Analysis (FIA) program (Bechtold
Fig. 1. Study landscape in New England (dark gray) within area wher

Fig. 2. Decision tree representing our sourc
and Patterson, 2005), are widely available to populate initial condi-
tions within model simulations. However, inventory plots are spar-
sely distributed relative to the typical grain size used within a FLM.
As a result, researchers often impute attributes from field plots
(source plots) to each of the raster pixels within a landscape
(Hudak et al., 2008; Ohmann and Gregory, 2002). Several methods
for spatial imputation exist.

Imputation methods have been used to develop initial condi-
tions for FLMs. ‘‘Landscape Builder’’ (Dijak, 2013) is software
designed to stochastically impute source plots within landcover
and landform spatial layers. This has the strength of using land
e kNN data are available in the eastern United States (light gray).

e plot selection criteria for each pixel.



Table 1
Tree species used in analyses of final imputation map (ks). SPP_CODE represents first
two letters of genus followed by the first two letters of species and are used in Fig. 3.

COMMON_NAME GENUS SPECIES SPP_CODE

balsam fir Abies balsamea abba
red maple Acer rubrum acru
sugar maple Acer saccharum acsa
yellow birch Betula alleghaniensis beal
sweet birch Betula lenta bele
paper birch Betula papyrifera bepa
gray birch Betula populifolia bepo
pignut hickory Carya glabra cagl
American beech Fagus grandifolia fagr
white ash Fraxinus americana fram
black ash Fraxinus nigra frni
tamarack (native) Larix laricina lala
eastern hophornbeam Ostrya virginiana osvi
white spruce Picea glauca pigl
black spruce Picea mariana pima
red spruce Picea rubens piru
red pine Pinus resinosa pire
pitch pine Pinus rigida piri
eastern white pine Pinus strobus pist
balsam poplar Populus balsamifera poba
bigtooth aspen Populus grandidentata pogr
quaking aspen Populus tremuloides potr
black cherry Prunus serotina prse
white oak Quercus alba qual
scarlet oak Quercus coccinea quco
chestnut oak Quercus prinus qupr
northern red oak Quercus rubra quru
black oak Quercus velutina quve
northern white-cedar Thuja occidentalis thoc
American basswood Tilia americana tiam
eastern hemlock Tsuga canadensis tsca
American elm Ulmus americana ulam

Table 2
State forests used in the independent validation. n = number of inventory plots in
each forest site. Dissimilarity refers to the compositional dissimilarity (Bray–Curtis)
between the inventory plots collected by the state forests and the imputed FIA plots
within the boundary of that state forest. Similarly, the correlation refers to the
Spearman correlation coefficient between species’ basal area in the state forest plots
and the imputed FIA plots within the boundary of that state forest.

STATE FOREST n DISSIMILARITY CORRELATION

Warwick state forest 17 0.318 0.858
Arthur Wharton Swann state forest 17 0.313 0.773
Cookson state forest 17 0.431 0.748
Savoy Mountain state forest 20 0.201 0.845
Wendell state forest 22 0.319 0.798
Freetown-Fall River state forest 23 0.410 0.531
Kenneth Dubuque Memorial state forest 40 0.231 0.921
October Mountain state forest 52 0.340 0.844
Victory forest 130 0.305 0.934

M.J. Duveneck et al. / Forest Ecology and Management 347 (2015) 107–115 109
form and land cover in the imputation but the weakness of relying
on a stochastic process for the final imputation. Other forest sim-
ulation modelers have developed ad hoc methods for initializing
forest conditions for FLMs based on stochastically imputing source
plots based on previously mapped forest types (Duveneck et al.,
2014b; Scheller et al., 2008). These imputation methods include a
stochastic component whereby source plots are randomly assigned
to a given pixel within some constraint (e.g., a group of source plots
matching pixel forest type are eligible for one to be stochastically
assigned to that pixel).

The nearest neighbor (kNN) imputation method integrates spa-
tial environmental data with satellite imagery to determine the
nearest neighboring source plots across multiple spatial environ-
mental variates for each map pixel. Generally, kNN involves multi-
ple individual source plots (k) assessed for each pixel (Ohmann and
Gregory, 2002). Nearest neighboring plots are determined from the
lowest multi-dimensional distance of remote sensed and or other
spatial environmental variates (e.g., phenology, topography, and
climate), defined as feature-space. Plots measured at each pixel
can be equally weighted or weighted in proportion to their dis-
tance from source location to potential imputation location in fea-
ture-space. In the case of distance-weighted kNN, k1 for each pixel
equals the inventory plot whose distance from source location to
potential imputation location in feature-space is smallest (i.e. the
nearest neighbor). k2 equals the source plot whose distance is
the next smallest, and so on. Some imputation methods predict a
single imputation source plot for each pixel (k1), while other meth-
ods predict values for each pixel by aggregating information from
multiple source plots (kn>1) (Wilson et al., 2012). Averaged plot
conditions are not useful for representing forest conditions used
by a FLM as they require an explicit maintenance of the within
stand species covariance structure, which is lost when source plots
are averaged together.

Imputation methods that provide a single nearest
neighbor source plot (i.e. smallest feature-space) include: most-
similar-neighbor (MSN) which use a canonical correlation analysis
distance metric (Moeur and Stage, 1995) and gradient-nearest-
neighbor (GNN) which use a canonical correspondence analysis dis-
tance metric (Ohmann and Gregory, 2002). Single k1 GNN (Spies
et al., 2007; Thompson et al., 2011, 2006) and MSM (Hassani
et al., 2004; Nothdurft et al., 2009) neighbor products have been
used in forest landscape analyses. The single nearest neighbor
approaches can be problematic because these imputation methods
are typically applied over large areas, which presents a risk of
source plots being imputed over long geographic distances, even
though the distance from source plot to imputation pixel in fea-
ture-space is small (Grossmann et al., 2009; Hudak et al., 2008;
Ohmann et al., 2014). Such long distance imputations can result
in species being mapped outside their home range (Grossmann
et al., 2009; Wilson et al., 2012). Given anticipated species range
shifts due to climate change (Duveneck et al., 2014b; Iverson
et al., 2008), reliable representation of species ranges at the start
of simulations is necessary to understand species migration and
other initial condition departures.

We developed and made available an imputation map for New
England (Harvard Forest Data Archive #234). We constructed the
map using a previously published nearest neighbor analysis using
kn>1 (Wilson et al., 2012). Our methodology is based on source plot
similarity in the predictor variables of feature-space, species com-
position, and geographical distance between imputed source plots
and raster cells. We validated map attributes at an ecoregional
scale (Wang et al., 2014). We expect our regional map of imputed
forest inventory plots to be useful for a myriad of New England for-
est landscape ecology projects that depend on reliable knowledge
of current conditions and we believe the method could be applied
to other regions.
2. Methods

2.1. Study area

Our study area includes the forested areas within the six New
England states in the northeastern U.S. (Rhode Island,
Connecticut, Massachusetts, New Hampshire, Vermont, and
Maine) (Fig. 1). Total forest cover within this 18 million hectare
region exceeds 80% but ranges from 50% (Rhode Island) to 90%
(Maine). The forests span a diverse ecological gradient that
includes spruce-fir forests in northern Maine to oak-maple and
pitch pine forests in southern New England (Foster and Aber,
2004; Tang and Beckage, 2010). Elevations range from sea level
to nearly 2000 m above sea level in the White Mountain Range
in New Hampshire. The region experiences annual mean tempera-
tures ranging from 3 to 10 �C (mean Jan temp = �6 �C; mean July



Fig. 3. Observed mean tree species basal area and standard error (m�2 ha�1) of FIA plots (black dots and lines) in ecoregions: (A) 1 through 16, (B) 17 through 32, and (C) 33
through 40, compared to imputed pixels of the first neighbor map (k1) (light gray), and the multiple k selection map (ks) (dark gray). The number of FIA plots varied in each
ecoregion (FIA n). Although all species were used in the dissimilarity calculation, only the 15 most abundant species ranked by basal area were plotted. Species codes
correspond to species listed in Table 1. Ecoregion codes correspond to the map in Fig. 5.
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temp = 19 �C), and average annual precipitation from 79 to 255 cm.
The region was almost completely forested until the 17th C, when
two centuries of logging and agricultural clearing removed more
than half of the forest cover and cut-over most of the rest
(Foster, 1992; Thompson et al., 2013). Forest cover reached its
nadir in the mid nineteenth century, after which widespread farm
abandonment and population concentration initiated a century of
natural reforestation and forest growth. The modern landscape
reached its apex of reforestation recently and is again experiencing
a slow loss of forest cover in all six states (Foster et al., 2010).

2.2. Nearest-neighbor spatial data selection

We used an existing kNN imputation analysis recently con-
ducted for the eastern United States using equal weighting and a
canonical correspondence analysis distance metric (Wilson et al.,
2012). This process used vegetation phenology derived from
MODIS imagery and spatial environmental variables to impute
source plots from the FIA database to each 250-m pixel across
the eastern United States (Fig. 1). Because the original kNN imputa-
tion products were derived for all of the eastern United States, all
FIA plots from the eastern United States were considered as source
plots in the Wilson et al. (2012) imputation. Source plots used in
this imputation were measured between 2001 and 2006. For each
250-m pixel in our study area, we assembled the first five nearest-
neighbor plots (k1:5).

We built a screened-selection map (hereafter, ks) by selecting
the best source plot from the five nearest neighbors in feature-
space for each 250-m pixel in our landscape as follows (Fig. 2).
Because our final map product was focused on forests rather than
other land uses, we included only the map pixels classified as for-
est within the National Land Cover Database (NLCD 2011) (Homer



Fig. 3 (continued)

M.J. Duveneck et al. / Forest Ecology and Management 347 (2015) 107–115 111
et al., 2012). For each pixel, we screened out source plots that did
not include trees and source plots that included tree species that
did not match historical species range distribution (Little, 1971).
We screened species range distribution in order to reduce erro-
neous spatial representation of tree species. Of the remaining
neighbors for each pixel, we choose the closest source plot based
on geographic (Euclidian) distance from source plot to imputation
pixel. If none of the five neighbors remained, we selected the geo-
graphically closest pixel following the screening process described.
For evaluation purposes, we compared ks to the first-neighbor map
(k1) where, each pixel was based on the nearest neighbor plot
without being screened for species distribution, nor geographic
distance.

2.3. Spatial imputation evaluation

We evaluated the selection protocol at a sub-regional scale. For
validation, we utilized both a study-area-wide network of
inventory plots (not independent of source plots) within ecore-
gions, and a smaller, independent inventory plot network within
state forests. For our ecoregion evaluation, we identified FIA field
plots and associated tree data within 40 EPA level IV ecoregions
in New England (Environmental Protection Agency, 2012). We
compared average tree species (tree species listed in Table 1) basal
area (m2 ha�1) of FIA field plots to average tree species basal area of
the imputed source plots within each ecoregion. We obtained
exact coordinates of FIA plots through a research agreement
between Harvard University and the U.S. Forest Service, Northern
Research Station. From the imputation map, we removed pixels
where actual FIA plots were located in order to reduce circularity
in the evaluation.

As an independent validation, we compared the species basal
area distribution of empirically measured plot data from several
state forests to our final imputation map. We sought sites in New
England where inventory data, collected in a method comparable
to the FIA, were publically available. Despite contacting state



Fig. 3 (continued)

Fig. 4. Number of FIA plots compared to average Bray–Curtis dissimilarity in each
ecoregion (r2 = 0.35, p < 0.05).
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forests in all six states, we were only able to obtain data from
Massachusetts and Vermont. State forests in Massachusetts were
measured according to state continuous forest inventory protocols
(Massachusetts Bureau of Forestry, 2014). The Victory State Forest
in Vermont was measured using similar protocols. From these state
forests, we compared the species distribution from the state forest
inventory data to the aggregated imputed plots representing these
forests.

Within ecoregions and state forests, we calculated Bray–Curtis
community dissimilarity (Bray and Curtis, 1957) between the field
inventory plots and the plot imputed pixels as a measure of
imputation quality. Bray–Curtis dissimilarity is most strongly
affected by species with high abundance, is not affected by joint
absences, and is not overly affected by outliers (Quinn and
Keough, 2002). Bray–Curtis dissimilarity values range between 0
and 1 with 0 being the most similar and 1 being the most dissimi-
lar. In addition, we calculated the rank correlation (Spearman) of
species basal area between inventory plots and imputed source
plots as a measure of how well the order of species abundance
was represented by the imputed map in both the ecoregion and
state forest data sets.

We summarized the frequency of kNN neighbors (k1:5) used in
the final map in order to evaluate distribution of the source neigh-
bors. In addition, we summarized the frequency distribution of
geographic distance from source plots to imputation pixels in order
to evaluate how distant the imputed plots were sourced. As a
visual demonstration of the map, we built and plotted a forest type
map of the landscape. To build the forest type map, we joined our
final imputation map of FIA plot numbers with plot-assigned forest
types (Bechtold and Patterson, 2005) and aggregated them accord-
ing to Canham et al. (2013). All analyses were done using the raster
(Hijmans, 2014), Vegan (Oksanen et al., 2013), and base packages
in R (R Core Team, 2013).

3. Results

The imputation map included a decreasing selection frequency
of the k1 through k5 neighbors. Specifically, the nearest neighbor in
feature-space (k1) was used most frequently in the final map
(21.2% of pixels) followed by k2 (20.6%), k3 (19.5%), k4 (19.3%),

and k5 (19.3%) neighbors. In our species selection screen, only
0.6% of pixels were not assigned one of the k1:5 neighbors
(Fig. 2); these pixels were assigned the geographically nearest
source plot. In our final map, 81% of pixels came from source plots
within 50 km. 91% of pixels came from source plots within 100 km.

Overall, our screening algorithm produced a 250 m map (ks) of
imputed FIA source plots that captures regional gradients in tree
species composition. Our state forest validation resulted in dissimi-
larity between inventory plots and imputation plots from 0.201 to
0.431 (Table 2). Spearman rank order correlation ranged from
0.531 to 0.934. State forest sites with larger sample sizes generally
resulted in lower dissimilarity and higher rank order correlation
(Table 2). In our ecoregion evaluation, ks largely captured the
ecoregion variation in species composition as measured by the
actual FIA plots across the region (Fig. 3). Average dissimilarity
between FIA plots and the imputation map at the ecoregion scale
was 0.12 (sd = 0.07). Average Spearman rank order correlation
between FIA plots and imputed map was 0.93 (sd = 0.06) indicating
that the order of species dominance was well represented by the
imputation map in each ecoregion.



Fig. 5. Forest type assigned to ks imputed FIA forest plots in New England. Numbers and black polygon boundaries correspond to ecoregions in Fig. 3. Non-forest
classifications come from National Land Cover Database (2011).
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The quality of the imputation was strongly related to the num-
ber of FIA plots measured in the field within each ecoregion.
Dissimilarity and number of field plots within each ecoregion were
significantly correlated (Fig. 4) (p < 0.05). For example, in the
southern New Hampshire/North Central Massachusetts ecoregion
(ecoregion 7), 214 FIA plots indicated low variance among FIA field
plots (as measured by low standard error) and low dissimilarity
between FIA plots and our map (Dissimilarity = 0.06).
Alternatively, in northwestern Vermont (ecoregion 39), 42 FIA field
plots indicated higher variance among plots and higher dissimilar-
ity between plots and our map (Dissimilarity = 0.16). Finally, Our
forest type map, having extracted FIA ‘forest type’ for each pixel,
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well-represents the broad ecological types and transitions
throughout New England (Fig. 5).
4. Discussion

This imputation map (ks) captures regional variation in species
composition, as evidenced by the low dissimilarity between inven-
tory plots and our imputation map and the high, rank order
correlation of tree species. This was evident in both our smaller,
state forest data and across ecoregions. Higher dissimilarity mea-
surements in our smaller state forest data compared to the ecore-
gion evaluation may be the result of specific management regimes
practiced at state forests, which is a factor not considered in the
Wilson et al. (2012) algorithm. Also, the state forest data sets used
different sample plot designs and field sampling protocols than
those of the FIA program. Nevertheless, at state forests and ecore-
gions with larger sample sizes, our imputation map resulted in
greater representation of inventory data.

Each pixel in ks is associated with a single FIA source plot. In
Fig. 5 we show the forest type associated with each pixel imputed
FIA source plot. Users of our map can link to any FIA attribute mea-
sured at those plots (e.g., tree list, stem density, basal area, bio-
mass, etc.).

The most significant contribution of our algorithm was the
removal of source plots from pixels based on whether all species
were within their historical range. This step reconciles the two
major limitations for using KNN maps in FLMs—i.e. the simulation
require a single forest condition and thus cannot use averaged con-
ditions across kn>1 plots and using k1 can result in species being
imputed outside their home ranges, which is unacceptable for
any analysis of long term compositional change. We recognize that
variation in precision and accuracy exists in the modern species
distribution maps that we used (Little, 1971), and that in some
cases species may be migrating from their historical ranges (e.g.,
Leithead et al., 2012). Nonetheless, we assume that climate change
induced migration of tree species in recent decades is negligible.
Finally, as compared to the k1 map, ks suggests a better representa-
tion of regional species composition as measured by reduced
ecoregion dissimilarity to FIA plots.

There is considerable spatial variation in the quality of the
imputation as measured by community dissimilarity. The variation
in dissimilarity was also related to the number of field inventory
plots within each ecoregion. Although our validation used field
inventory as the known truth, we found greater variance in the
field inventory estimate when fewer plots existed in a given ecore-
gion (Fig. 4), as would be expected from a sample of the pop-
ulation. In some cases, where the field plot density is very low, it
is possible that the actual species distribution is better represented
by our map than the FIA plots that we used for validation.

Although our neighbor screening process did not require that
source plots come from a limited distance to pixels, we selected
the closest neighbor in geographic space from the eligible neigh-
bors. As the k1:5 eligible neighbors were approximately equidistant
in feature-space (Wilson et al., 2012), within the five nearest
neighbors, we used Euclidean distance in geographic space over
feature-space distance. This resulted in the majority of pixels
represented by local/regional source plots. This further provides
spatial relevance to ks where otherwise pixels could have been
imputed from long distances. Additionally, the frequency dis-
tribution of the k1:5 neighbors in ks puts confidence in the original
kNN methods (Wilson et al., 2012).

It would be possible to create a more elaborate screening pro-
cess, which may result in an improved imputation map. Indeed,
we examined several alternative algorithms. For example, we
screened neighbors matching 2011 NLCD forest types (Homer
et al., 2012) in addition to the species distribution screen.
Compared to FIA forest types (e.g., sugar maple/beech/yellow
birch), NLCD forest types are more general (e.g., deciduous, conifer-
ous, and mixed) and the native pixel resolution was 30 m com-
pared to 250 m of the kNN maps. However, the use of NLCD
screen resulted in greater ecoregion dissimilarity to FIA plots and
more than 30% of pixels with no neighbor match resulting in target
cell replacement. Ultimately, we rejected the NLCD screen and
believe that the level of accuracy obtained with the existing algo-
rithm achieves the right balance between accuracy and parsimony.

Our imputation map builds on and adds value to the kNN pro-
duct previously developed for the region (Wilson et al., 2012). In
addition, we introduce methods to further screen and evaluate
an existing kNN imputation product for simulation and other
applications. Future research may adapt our methods, or a deriva-
tion of these, to further provide and evaluate plot level data at
regional scales. This imputation map will be valuable to many for-
est ecology applications in New England. In addition to forest com-
position change modeling, highly detailed forest maps with species
specific attributes from individual plots such as this can be used to
monitor habitat structure (e.g., Chandler et al., 2012; Dijak et al.,
2007; Nonaka et al., 2007) and spatially analyze biodiversity
(e.g., Anderson and Ferree, 2010). Although one can create a plot
level map of any attribute measured in the field and included in
the FIA database, this comes with the caveat that only tree species
composition has been validated in this paper. We expect this map
to be used as a foundation for many applications that rely on spa-
tial representation of plot-level data in New England (HF LTER,
2012; NECSC, 2014; NH EPSCoR, 2011).
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