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Abstract: New England forests provide numerous benefits to the region’s residents, but are
undergoing rapid development. We used boosted regression tree analysis (BRT) to assess
geographic predictors of forest loss to development between 2001 and 2011. BRT combines
classification and regression trees with machine learning to generate non-parametric statistical
models that can capture non-linear relationships. Based on National Land Cover Database (NLCD)
maps of land cover change, we assessed the importance of the biophysical and social variables
selected for full region coverage and minimal collinearity in predicting forest loss to development,
specifically: elevation, slope, distance to roads, density of highways, distance to built land,
distance to cities, population density, change in population density, relative change in population
density, population per housing unit, median income, state, land ownership categories and county
classification as recreation or retirement counties. The resulting models explained 6.9% of the
variation for 2001–2011, 4.5% for 2001–2006 and 1.8% for 2006–2011, fairly high values given the
complexity of factors predicting land development and the high resolution of the spatial datasets
(30-m pixels). The two most important variables in the BRT were “population density” and “distance
to road”, which together made up 55.5% of the variation for 2001–2011, 49.4% for 2001–2006 and
42.9% for 2006–2011. The lower predictive power for 2006–2011 may reflect reduced development
due to the “Great Recession”. From our models, we generated high-resolution probability surfaces,
which can provide a key input for simulation models of forest and land cover change.
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1. Introduction

New England is a heavily-forested region, and its forests provide numerous benefits to its
residents, including water filtration, flood mitigation, aesthetics and recreation, as well as a source
of timber [1–7]. The forests also play a role in climate regulation, storing an estimated 2239 Tg
of carbon [8] and sequestering an additional 9.7 Tg per year [9,10]. Given the ecosystem services
provided by New England forests, planners in the region have a strong interest in understanding
the dynamics of changing forest cover, in order to assess the possible impact of these changes and to
identify priority areas for conservation (e.g., [11]). Information on changing land cover also informs
projections and scenarios for long-term land cover in the region, providing tools to assess possible
trajectories for long-term changes in ecosystem services (e.g., [12–14]). To help understand ongoing
changes in the New England landscape, we asked: what social and biophysical factors are most
strongly associated with forest loss to development in New England?
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New England has not always been as heavily forested as today. Following the arrival of
European colonists in New England, forests were extensively cleared and cut-over, declining from
over 90% forest cover in 1600 to just over 55% in the latter half of the 19th century [2]. During
the nineteenth century, the American Midwest was opened up for agriculture, and New England
agriculture subsequently declined over the interval from 1870–1970, permitting recovery of forests
to 80% cover, even as the population continued to grow [2]. In 1970, loss of forest to sprawled
development overtook reforestation of abandoned agricultural areas, and forest area began to decline
again [2,15,16].

In recent decades, the primary dynamic of land cover change has been forest loss to
development [15], a trend that is expected to continue [13]. National projections from the USDA
Forest Service “Forests on the Edge” project identify New England forests as some of the forests
at highest risk from development nationally, particularly in watersheds in southern and eastern
New England, and many of these watersheds are also nationally important for the role of forests in
provisioning timber and clean water [13]. From the perspective of protecting forests and the services
they provide, this trend is particularly concerning because, in contrast to the 19th century loss of
forest to agriculture, the replacement of forests with buildings and paved surfaces is considered
permanent [2].

Numerous analyses ranging from local to global have evaluated predictors of the development
of forest and open space. Across studies, population growth is a particularly commonly-cited driver
for development rates [17]. Other variables associated with development have included proximity
to populated and built areas [18–21], topography [21,22], transportation networks [18] and climate
variables (e.g., [22]), as well as economic and political considerations [20,23].

In New England, the prevailing driver for development is generally understood to be
the combination of overall population growth and migration to suburban and exurban areas.
Mockrin et al. [24] used historical housing densities from 1940–2000 to assess the spatial distribution
of residential development in the Northern Forest of the Northeast, including analyses of the New
England states of Maine, New Hampshire and Vermont, and demonstrated that areas with lower
housing densities have experienced peak development rates more recently than areas with higher
housing densities, illustrating a temporal trend of accelerating sprawl. A similar trend was illustrated
using Landsat imagery for 1990–2005 to quantify forest loss in southern New England, including
Connecticut, Rhode Island, Massachusetts and parts of New Hampshire and Vermont [16]. According
to that analysis, the highest rates of development for 2000–2005 were located further from the urban
center of Boston than in the 1990–2000 interval. Thus, while population growth appears to be strongly
associated with development, the relationship between population and development is expected to
vary along urban-rural gradients. The interaction between population and urban-rural gradients is
further complicated by the popularity of second homes in counties with high rural amenities, largely
in heavily-forested lake and mountain counties of Maine, New Hampshire and Vermont [25].

At finer scales, physical variables, such as slope and access to transportation, emerge as
important predictors for development. Local analyses of land cover change in and near New England
point to considerable variability in the importance of these variables depending on spatial context.
Tyrrell et al. [26] analyzed land cover change in two northeastern locations, the Catskill/Delaware
water supply watersheds in New York state and the Thames River watershed in Massachusetts
and Connecticut. They found that whereas elevation and proximity to urban areas were the
best predictors of development in the Catskill/Delaware area, the model for the development in
the Thames River watershed depended on the combined effects of a large number of physical,
economic and social variables, each of similar importance. Similarly, an analysis of the entire state of
Massachusetts showed that conservation status, distance to built areas and slope were all important
predictors of development, as were several metrics of density [19].

We are aware of no comprehensive high resolution analysis for predictors of development across
the entire New England region. The research presented here assesses geographic variation in recent
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trends in forest loss across New England and quantifies the relative importance of multiple social
and biophysical variables in predicting the conversion of forest to development. We assembled
regional maps of possible predictor variables and used boosted regression trees (BRTs), a type of
non-parametric model capable of capturing interactions and non-linear relationships, to quantify the
strength of their association with forest conversion, based on land cover maps from the National Land
Cover Database (NLCD) for 2001, 2006 and 2011. Using the BRT models, we produced high resolution
(30 m) probability surfaces characterizing patterns of development over these time intervals. In
addition to other considerations, our analysis inspects the relative importance of population growth
as a predictor of development in the region.

2. Materials and Methods

2.1. Study Area

New England is a 186,000-km2 region in the northeastern United States, located between 40.9 and
47.5◦N and between 41.0 and 44.7◦W, and comprises six states: Maine, New Hampshire, Vermont,
Massachusetts, Connecticut and Rhode Island. The region is temperate in climate, with mean annual
temperatures ranging from 3–10 ◦C and mean annual precipitation ranging from 79–255 cm [27].
New England is nearly 80% forest, including five main vegetation zones: spruce-fir-northern
hardwoods, northern hardwoods-hemlock-white pine, transition hardwoods, central hardwoods and
pitch pine-oak [2,28]. About ten percent of the land area is developed, primarily in the southern
states of Massachusetts, Connecticut and Rhode Island and in southeastern New Hampshire, and
rapid development continues throughout the region [2]. Major urban areas include Greater Boston in
eastern Massachusetts and New Haven and Hartford in Central Connecticut.

2.2. Data

We investigated the spatial distribution of forest conversion to development for the six states
of New England (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont)
and assessed the role of biophysical and social variables as predictors of development. Conversion
rates were estimated using National Land Cover Database (NLCD) Landsat-based maps of land
cover for 2001, 2006 and 2011. NLCD is a 30-m spatial resolution map of land cover in the United
States, produced by a collaboration of the U.S. Geological Survey with the National Oceanic and
Atmospheric Administration and the U.S. Forest Service. It is based on satellite data from the
Landsat Thematic Mapper and since 2001 has been applying a consistent methodology aimed at
quantifying land cover change, as well as overall land cover ([29]). We aggregated NLCD categories
for deciduous forest (41), evergreen forest (42), mixed forest (43) and shrub/scrub (52) into a single
“forest” category and NLCD categories for developed open space (21), developed low intensity
(22), developed medium intensity (23) and developed high intensity (24) into a single “developed”
category and assessed the rates of forest conversion to development for 2001–2011 and for the two
sub-intervals 2001–2006 and 2006–2011.

As geographic predictor variables, we considered elevation, slope, land ownership classes, the
distance to nearest major roads, the distance to built areas, New England state, census data (including
distance to the center of urban areas), tract-level population density, housing unit density and median
household income. We calculated two variables for the rate of population growth: (1) the rate
of change in population density from 2000–2010; and (2) the relative rate of change in population
density (defined as the positive or negative change in population density, divided by the population
density in 2000). To capture the possible role of second homes as a predictor, we also included
USDA Economic Research Service County Typology Codes for retirement destination counties and
non-metropolitan amenities counties as input for our analysis.
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Table 1. Predictor variables.

Predictor variable Units Source Processing

Median Household Income U.S. dollars U.S. Census (2000) Unmodified
Population Density people per km2 Calculated from U.S. Census (2000) Population

densities in 2000, calculated from U.S. Census
tract-level population data

Population Density Change people per km2 Calculated from U.S. Census (2000, difference
between the population densities in 2000 and
2010, calculated from U.S. Census tract-level
population data

Population per Housing Unit people per housing unit U.S. Census (2000) Tract-level population density divided by tract-level housing
unit density

Distance to Cities meters U.S. Census Urban Areas (2013) Distance raster generated from the center of mass of all urban
areas in New England and New York State

Relative Change in Population Density percent Calculated from U.S. Census (2000, 2010) Population density in 2010 decided by population density in 2000
Distance to Built meters USGS NLCD (2001) Distance raster generated from 2001 NLCD developed Classes 22,

23, 24; excludes Class 21 “developed open space”
Distance to Road meters Calculated from U.S. Census Topologically

Integrated Geographic Encoding and
Referencing (TIGER)shapefiles (2013)

Distance raster generated from roads in Classes S1100, S1200 or
S1400

Distance to Highway km of road per km2 Calculated from U.S. Census TIGER
shapefiles (2013)

Distance raster generated from roads in Classes S1100 and S1200

Elevation meters National Elevation Database (2007) 30-meter digital elevation model [30]
Slope degrees National Elevation Database (2007) Slope computed from 30-m NED elevation data
State categorical U.S. Census (2010) Rasterized Census Cartographic Boundary Files
Owner Type categorical USGS Protected Areas Database (2011) The categories in the Protected Areas Database were reclassified

using the Own_Type field. Public = Own_Type Domain Codes
1,3,4,5. private protected = 6,7,8,9,10 and private = 2, and all
other areas.

Retirement County categorical USDA Economic Research Service (2004) Raster map generated from U.S. Census cartographic boundary
files and USDA ERS 2004 County Typology Code indicator for
retirement destination county

Recreation County categorical USDA Economic Research Service (2004) Raster map generated from U.S. Census cartographic boundary
files and USDA ERS 2004 County Typology Code indicator for
non-metro recreation county
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Base maps for an initial collection of 15 predictor variables (11 continuous and 4 categorical)
and of the spatial distribution of forest loss to development were generated using ArcMap 10.3,
Quantum GIS (Version 2.2.0) [31] and R (Version 3.2.2) [32]. Once base maps were generated, all
analyses were performed using R. For subsequent analysis, values of all variables were sampled
using a randomly-positioned uniform 1-km grid of sample points. To avoid redundant correlation
among factors, we first assessed the collinearity of the predictor variables. Our protocol was guided
by a review of approaches to handling collinearity produced by Dormann and colleagues [33]. This
review lists several alternative approaches to reducing collinearity in an input dataset: statistical
identification of variable clusters (e.g., by principal component analysis), separation of orthogonal
components of related variables by sequential regression or the use of a correlation matrix to identify
variables correlated by less than a predetermined threshold (commonly 0.7) and removing correlated
variables based on clear differences in ecological importance [33]. To maintain the simplicity of
interpretation, we adopted the last approach, producing a correlation matrix relating the values
of all variables at sample points to one another, as well as to spatial coordinates and maps of
forest conversion to development for each of the two intervals (Table S1). The only pair of input
variables with a correlation above 0.7 was housing unit density and population density. To avoid
this collinearity, we removed housing unit density as a variable and instead calculated the mean
population per housing unit, which was found not to be collinear with any other variables. The final
15 input variables used for our analysis are summarized in Table 1.

2.3. Analysis

To establish general patterns of forest conversion, we first summarized forest loss to
development by county, for the intervals 2001–2006, 2006–2011 and 2001–2011.

We then used boosted regression tree (BRT) analysis to estimate the relationships between
our predictor variables (Table 1) and forest conversion to development, based on the values at
our randomly-positioned grid of sample points. BRTs are machine-learning-based non-parametric
statistical models based on regression trees [34]. Regression trees recursively partition datasets
to generate a decision tree structure [19], and a BRT is the sum of a large number of simple
regression trees used to characterize the overall relationship of the response variable to a collection of
predictor variables. The first tree of a BRT is computed to minimize some loss function of predictive
performance, and subsequent trees are fit to the residuals in a forward stage-wise fashion, with
existing trees left unmodified. In order to improve predictive performance, each tree is generated
using a different random subset of the full dataset, as determined by the “bag fraction” parameter [35].
BRTs are generally able to capture both variable interactions (characterized by tree complexity) and
non-linear relationships [35].

We selected BRTs for our analysis because of their ability to capture complex non-linear effects
and interactions without the need for prior data transformation or the removal of outliers [35].
BRTs generally avoid overfitting [35], can be applied to a variety of spatial analyses, such as
the distribution of species and vegetation types [36–42], hydrology [43,44], soil and landform
properties [45–47] and natural disturbance [48], as well as quantification of land cover and land use
change through human activities [34,49,50]. Across a wide variety of contexts, model comparisons
have shown BRTs to perform much better than traditional models and comparably well to other
machine-learning models [36,37,43,45,48,51], with some variability in comparative performance with
other machine-learning methods depending on context [33,38,44,47].

We performed BRT analyses using the R packages “gbm” [52] and “dismo” [53]. Specific
information on the algorithm, equations and assumptions is available in the documentation for
those packages and in guides produced by Ridgeway [54] and by Elith and colleagues [35]. Because
our response variable is binomial (forest that remains forest or forest that is developed), we used a
Bernoulli distribution loss function to model the probability of development at all sample points. We
used the default bag fraction (=0.75) and calibrated the parameters “tree complexity” and “learning
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rate” using 10-fold cross-validation. Tree complexity determines how many branching nodes are
included in each tree, and the learning rate determines the relative contribution of each tree to the
final model by adjusting the gradient step permitted with each tree added to the model [54]. We used
the “dismo” function “gbm.step” to test all combinations of tree complexity from 1–15 with each of
six learning rates ranging from 0.01–0.0005 for the full interval 2001–2011 for a randomly-selected
90% of the sample points. The function “gbm.step” automatically determines the number of trees to
include in each model, although we did not permit the tree number to exceed 10,000. We then used
the resulting model to predict development rates for the remaining 10% and correlated the result with
actual development rates to determine which combination produced the best fit.

We found that within this range, correlation generally improved with both increasing tree
complexity and decreasing learning rates (Table A1), but that improvements to the correlation
coefficient were small with a tree complexity above 4 (Figure A1). Additional cross-validation tests
with lower learning rates and a tree complexity of 4 showed that there was not much improvement
with learning rates below 0.0005 (Figure A2). For our final BRTs for each time step (2001–2006,
2006–2011 and 2001–2011), we parameterized the model with a tree complexity of 4 and a learning
rate of 0.0005 and permitted the function to automatically determine the number of trees in each
model. Moran’s I correlograms were used to quantify the spatial autocorrelation of the residuals for
each model.

The R library gbm reports estimates of the relative influence of each predictor variable, based
on the number of times each variable is used in the regression trees and weighted by the square of
the improvement to the model produced by the resulting split [35]. We reported these estimates,
and for variables with contributions above random chance (100%/15 variables = 6.67%), we further
explore their effect on the model using partial dependency plots, which illustrate predicted value as
a function of one variable while other variables are held at their mean value [35].

Finally, to illustrate the spatial distribution of each model, we generated probability surfaces
from the BRTs from each interval. We used the the function “predict.gbm” from the package gbm
to generate rasters of the modeled probability of development for each 30-m cell, using our original
rasters of each predictor variable as our input.

3. Results

Our analysis of land cover change from NLCD maps showed a conversion of 35,500 ha (0.0026%
of forested area in 2001) from forest to developed between 2001 and 2006 and 33,500 ha (0.0025% of
the forested area in 2001) from forest to developed between 2006 and 2011. For both time intervals,
the most intense areas of forest loss were in eastern Massachusetts (MA), western Connecticut (CT)
and southern New Hampshire (NH) (Figure 1). These counties were close to the urban centers of
Boston, MA, Hartford, CT, New Haven, CT, and New York, NY. This pattern was somewhat weaker
for 2006–2011, however, with less deforestation in counties close to Boston and more deforestation in
New Hampshire and Maine, compared to the earlier time interval.

Boosted regression tree models for development rates for 2001–2011 and both sub-intervals were
highly significant (p < 0.0001) and explained 6.9% of the geographic variation in development for the
full interval, as well as 4.5% of the variation for 2001–2006 and 1.8% of the variation for 2006–2011
(Table 2).

Moran’s I correlograms of the residuals for the BRT models show that the models do not account
for all spatial autocorrelated variation in development rates. Spatial autocorrelation was significant
for distances of up to 150–200 km for all time intervals (Figure A3).
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Figure 1. Intensity of forest conversion to developed land in New England by county.

Table 2. Boosted regression tree (BRT) model performance.

2001–2006 2006–2011 2001–2011

Tree complexity 5 3 1
Learning rate 0.0005 0.005 0.0005

Number of trees 9150 5300 8700
CV r 0.213 0.136 0.263
CV r2 0.045 0.018 0.069
Training r 0.374 0.296 0.358
Training r2 0.140 0.088 0.128

Mean total deviance 0.032 0.018 0.046
Mean residual deviance 0.019 0.012 0.028
CV standard error 0.015 0.022 0.018
Estimated CV deviance 0.021 0.014 0.030
Estimated CV deviance standard error 0.000416 0.000388 0.000678
CV=cross validation; r=coefficient of correlation

The library gbm reports the relative influence of each predictor variable, regardless of whether
the relationship between predictor and response variables is positive, negative or positive for some
values and negative for others. For all time intervals, the two most important predictive variables
by relative influence in the BRTs were “population density” and “distance to road” (Figure 2).
These two variables together explained 55.5% of the variation captured by the BRT for the full
interval 2001–2011, 49.4% of the variation captured by the BRT for 2001–2006 and 42.9% of the
variation captured by the BRT for 2006–2011. The other variables with predictive power above
chance were “relative change in population density” for all intervals, “distance to built” for 2001–2006
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and 2001–2011, “population density change” for 2001–2006 and 2006–2011, “distance to cities” for
2001–2006 and “median income” for 2006–2011. Relative change in population density was the third
most important variable for 2001–2011 and 2006–2011, while “distance to built” was the third most
important variable for 2001–2006.

Figure 2. Percent of the relative influence of independent variables in the BRT models of the
development probability for the full interval 2001–2011 and for the time intervals 2001–2006 and
2006–2011. The dashed vertical line shows the influence level expected by chance (=6.67%).

Partial dependency plots (PDPs) summarize the overall relationship between input variables
and the probability of development, including non-linear relationships, by plotting the modeled
relationship between one predictor variable and the response variable when all other predictor
variables are held constant at their mean values. In our models for all intervals, PDPs showed
a threshold response of development probability to previous population density: probabilities
were very low at densities below 60 people per km2 and increased dramatically for population
densities above 100 people per km2 (Figure 3). In addition, for 2001–2011 and 2001–2006, the
development probability decreased for densities above 600 people per km2. Similarly, the probability
of development was consistently higher at shorter distances to roads for all intervals, but there was
no effect of road distance for distances greater than 80 m (Figure 3b). On the other hand, the PDPs
showed almost no effect of relative population density change on the probability of development
when other variables were held constant (Figure 3c). The pattern for the effects of distance to built for
2001–2011 and 2001–2006 was similar to the pattern for distance to roads, with higher probabilities
of development at shorter distances to built land, but only out to a distance of 400 m (Figure 3d).
For 2001–2006, the probability of development was higher between 1 and 11 km from the center of a
city than at smaller or greater distances (Figure 3e). The PDPs indicated that the probability of land
conversion was higher at population density changes greater than 20 people per km2 for 2001–2006
and greater than 390 people per km2 for 2006–2011 (Figure 3f). The effect of median income shown by
the the PDPs was somewhat unclear: for 2006–2011, the rates of development decreased substantially
for median income greater than $20,000/year and increased slightly for areas with median income
greater than $145,000/year and $189,000/year (Figure 3g).
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Figure 3. Partial dependency plots of the predicted probability of development with variation in
the most important independent variables for BRT models for the full time interval 2001–2011 (thick
black) and the two subintervals 2001–2006 (dashed gray) and 2006–2011 (thin black). Plots are shown
for (a) population density, (b) distance to road, (c) relative change in population density, (d) distance
to built, (e) distance to cities, (f) population density change and (g) median income. Rug plots
are included on both axes in each plot to show percentiles within the data space for each time
interval. X-axis rugs show the distribution of values in the driving variable, and y-axis rugs show
the distribution of predicted probabilities for each time interval, using the same style as the graph
lines for each interval. Where the percentiles were the same for both time intervals, the rugs overlap.
Plots depict only the ranges of the independent variables over which the probability of development
showed variation, while percentiles were calculated for the full range of the dataset. Note the greater
y-axis range for (a) than for the other plots.

PDPs also demonstrate a particularly strong influence of population density on the probability
of development with other variables held at their mean values (4a). The probability of development
captured by this PDP ranges from 0.06%–2.15% for the full time interval, 0.04%–1.73% for 2001–2006
and 0.03%–0.65% for 2006–2011; for other variables, the effects captured by PDPs were much weaker,
with the largest range of values for a partial dependency plot being for population density change
for 2006–2011 and 2001–2011 (Figure 3). The weak effects shown in PDPs for variables other than
population density reflect the relative lack of forest loss at and below the mean population of
85/km2; because PDPs by definition hold all variables at their mean value, they do not show whether
additional variation might occur in the interaction with population density (or other variables).
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Probability surfaces generated from the BRT models for 2001–2011 and the two sub-intervals
show that overall patterns of development projected by BRTs were generally consistent among
intervals: the areas of highest development probability were the areas closest to urban areas,
especially evident for the major urban centers (Boston, Hartford and New Haven; Figure 4). The
major difference between the probability surfaces for the two sub-intervals was that the areas
of elevated probability of development extended somewhat further from the urban centers for
2001–2006 than for 2006–2011. The probability surfaces also illustrate the higher probability of forest
conversion for southern New Hampshire counties north of Boston for 2006–2011 than for 2001–2006,
consistent with Figure 1.

Figure 4. Probability of development surfaces for BRT models for 2001–2011 (top) and for the two
sub-intervals, 2001–2006 (middle) and 2006–2011 (bottom). The second and third columns show
closeups of the areas of highest development probability, the area around Boston (A) and the area
around New Haven and Hartford (B). For each time interval, only pixels containing forest in 2011 are
shown in color. Other land cover types are shown in white. The color scheme was generated using
David Green’s “cubeHelix” implemented in the R package “rje” (Green 2011, Evans 2014). Non-forest
land cover is shown in white, and county boundaries are shown in dark gray.
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4. Discussion

Our analysis indicates that across New England, the key predictors of forest conversion to
development are population and built infrastructure: population density was the most important
predictor of forest conversion to development, followed by distance to roads. Distance from built
land cover and relative change in population also emerged as predictor variables. Variation captured
by the models ranged from 2%–7%, which are high r2 values, given the low percentage of forest
developed during each time interval, the high spatial resolution of our analysis and the complexity of
processes underlying human decisions of where to develop: it has been shown that, in general, land
change models have a low rate of success in predicting locations of development, particularly at high
resolutions [55]. The difference in model performance between the 2001–2011 and 2006–2011 time
intervals, however, strongly suggests a qualitative difference in development patterns between the
two time intervals. For 2006–2011, less variation was captured, indicating that variables not included
in our model were more important in that time interval.

Our results provide unique detail of the spatial trends in forest conversion between 2001 and
2011. First, our qualitative analysis illustrates that, at the county-level resolution, the highest rates
of forest loss were further from Boston’s urban core in 2006–2011 than in 2001–2006 (Figure 1),
suggesting a continuation of the trend observed by [16]. In particular, Rockingham county in
southeastern New Hampshire and Berkshire county in western Massachusetts showed an increase in
development rates despite decreased development for the region as a whole. Second, our quantitative
analysis provides additional detail to the relationship between development and urbanization
gradients: the most intense areas of forest loss occurred at intermediate population densities
(100–600/km2) and, for the 2001–2006 interval, at moderate distances (1–5 km) from city centers
(Figure 3a,e). The range of population densities with the highest development rates bridges the
U.S. Census definition of urban areas (>386 people per km2), as well as Theobald’s definition of
the boundary between suburban and exurban (147 housing units per km2; roughly 367.5 people
per km2) [56]. Overall, our models illustrate with unprecedented specificity that the most intense
areas of development in the region are at low to moderate density and on the urban fringes. If
maintained over time, this pattern of development is expected to produce a shifting “front” of
maximum development rates at an increasing distance from urban centers, consistent with the pattern
noted by [16] and with historical analysis of housing records for the region [24].

The differences between 2001–2006 and 2006–2011 demonstrated by our analysis provide hints
to the effect of economic environment on development patterns. We found less overall development
in 2006–2011 than 2001–2006, a pattern correlated with, and likely driven by, the economic downturn
that began in the latter half of the 2000s, sometimes called the “Great Recession.” Both nationally and
in the northeastern United States, housing starts declined steadily from 2005–2009, with 2009 housing
starts the lowest in decades, and construction has only partially recovered in the years since ([57],
http://www.census.gov/construction/nrc/historical_data/). We found that the spatial distribution
in development differed, as well. The high resolution probability surfaces in Figure 4 show that for
both intervals, the greatest development was in the vicinity of major urban areas, but for 2001–2006,
the zone of elevated development extended further from urban centers than for 2006–2011. This
fine-granularity trend suggests a pattern of reduced exurban development near each urban center,
counter to the county-level pattern of regional development shifting further from the densest urban
areas that is illustrated in Figure 1. Another intriguing difference between the two time intervals is the
increased relative importance of median income in the model of the development probability for the
2006–2011 interval. Interestingly, the partial dependency plot indicates that the highest development
rates were for areas with lower median income for 2006–2011 (Figure 3g). The economic reason for
this pattern is not clear. It is possible that the high rate of development for low income areas relates to
amenities development in previously rural areas. Alternatively, the larger portion of the variation for
median income may simply not be captured in the “slice” of the overall trend captured by the PDP.
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A few differences between our results and previous studies should be noted. In contrast with
more local analyses within New England [19,26], we did not find that topographic variables were
important predictors of development. We also did not find evidence that recreation counties were a
predictor of development, despite the high levels of growth in recreation counties and the importance
of second homes suggested by the national analysis by [25]. The lack of topographic effects might be
explained by masking by correlated variables associated with existing developed land. In particular,
the variable “distance to road” is a major contributor to our models and is weakly collinear with both
elevation and slope (Table S1). The implications of the lack of an effect of recreation counties in our
analysis is less clear. It might be that there is no significant effect of recreation and retirement counties
on development when our other variables are taken into account. The role of recreation as a driver of
development warrants further investigation.

Our results need to be interpreted within the context of the intrinsic limitations of the NLCD.
The accuracy assessment for the NLCD 2001–2006 change indicates that the accuracy of detecting
land cover change in the Northeast is relatively poor compared to other regions [58]. In particular,
Wickham and coauthors found that user accuracy for change detection was 69% for the Northeast,
compared to 84% nationally; for forest loss, it was 62% compared to 82% nationally; and for urban
gain, it was 58% compared to 72% nationally [58]. Incorrect classification in the NLCD dataset is
particularly common in heterogeneous landscapes [58].

Nevertheless, our results are broadly consistent with existing land cover change models, such as
the Spatially Explicit Regional Growth Model (SERGoM)development model [56]. SERGoM has been
used to simulate development in the United States in several contexts including the USDA “Forests
on the Edge” project [59,60] and the EPA “Integrated Climate and Land Use Scenarios” (ICLUS)
project [12]. In the SERGoM model, the development of new housing units is assumed to be driven
first by county-level population growth and second by existing housing unit density and travel time
to urban cores [56]. Our county-level analysis shows a pattern of forest loss that is indeed generally
correlated with data on changing population density during the 2000–2010 time interval [61]. In our
statistical models, however, changing population was a relatively minor predictor, probably reflecting
the high spatial resolution of our analysis compared to county-level trends. The variables of greatest
importance in our models do, however, reflect similar allocation patterns to the assumptions of
SERGoM. Our metrics of “distance to road” and “distance to cities” are closely related to travel
time to urban cores, and “population density” is related to both housing unit density and degree
of urbanization. This consistency reinforces the validity of both our approach and the SERGoM
approach and points to the future usefulness of BRT models like ours as a novel statistical tool for
capturing highly specific predictors of land cover change.

Our analysis makes use of region-wide datasets to produce the first high resolution models
of geographic predictors of development for all of New England. Our results demonstrate the
capabilities of the BRT methodology for statistically modeling land cover change and for illustrating
temporal variation in the importance of different predictor variables. In the future, our region-wide
probability surfaces will provide input for simulation models of land cover change in the region, and
the methods presented here will translate well to land cover change analyses in other regions and are
expected to increase in usefulness as new NLCD maps and additional geographical datasets become
available.

Supplementary Materials: The following is available online at http://www.mdpi.com/2073-445X/5/3/30/s1,
Table S1. Correlation matrix of all variables evaluated.
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Appendix

Table A1. Parameter calibration for boosted regression trees for models of forest conversion to
development, 2001–2011. Ten-fold cross-validation correlation coefficients were determined for all
combinations of tree complexity from 1–15 with six learning rates ranging from 0.01–0.0005. The
mean correlation coefficients across learning rates are shown.

Tree Complexity Learning Rate
0.0100 0.0075 0.0050 0.0025 0.0010 0.0005 Row Mean

1 0.2150 0.2171 0.2212 0.2329 0.2396 0.2416 0.2279
2 0.2167 0.2273 0.2291 0.2353 0.2488 0.2529 0.2350
3 0.2447 0.2539 0.2522 0.2556 0.2615 0.2609 0.2548
4 0.2642 0.2679 0.2590 0.2644 0.2744 0.2766 0.2678
5 0.2585 0.2461 0.2648 0.2706 0.2762 0.2805 0.2661
6 0.2514 0.2610 0.2679 0.2699 0.2744 0.2794 0.2673
7 0.2688 0.2602 0.2658 0.2680 0.2688 0.2843 0.2693
8 0.2620 0.2654 0.2570 0.2753 0.2822 0.2860 0.2713
9 0.2723 0.2673 0.2684 0.2679 0.2782 0.2842 0.2730
10 0.2657 0.2536 0.2700 0.2752 0.2876 0.2899 0.2736
11 0.2569 0.2749 0.2787 0.2757 0.2856 0.2899 0.2770
12 0.2766 0.2892 0.2640 0.2752 0.2840 0.2920 0.2802
13 0.2659 0.2658 0.2821 0.2756 0.2847 0.2854 0.2766
14 0.2662 0.2777 0.2682 0.2719 0.2840 0.2857 0.2756
15 0.2735 0.2732 0.2664 0.2721 0.2827 0.2882 0.2760

Figure A1. Mean correlation coefficient across learning rates (0.01–0.0005) for 10-fold cross-validation
of the BRT model for forest conversion in the interval 2001–2011 evaluating all learning rates from
0.01–0.0005 paired with all tree complexities from 1–15.



Land 2016, 5, 30 14 of 17

Figure A2. Semilog plot of the correlation coefficients for 10-fold cross-validation of the BRT model
for forest conversion in the interval 2001–2011, with tree complexity equal to four and learning rates
from 0.01–0.0001.

Figure A3. Correlograms of Moran’s I spatial autocorrelation of residuals from BRT models of the
probability of development for the time intervals 2001–2011, 2001–2006 and 2006–2011. Points with
significance at the α=0.05 level are filled.
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