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Editor’s Note: Eastern hemlock (Tsuga canadensis) is an iconic tree species in northeastern 
forests and the Appalachian Mountains. It has faced peril in the past but is now faced with 
perhaps its most deadly threat—the invasive and devastating insect pest, hemlock woolly 
adelgid. In this new book, Harvard Forest director David Foster and several colleagues and 
scientific collaborators explore the history and ecology of and challenges to the majestic 
eastern hemlock.

Presented here by permission of the publisher is an excerpt from Chapter Three:  
Prehistory to Present, written by Wyatt Oswald, David Foster, and Jonathan Thompson. In 
the previous part of the chapter the authors describe the process of extracting 3-inch-wide, 
3-foot-long sediment cores from a pond for later paleoecological analyses of the material.
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HEMLOCK has changed in abundance numerous times in the past, and it now 
faces an extreme threat from the hemlock woolly adelgid. As we seek to con-
sider this new dynamic in perspective, we are fortunate that hemlock has left a 

remarkable array of records that shed light on its ecology under a wide range of condi-
tions. These historical and paleoecological archives inform the field studies, experiments, 
and modeling activity that we undertake in the woods and back in the laboratory. A look 
at hemlock’s fossil record helps us examine how hemlock has changed with the intense 
human activity in the past few centuries and allows us to assess how it might cope with the 
combination of insect onslaught, climate change, and ongoing human activity today and 
in the future. It also enables us to evaluate whether there is any hope that hemlock may 
stave off or recover from the population collapse associated with a new invasive organism.

We use a variety of tools and techniques to reconstruct the historical dynamics of 
the forest environment and vegetation, as well as individual tree species. To reach back 
furthest, we study pollen, other microscopic fossils, and diverse signatures of past envi-
ronments that are preserved for millennia in the sediments of lakes, bogs, swamps, and 
other wetlands. More recent centuries and decades come alive in historical land-survey 
documents, field studies of old-growth forests, and tree rings that yield insights into 
the composition and structure of forest vegetation from the time of European arrival 
forward. In some cases, the particular qualities of hemlock provide a record that bridges 
prehistory and history. For example, by carefully dissecting the deep beds of needles that 
accumulate on the cool, moist ground beneath hemlock, we find pollen and other plant 
parts that yield a chronological record connecting the postglacial period with the time 
since European settlement. From these distinctive soil layers comes a record of changes 
in the composition of individual forest stands that can be linked to the evidence from 
tree rings, uprooted trees, and the many other clues that are present in the hemlock forest 
itself. Those of us conducting retrospective studies at the Harvard Forest have employed 
this full array of approaches, exploiting every opportunity to reconstruct the distribution, 
abundance, and dynamics of hemlock across New England and going back thousands of 
years into the past.

ONE HUNDRED and fifty years ago, Henry Thoreau mused in his journal on what 
stories might be gleaned from the pollen grains accumulating in small pools and 
ponds, but it took nearly a half century more for the Swedish naturalist and geologist 
Lennart von Post to first take advantage of this phenomenon in studying the history 
of plants over long periods. He published a report in 1917 showing that the grains of 
pollen identified in Scandinavian peats told an astonishing story of dynamic changes 
in vegetation composition.

Two characteristics of pollen make it a particularly useful tool for interpreting the past. 
First, pollen grains are remarkably durable because they are shielded by an outer layer of 
complex chemical compounds that protect the sperms cells as they get transferred from 
the stamens to the pistils of flowering plants, or from male to female cones in conifers 
like pine or hemlock. Second, the pollen of different species and genera of plants is dif-
ferent enough to allow us to identify them. It comes in a wide range of shapes, sizes, and 
surface markings, all of which allow palynologists—the meticulous and patient scientists 
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who toil over microscopes, examining these minute fossils—to separate and identify the 
pollen or spores of particular plants. Some pollen can only be distinguished at the level 
of the plant family (such as roses, buttercups, or peas) or at the genus level (as is the case 
for oak, which has many different species but unfortunately only a single type of pollen). 
In other cases, finer distinctions can be made, such as with the pines, the maples, the 
hickories, and the spruces, where many but not all of the species can be separated. But 
in the case of two of our most important species—hemlock and beech—we are fortu-
nate that they can be identified individually. Indeed, the pollen of each of these species 
is rather distinctive. Hemlock pollen grains look like rough spheres with a fringe along 
their equators. By contrast, each beech grain has three deep furrows with circular pores 
in the middle. Palynologists puzzle over these and many other distinctions through their 
microscopes, with the assistance of reference materials, photographic keys, and colleagues. 
Over time—many years to a lifetime—the many different types of pollen have become 
readily distinguishable.

The different pollination strategies of individual species influence how reliably we’ll 
find a particular tree’s pollen in the cores we extract. Some species produce small amounts 
of pollen in an attractive flower to enlist the assistance of insects, birds, and even small 
mammals to transfer the tiny grains from the flower of one plant to that of another of the 
same species. The efficiency of this process and the characteristics of these pollen grains, 
which are often comparatively large, heavy, and sticky, ensure that very few errant grains 
end up in some sediment. That means that for many plants that use bright and showy 
flowers to attract the attention of pollinators, there is but a scant record in the mud. 
Among New England trees, the pollen of chestnut and maple, for example, is largely 
distributed by insects, so even though these species were or are often abundant, they are 
underrepresented in the pollen record. If, however, a plant relies on the wind to distribute 
its pollen grains— and most of our abundant trees such as oaks, birches, beech, and all of 
our evergreen species use this strategy—it’s a different story. These species produce prolific 
amounts of pollen, each year sending clouds of pollen aloft so that some lucky few might 
happen upon a female flower.

The vast majority of these pollen grains miss their mark and end up in the sediments 
of lakes, wetlands, and forest soils. A large lake collects pollen not only from the adjacent 
vegetation, but also from plants in the landscape as far as ten to a hundred miles away. In 
contrast, pollen accumulating in vernal pools, small ponds, bogs, or soils is much more 
likely to be derived from nearby plants, including those hanging immediately above it. 
This means that records from those types of small basins reflect the local vegetation. 
Paleoecologists need to take these factors into account in their interpretation of records. 
They can also apply this knowledge to choose sites that sample the vegetation at either 
local or regional scales.

Regardless of the site, changes in the pollen grains found in successive layers of sedi-
ment indicate whether the composition of the vegetation has changed through time. The 
key to obtaining a good and continuous record is locating an environment with slow 
decomposition, in which such layers can accumulate gradually and remain undisturbed. 
We find such conditions in lakes, where fine-grained mineral and organic matter settle 
out as mud in the deepest areas and then are preserved in the cold and oxygen-poor 
environment. An alternative environment is wetlands, where waterlogged conditions 
inhibit decomposition, and the vegetation grows on a surface composed of the remains of 
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Researchers extract sediment cores from Harvard  
Forest’s Hemlock Hollow.

The top of an eastern hemlock (Tsuga canadensis) pokes above 
the canopy on the Prospect Hill tract of Harvard Forest.

A
L

L
 I

M
A

G
E

S 
B

Y
 D

A
V

ID
 F

O
ST

E
R

An extracted sediment core is finished and labeled by researchers.
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A view of Hemlock Hollow.

In Harvard Forest’s Pisgah Tract in southwestern New Hampshire, old-growth eastern hemlocks and eastern white 
pines (Pinus strobus) that were blown down by the 1938 hurricane provide structure to the modern forest.
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previous generations of plants. In New England, where glaciers scoured the earth surface 
during the last ice age, the duration of both of these sedimentary archives is limited to 
the period since the ice melted, the land surface stabilized, and the climate allowed the 
growth of plants. Thus, the oldest lake records span about twelve to fifteen thousand years, 
and many wetlands only extend back five or six thousand years.

MEANWHILE, back in the lab, we slice the cores into thin sections, half an inch or less 
in length, and carry out a series of treatments and analyses of the material. It’s not just 
pollen grains that we seek. For instance, we want to know the age of the mud at different 
depths in the core, so we extract small samples of sediment or plant material and send 
them to a specialized (and expensive) laboratory that assesses the radiocarbon content 
of the material. We also measure the sediment’s organic and mineral content or particle 
sizes to determine changes in the lake environment, including past droughts, which  
are often registered as layers of sandy, inorganic material. In combination with other 
chemical analyses, these sedimentary characteristics provide a detailed record of past 
variations in climate.

We isolate pollen grains as well as the spores from ferns and other early plants by sub-
jecting mud samples to intense acid baths, washings, centrifuge spins, and sieving steps. 
It’s remarkable that these intense treatments remove most of the organic and mineral 
material but leave a tiny residual fraction that contains the concentrated and quite intact 
pollen, along with bits of insects, charcoal, and other miscellaneous detritus. The tiny 
pieces of charcoal and insect remains, both of which are as highly resistant to decay as 
pollen, are sieved, identified, and counted under a microscope to provide information 
about past wildfire activity and insect outbreaks.

We mount the residue on microscope slides and examine them with high-powered 
magnification, carefully scrutinizing and identifying every pollen grain that is encoun-
tered. At any given level, a palynologist might identify 300 to 500 pollen grains through 
a painstaking process that can take anywhere from two to eight hours or more.

Pollen data tell us the relative abundance of different species. If 50 out of 500 pollen 
grains at a given level are identified as hemlock, this would yield a value of 10 percent. 
Knowing whether or not a species is a prolific pollen producer helps us to assess how well 
the relative abundance of its pollen corresponds to its actual abundance on the landscape. 
The pollen of insect-pollinated trees such as maple and chestnut rarely exceeds 5 percent 
of the total, whereas pine, birch, and oak can easily reach 10 to 20 percent or more. Con-
sidering these factors, we would assume that 5 percent chestnut means a significant pres-
ence. At its very crudest, a pollen diagram will show at what point in the past hemlock or 
any other plant was absent, rare, or abundant. In most cases, it will also reveal fascinating 
curves depicting the long-term variation in these species in relationship to other species 
and many environmental factors.

In well-studied regions such as eastern North America, many dozens of pollen records 
have been analyzed over the last few decades. In southern and central New England, the 
Harvard Forest group has analyzed cores from more than three dozen sites. We make the 
data available to everyone electronically on our website and collaborate with many people 
who use them. We also keep the cores from which samples have been taken in cold storage 
for our future needs and those of other scientists who may be interested in examining 
our records in more detail or for searching for other materials and clues in the mud. Our 
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network of study sites enables us to understand how the environment and ecosystems have 
changed in certain places, and how geographic patterns of climate and vegetation have 
shifted through time. They also help us reconstruct the migration history of various trees, 
including hemlock, as they returned following the last glacier.

AT THE HEIGHT of the last glacial period, approximately 20,000 years ago, a mile-
thick ice sheet covered the New England landscape, with its southern limit extending just 
to or slightly beyond the modern-day coastline. Pushing and carrying material southward 
like a combination of a bulldozer and conveyor belt, the immense glacier piled up linear 
landforms called moraines that today form the higher parts of Cape Cod, Martha’s Vine-
yard, Nantucket, other coastal islands, and Long Island. We use the term “sea level” as if 
it were a constant, but with vast quantities of water stored on land in these continental ice 
sheets, the sea level then had dropped more than 300 feet. New England and other coastal 
regions extended thirty-five miles or more outward on the exposed continental shelf. Pollen 
records show that, during this peak of ice and cold global temperatures, hemlock thrived far 
south—in the valleys and hilly landscapes in the Southern Appalachians, where oaks, hick-
ories, and tulip poplars thrive today. As the climate warmed and the ice melted back to the 
north, hemlock migrated northward, arriving in New England around 10,000 years ago. 
To get to the Northeast from the Southeast, populations of hemlock had to travel nearly 
900 miles in approximately 5,000 years, a migration rate more rapid than we might expect 
based on our modern studies of the dispersal distances of the species in our forests today.

Most estimates of migration are based on standard observations of the dispersal of a  
parent tree’s seeds and the establishment of new seedlings, which are then extrapolated over 
time. The small, winged seeds that drop from hemlock cones generally fall within 100 feet 
of the parent tree, and as a result hemlock moves more slowly across the landscape than 
most species. For example, in many New England forests today, hemlock has yet to travel 
the short distances required to return to stands from which it was extirpated two or three 
centuries ago. In contrast, the seeds of birches and pines may be dispersed 200 feet within 
a stand and more than 700 feet across an open landscape, enabling them to be highly suc-
cessful at colonizing abandoned agricultural fields.

Given these factors, we would expect hemlock to be among the slowest of species to 
have migrated north after the ice age. Indeed, the characteristic slow movement of hemlock 
initially led to predictions that, during its northward march, it would have lagged well 
behind the availability of suitable environmental conditions that developed as the climate 
warmed. Rather surprisingly, however, all current evidence suggests that hemlock and the 
other major tree species migrated fairly rapidly, effectively keeping up with the climatic 
conditions that were able to support them. Consequently, the order in which the species 
arrived in New England fits nicely with our general understanding of their individual envi-
ronmental requirements, as well as their modern distribution. Open, treeless tundra occu-
pied the harshest climates in the early postglacial landscape. As the climate became more 
hospitable, the tundra was invaded by northern boreal species—spruce, larch, and birches. 
With further warming, white pine followed, and then came the truly temperate tree species, 
including hemlock. Far to the north, the tundra continued to follow the receding glacier 
toward the pole, and, where they could, boreal forest trees then seeded into the tundra.

Paleoecologists have struggled to reconcile the observed and expected rates of migration 
and have even given a name to this incongruity: Reid’s paradox. The issue has emerged as 
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one of great importance today because of the looming likelihood of rapid climate change 
and the question of how plants will respond and cope with new conditions. We are employ-
ing all sorts of approaches—genetics, simulation modeling, field and laboratory studies of 
dispersal, and pollen analysis—as we continue to grapple with the question. Have we over-
estimated the rates at which trees moved in the past, or are we underestimating their antici-
pated and potential future dispersal rates? One possible way to account for a more rapid 
past dispersal is to invoke a history of rare long-distance dispersal events, such as abrupt 
gusts and updrafts in wind that may loft a seed into the jet stream, or the rare flight of a bird 
in which it carries a seed for dozens of miles. In this way, a chance event can disperse seeds 
great distances. If such an event happened even once a decade, it may have been extremely 
important in shaping patterns of movement over centuries. We cite uncommon processes 
such as these in our modeling discussions when talking about the dispersal of insects like 
the hemlock woolly adelgid or the adaptations of plant species under future climates. As 
research on this dilemma progresses, the answers to these questions will have important 
implications for predicting the future shape of our forest ecosystems and for gauging the 
ability of many species to survive the expected changes in climate in coming decades.

The long-term history of hemlock also reveals the extreme malleability of forest types 
and assemblages, including those that are familiar to us today. Hemlock arrived in the 
northeastern United States about 2,000 years after white pine and 2,000 years before 
American beech, even though today it frequently grows alongside both these species, and 
we often think of them as members of the same plant communities. Given beech’s similar-
ity to hemlock in shade tolerance and suitability for forest canopies, and the manner with 
which they coexist in many places today, it is hard to imagine that hemlock grew in New 
England for 2,000 years without beech. Similarly, it was only with the arrival of hemlock 
that the New England landscape developed forests akin to the old-growth stands of white 
pine and hemlock studied by early ecologists and described in many Harvard Forest studies, 
including those by Richard Fisher, Bob Marshall, Tony D’Amato, and Dave Orwig. The 
contrasting histories of these various trees illustrate that species respond in highly indi-
vidualistic ways to environmental change. Because conditions in the past were distinctly 
different from the present, we witness the species behaving in significantly different ways 
over time. The assemblages of plants and animals that are familiar to us today are actually 
quite ephemeral in deep time and space.

It is through such understandings that we’ve developed an ecological theory that accepts 
and explains the separate though interactive behavior of species. One of the earliest and best 
articulations of this theory came from a noted northeastern botanist—Henry Gleason of 
the New York Botanical Garden—who developed the “individualistic concept of ecology” 
in the early 1900s. This simple but revolutionary theory posited that the makeup of vegeta-
tion on a site was determined by the actions of the many individual species, each of which 
operated quite separately from others and according to its unique ecological qualities. 
Although this concept was debated for decades, some of the strongest evidence that led to 
its conclusive support came from paleoecological studies that showed the highly disparate 
behaviors of different tree species in migration and in response to climate change and to 
natural and human disturbances. While this understanding of plant behavior and ecology 
emerged from the past and helps us explain our current landscapes, it should also prepare 
us for unanticipated combinations of species to appear under the anomalous conditions 
expected for the future.
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Dead trunks of American chestnut (Castanea dentata) intertwined with dying eastern hemlocks.
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Coring dozens of ponds and bogs and examining tens of thousands of pollen grains 
preserved in their sediments has helped us outline the following picture of New England’s 
prehistory. After a lengthy dry period, from around 11,500 to 10,000 years ago, during 
which white pine dominated the landscapes of the northeastern United States, hemlock 
increased in abundance across much of New England, then reached its peak population 
levels during a relatively warm and moist interval from 8,000 to 5,500 years ago. Beech had 
arrived to join hemlock in the region at that point, and with oaks, birches, and maples also 
present, and white pine and pitch pine already well established, the overall composition of 
New England forests was quite similar to what we find in our landscape today. Although 
the environmental conditions of that earlier time appear to have been well suited for 
hemlock, some of our recent research suggests that brief periods of cold climate occurred 
every few centuries, with deleterious impacts on hemlock in some parts of New England. 
Various lines of evidence, including chemical analyses of lake sediment records, show that 
the generally warm, moist conditions were interrupted occasionally by a century or so of 
cold, dry climate. And while hemlock and other species did not always respond uniformly 
to these events across the region, some of our relatively detailed pollen records feature 
abrupt, short-lived declines of hemlock, including significant population reductions at 
around 8,000 and 6,000 years ago. Hemlock certainly didn’t disappear from the landscape 
during these events, but the pollen data do suggest that it became much less abundant 
during times of cold, dry conditions.

Then, around 5,500 years ago, hemlock experienced an abrupt, range-wide collapse. 
For about two millennia it nearly disappeared throughout its entire range in the Northeast 
before it rebounded about 3,500 years ago. Although it recovered greatly across the region, 
at most sites hemlock never returned to its predecline levels. This hemlock decline is one of 
the most thoroughly studied aspects of the postglacial vegetation history of North America, 
yet we still don’t completely understand what caused it or sustained it. Conclusions drawn 
over the past three decades variously attribute hemlock’s decline to a species-specific disease, 
a massive insect outbreak, a sustained shift to drier climate, a series of drought events, and 
a combination of these factors. It is now quite clear that climate was strongly involved  
and that in some ways the big decline was a larger version of the earlier declines witnessed 
during cold spells. If the trees weren’t killed directly by drought, then the associated envi-
ronmental conditions either stressed hemlock in ways that made it more susceptible to 
insects or disease or facilitated an unusual outbreak of a pest or pathogen. (It was this record 
of minor events leading to the major drought and decline in hemlock that our colleague 
correctly surmised he was seeing in the various layers of sand we observed that day on the 
raft in the middle of the lake.)

Hemlock eventually recovered, and pollen records reveal that it was again abundant in 
New England forests from around 3,500 years ago to the time of European settlement. Our 
studies of the sediments of Hemlock Hollow, a vernal pool hidden in the large hemlock 
forest on the Prospect Hill tract of the Harvard Forest, have yielded a detailed stand-scale 
record of forest changes over the last 10,000 years. The local nature of this record enables 
us to examine the fine-scaled ecological response of an individual forest to various changes 
in its environment. Here we can see that when disturbances occurred, including fires every 
1,000 to 3,000 years, hemlock abundance dropped abruptly and then rebounded slowly, 
taking 500 years or more to recover to original levels. In the recovery from these major 
disturbances—intense events that we interpret to have killed most of the larger trees—the 
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successional sequences brought back the species that we know so well and comply exactly 
with our understanding of the modern ecology of New England forests. For much of the 
pre-European period when hemlock declined, it was replaced around Hemlock Hollow by 
some combination of early successional and rapidly reproducing and growing species—
white pine, birches, and other hardwoods—as well as more mid-successional, long-lived 
species such as oaks.

Everything changed when chestnut arrived. After spending the ice age in the south-
eastern United States, chestnut slowly migrated north and finally arrived in New England 
2,000 years ago. At Hemlock Hollow we see chestnut employing its phenomenal ability to 
sprout and its rapid growth rate to become the dominant species when the populations of 
hemlock and other species were reduced by disturbance. This pattern occurred following 
fire and also after European settlement and the first episodes of logging in these forests. 
These disturbances affected both species, but chestnut bounced back quickly. Dead chest-
nut boles are a common sight in many hemlock forests today; it is clear from the fossil 
record at places such as Hemlock Hollow that the two species had a close and often recipro-
cal relationship in the more distant past. One other notable observation emerges from the 
long-term record at Hemlock Hollow: regardless of the nature of the disturbance or the 
successional species that followed it, in each case, hemlock recovered from the disturbance 
and eventually returned to dominance. These records offer other instructive insights into 
the broader nature of the New England landscape and its forests. The low abundance of 
charcoal in lake sediments confirms that there was little fire. Meanwhile, the long dura-
tion of hemlock dominance confirms that the region was only infrequently affected by 
fire or any other major disturbances: drought, wind, and ice. Similarly, there is no direct 
evidence of disturbance to or use of these forests by the dispersed populations of largely 
hunting and gathering American Indians who inhabited central New England. Thus, while 
we may assume quite correctly that change is a prominent factor in forest ecosystems, the 
paleoecological perspective demonstrates that New England hemlock forests experienced 
lengthy periods of relative stability.

We also have a detailed map of North American forests just before they were first cut 
and then cleared. For this we can thank a largely anonymous group of seventeenth- and 
eighteenth-century land surveyors. While walking the landscape and demarcating it into 
towns, sections, and ownerships, colonial surveyors recorded the presence of individual trees 
by their species and sometimes by their size. Ecologists have been using these accidental 
forest inventories to reconstruct presettlement forest composition for almost a century. By 
far the most common source for survey records has been the Public Lands Survey of the 
General Land Office, which was established by Thomas Jefferson and covered much of the 
midwestern and western states. But because southern New England was largely settled prior 
to the establishment of the General Land Office in 1785, its survey records are much less 
standardized. Survey-based reconstructions of New England forests typically rely on some 
type of town proprietor records. The English colonies deeded unsettled land in the form of 
regularly shaped towns, often about six miles square. In laying out the boundaries in these 
towns, surveyors identified and blazed “witness trees” as permanent markers at the corners 
of individual lots ranging in size from 1 to 160 acres. Longtime Harvard Forest collaborator 
Charlie Cogbill has spent decades amassing a comprehensive spatial database of these tree 
records from across the Northeast. The maps derived from his witness-tree data set have been 
analyzed by Jonathan Thompson to show how forest composition varied across the region.
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Eastern hemlocks and eastern white pines along the Swift River in Petersham, Massachusetts.
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In northern Maine, spruce, balsam fir, and white cedar dominated the landscape. 
Moving slightly southward into the rest of Maine, New Hampshire, and Vermont, 
hemlock, beech, maples, and red spruce were common, even reaching down along the 
broad uplands of the Berkshires in western Massachusetts and Connecticut. Oaks, pines, 
hickories, and American chestnut picked up from there and were prevalent in the south 
and along the coast. In broad detail, this pattern closely parallels the regional environ-
mental gradient, with cooler and moister conditions to the north and warmer and drier 
conditions to the south. Hemlock became less common farther south and was found in 
increasingly smaller concentrations. Near the coast it would only have occurred in isolated 
stands in protected moist areas.

Pollen records provide context for the witness-tree snapshot of New England vegeta-
tion patterns, including some perspective on the dynamics that were under way when the 
European settlers arrived. For example, we can see that American chestnut was the last tree 
species to reach New England from its glacial refuge in the Southeast, arriving here only 
in the last 1,000 to 2,000 years. Meanwhile, hemlock and beech appear to have already 
begun a slow decline a couple of centuries before colonial deforestation commenced. The 
timing of these declines seems to coincide with the Little Ice Age, a relatively recent cli-
matic interval (A.D. 1550–1850) that triggered physical and ecological changes in many 

Old eastern hemlocks and eastern white pines in Harvard Forest’s Prospect Hill Tract.
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regions of the world, including glacial advances farther north. It may seem counterintui-
tive that two species common in northern New England would be bothered by a shift to 
colder climate. It is quite possible, however, that conditions became both colder and drier, 
with both hemlock and beech suffering due to their relatively high moisture requirements.

The latter part of the Little Ice Age coincided with the expansion of European colonists 
across New England, transforming the land. Region-wide, up to 60 percent of the land 
was cleared for agriculture and the rest was cut—repeatedly in some places—with a peak  
in harvesting occurring in the late nineteenth and early twentieth century. Although  
forest once again covers more than 80 percent of New England, these second-growth 
stands are not the same as those of presettlement times. When we compare the witness-
tree data with present-day forest composition, we find that some species are more com-
mon than they were centuries ago, such as early successional birches, red maple, and pines, 
including the old-field white pines that invaded abandoned agricultural lands. These 
light-seeded, fast-growing, and light-requiring species spread and grew rapidly across 
heavily disturbed areas, thriving after the intense farming and logging subsided. On the 
other hand, some species are less abundant than they were before European settlement. 
Species of mature forests, including hemlock and beech, are much less common than they 
were in the witness-tree surveys. Throughout the Northeast, hemlock declined as much 
as 10 percent over the last 400 years.

When we zoom back in from the region-wide scale to that of the individual landscape, 
we often see considerable evidence of land use in the characteristics of hemlock forests. 
In some cases, seemingly ancient hemlock stands have undergone much greater changes 
in their recent past than we might at first assume. These are the unexpected findings of a 
study led by Harvard Forest researchers Jason McLachlan and David Foster. They set out 
to reconstruct the histories of four old hemlock forests in central Massachusetts, using 
both tree-ring analysis of the largest trees and centimeter-by-centimeter analyses of pollen 
grains preserved in the approximately six-inch-thick layer of organic matter forming the 
top layer of the soil. They found that the stands, dominated today by hemlocks 100 to 200 
years old, had experienced a series of disturbances over the last few centuries, including 
logging, windstorms, fires, and pathogen outbreaks. Indeed, early and mid-successional 
trees such as oaks, pines, and American chestnut had occupied those same stands at dif-
ferent times in the past. In many of the forests, it appeared as though today’s dominant 
hemlocks may in fact owe their current good fortune to the removal of competing species 
by selective logging and the chestnut blight.

Like many of our other retrospective investigations of hemlock, this study of second-
growth stands obliges us to change the way we think about the species, the forests it forms, 
and the way that nature operates. On one hand, forests that appear to be unchanging 
may be relatively recent in origin and shaped by processes that the species has never 
experienced before. On the other, although hemlock forests have been dynamic at times, 
the history of the species in New England has always been one of long-term dominance 
interrupted by infrequent abrupt declines. With such a decline spreading across the land-
scape today, we can expect another lengthy period with little hemlock followed by—we 
can only hope—its gradual return.

Wyatt Oswald is Associate Professor at Emerson College, David Foster is Director of Harvard 
Forest, and Jonathan Thompson is Senior Ecologist at Harvard Forest.
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