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A B S T R A C T

Forest landscape models (FLM) are widely used for simulating forest ecosystems. As FLMs have become more
mechanistic, more input parameters are required, which increases model parameter uncertainty. To better un-
derstand the increased mechanistic detail provided by LANDIS-II/PnET-Succession, we studied the effects of
parameter uncertainty on model outputs based on three different approaches. Global sensitivity analyses sum-
marized the influence of each parameter, a local sensitivity analysis determined the magnitude of and degree of
nonlinearity of variation in model outputs alongside variation in individual parameters, and a regression tree
analysis identified hierarchical relationships among and interaction effects between parameters. Foliar nitrogen,
maintenance respiration, and atmospheric carbon dioxide concentration were the most influential parameters in
the global analysis. Knowing where parameter influence is concentrated will help model users interpret results
from LANDIS-II/PnET-Succession to address ecological questions and should guide priorities for data acquisition.

1. Introduction

Forest Landscape Models (FLMs) are a class of spatially interactive,
stochastic simulation models that are widely used by researchers and
natural resource managers to project long-term and broad-scale
changes to forested landscapes (Shifley et al., 2017). FLMs are in-
creasingly used to simulate the effects of global change drivers, such as
climate and land-use change, on future forest composition and function
(Duveneck and Thompson, 2017; Liang et al., 2017). Because global
change scenarios are complex and often without observed precedent,
FLMs have become more mechanistic regarding the major drivers of
forest change, with steps toward inclusion of the physiological re-
sponses to changing temperature, moisture, atmospheric conditions,
fire and defoliation (Gustafson, 2013). While mechanistic approaches
for simulating global change offer a strong foundation for simulating
emergent and novel conditions, they require many more input para-
meters than did their statistically-based predecessors. The presumed
increase in conceptual robustness gained by using a mechanistic model
could potentially be undermined by increased parameter uncertainty
associated with a lack of empirical data and/or mechanistic under-
standing of each of the model coefficients (Cuddington et al., 2013;
Dietze, 2017).

A sensitivity analysis (SA) can be used to quantify the impact of
model input parameters on model outputs (Saltelli et al., 2000). By
systematically varying input parameters and quantifying the relation-
ship of this variation to the resulting variation in model outputs, a SA
identifies the parameters that are most influential over model out-
comes, as well as the "critical regions" in which parameter values have a
disproportionate effect on the model output (Saltelli et al., 2006). Thus,
while guiding model use, a sensitivity analysis can also prioritize future
research by suggesting which ecological parameters require more ac-
curate estimation. From an ecological perspective, sensitivity analyses
may also be useful for identifying dominant mechanisms in the beha-
vior of the model, and thus can improve our understanding of how the
modeled system functions (Reusser et al., 2011). Additionally, sensi-
tivity analyses can reveal parameter interactions and correlations, and
they can simplify models by suggesting which input parameters are less
relevant (Saltelli et al., 2006).

There are two broad approaches for conducting sensitivity analyses:
local sensitivity analysis (LSA) and global sensitivity analysis (GSA).
Each approach has strengths and weaknesses. LSA, also called one-at-a-
time sensitivity analysis, is relatively simple to implement and has been
widely used to evaluate FLMs (Sturtevant et al., 2009; Thompson et al.,
2011; Xu et al., 2009). In a LSA, all parameters are kept constant at
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their mean or another predefined reference value, while a single
parameter is varied within a specified range. This process is repeated
for all of the parameters of interest, and the absolute and/or relative
influences on a given response variable are compared. The strength of
LSA is that it is easy to perform and straightforward to interpret, be-
cause just one input parameter is varied for each test. However, inter-
pretations from LSA are limited when several parameters might interact
dynamically through the range of individual values (Campolongo et al.,
2007; Saltelli and Annoni, 2010). To capture model sensitivity
throughout all of input parameter space, GSAs are required.

In GSA, all parameters are varied simultaneously. GSA is more ro-
bust than LSA for summarizing parameter effects in complex models
because it determines parameter sensitivities across large regions of
parameter space (Reusser et al., 2011). There are many types of GSA,
including variance-based tests like the Fourier Amplitude Sensitivity
Test (FAST), Sobol's method, the derivatives-based Morris method, and
various regression-based approaches. Sobol's method is an extensive
global sensitivity analysis; it calculates total sensitivity indices for each
parameter, including influence due to interaction effects (Sobol, 1993).
However, Sobol's method relies on a search function that requires many
model runs and is therefore not computationally feasible for highly
complex models. FAST, like Sobol's method, is a variance-based global
sensitivity analysis summarizing the effect of each parameter on model
outputs (Cukier et al., 1975, 1973; McRae et al., 1982). FAST varies all
tested input parameters simultaneously through the full input para-
meter space and then uses Fourier transforms to identify the degree to
which each parameter is responsible for variation in model outputs.
FAST relies on a characteristic frequency of variation assigned to each
input parameter to estimate sensitivity indices. This allows FAST to be
much more efficient for calculating main effects than comparable
methods, such as Sobol's Method (Saltelli and Bolado, 1998). A varia-
tion of FAST known as "extended FAST" (eFAST) also exists for calcu-
lating total effect (i.e., including interactions) indices for each para-
meter (Saltelli et al., 1999). However, the total effect index for each
parameter comes at the cost of many more simulations.

Another type of sensitivity analysis, similar to FAST, is the Method
of Morris (MoM) which randomizes one-at-a-time testing in a structured
framework for global parameter screening (Morris, 1991). Like FAST,
MoM assigns indices to parameters indicating their global influence.
Additionally, MoM indicates the directionality of each parameter's in-
fluence, and it returns an index for each parameter that corresponds to
the combination of its non-linear effects on model outputs and its in-
teractions with all other parameters (Wainwright et al., 2014). How-
ever, the numeric values of MoM indices are specific to the units of the
model outputs; this is a contrast with FAST, whose indices represent the
proportion of variance explained. Additionally, while MoM returns an
index corresponding to the combined interactions and nonlinear effects
of each parameter, it cannot distinguish between interactions and
nonlinearities or determine where they occur in parameter space
(Brevault et al., 2013).

Beyond FAST and MoM, classification and regression trees have
been used in predictive modeling and, more recently, as methods of
global sensitivity analysis (Almeida et al., 2017; Breiman et al., 1984;
Cutler et al., 2007; Iverson and Prasad, 1998; Pappenberger et al.,
2006). Because classification and regression tree models are defined by
a hierarchy of split input parameters, fitted regression trees can identify
regions in the ranges of individual input parameters where they interact
with other input parameters. In this way, classification and regression
trees can supplement global sensitivity analyses that either exclude
interaction effects (e.g., FAST) or return a single value per parameter
that corresponds to the summed interactive and nonlinear effects of that
parameter (e.g., MoM, Sobol's Method, and eFAST). Regression tree
models are relatively robust to various sampling schemes, especially
when compared with FAST, which requires very specific sampling. This
allows classification or regression tree analysis to be performed directly
on the same data used for a separate global sensitivity analysis. Until

recently, the use of tree-based approaches has been uncommon in
sensitivity analyses, and what little work has been done was mostly
limited to slope stability and hydrological models (Almeida et al., 2017;
Singh et al., 2014). However, a regression tree was used in a study of
the LANDIS-II Biomass-Succession extension FLM (Simons-Legaard
et al., 2015).

LANDIS-II (Scheller et al., 2007) is an FLM modeling platform that
has been used extensively to simulate landscape-scale temperate and
boreal forest dynamics (Duveneck and Scheller, 2015; Duveneck and
Thompson, 2017; Kretchun et al., 2014; Loudermilk et al., 2013).
LANDIS-II simulates the establishment, growth, competition, and
mortality of tree species-by-age cohorts as they are affected by climate
and disturbance. Seed dispersal and various disturbances are simulated
across a landscape as spatially interactive processes (Scheller et al.,
2007). LANDIS-II requires users to select a succession extension based
on their specific research question. Previous sensitivity analyses have
been completed for the Biomass-Succession extension (Scheller and
Mladenoff, 2004; Thompson et al., 2011). Scheller and Mladenoff
(2004) and Thompson et al. (2011) assessed the sensitivity of six and
nine key parameters, respectively, with LSAs varying each parameter by
10%. They found that Biomass-Succession was not overly sensitive to
any one of the parameters tested, but that the model outputs were most
sensitive to the parameters specifying the maximum allowable biomass
and maximum annual net primary productivity (NPP). Xu et al. (2009)
completed a FAST global sensitivity analysis with Biomass-Succession
using different climate variables including temperature (Temp), pre-
cipitation (Precip), atmospheric CO2 (CO2), and photosynthetically
active radiation (PAR). Of the climate variables, they found forest
composition to be most sensitive to Temp, followed by PAR, CO2, and
Precip. Simons-Legaard et al. (2015) conducted a global and temporal
sensitivity analysis of nine key parameters of Biomass-Succession and
also found that maximum allowable biomass and maximum annual NPP
were most influential on predicted biomass. In addition, they found that
temporal variation and interactions between parameters influenced the
biomass output.

Partly in response to the influence of the "maximum allowable
biomass" and "maximum annual NPP" parameters of Biomass-
Succession – both of which are phenomenological and without me-
chanistic basis – de Bruijn et al. (2014) developed the PnET-Succession
extension, replacing these parameters with a more mechanistic ap-
proach to simulating biomass accumulation (Gustafson et al., 2014).
PnET-Succession (de Bruijn et al., 2014) incorporates algorithms of the
PnET-II ecophysiological model (Aber et al., 1995), which uses first-
principles of photosynthesis to simulate competition for resources
within vertical canopy layers. Because LANDIS-II tracks biomass rather
than canopy height, variation in the biomass of cohorts within a cell is
used to define distinct canopy layers. Incoming radiation is allocated to
the separate layers to simulate extinction and competition for light.
Photosynthetic production is allocated to foliage, wood, roots, and re-
serves (non-structural carbon). PnET-Succession has been evaluated at
several sites (de Bruijn et al., 2014; Duveneck et al., 2017; Gustafson
and Sturtevant, 2013), and has been used to answer a variety of re-
search questions (Duveneck and Thompson, 2019, 2017). A local sen-
sitivity analysis by Gustafson et al. (2017a) explored the sensitivity of
model outputs to six climate-related input parameters to demonstrate
the advantage of employing first principles to predict forest responses
to climate change. The analysis quantified the relative effects of climate
parameters with directionality and extended the LSA by varying mul-
tiple parameters simultaneously, highlighting the interactions between
parameters. However, the analysis did not directly compare the abso-
lute effects of parameters to one another, and it excluded several PnET-
Succession parameters not related to climate that which affect forest
growth. To build upon the recent work by Gustafson et al. (2017a), we
describe the results of a three-tiered SA that attempts to harness the
strength of the SA approaches discussed above as applied to the PnET-II
succession extension used within the LANDIS-II v-6.1 FLM framework.
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For our initial GSA, we selected 20 parameters that had previously
demonstrated influential behavior (Table 1).

The objective of this study was to identify the variables most in-
fluential in determining the outputs of LANDIS-II/PnET-Succession
across time and to identify both interactive effects among parameters
and nonlinear responses of model outputs to variation in individual
parameters. Identifying highly influential parameters will help model
users understand the drivers of model outputs, and will help prioritize
areas for model refinement. Our hybrid approach employs three sepa-
rate analyses – a global sensitivity analysis, a one-at-a-time local sen-
sitivity analysis, and regression tree analysis – and leverages the
strengths of each to quantify the sensitivity of two types of model re-
sponse variables to variation in input parameters, offering users a more
complete understanding of model responses to variation in model in-
puts. This approach also provides a replicable framework for assessing
parameter uncertainty and for prioritizing data collection to improve
the accuracy of model predictions.

2. Methods

2.1. Approach

Using LANDIS-II v-6.1 and PnET-Succession v-1.0.0, we simulated
an artificial 25-by-25 pixel grid landscape totaling 625 cells, each re-
presenting 6 ha of forested land, for 200 years, with five year time steps.
We populated the landscape with 50 unique initial communities (i.e.,
species-age cohort mixes) sampled from the FIA database (Bechtold and
Patterson, 2005) in New England, USA. These initial communities were
made up of 26 tree species, each of which is common among temperate
forests of the northeastern United States (Table 2). Our general ap-
proach to conduct sensitivity analyses was as follows (Fig. 1): To
summarize the influence of each parameter (Table 1) on selected re-
sponse variables through the full parameter space of the model, we
began the sensitivity analysis using the MoM and a FAST GSA (See
Global Sensitivity Analysis details below). The MoM and FAST analyses
each ranked parameters; and MoM indicated directionality and the
combined effects of nonlinearity and interactions for each parameter.
From the FAST analysis, we evaluated the total proportion of variance
explained by each parameter at each five-year time step of the model.
We also conducted hierarchical partitioning of biomass outputs at years
0 and 200 (chosen to capture temporal differences in parameter influ-
ence) in order to determine the break points in the influence of each

interacting parameter (see regression tree analysis details, below). Fi-
nally, we identified the most influential parameters from the results of
the global analyses and conducted a LSA of each of those parameters on
biomass and area occupied by specific tree species to detect nonlinear
relationships between input parameters and their effects on model
outputs (See LSA details, below).

Our sensitivity analyses examined variation in two types of outputs:
total landscape aboveground biomass and the number of landscape cells
occupied by each of three dominant New England species; red maple
(Acer rubrum), red oak (Quercus rubra), and white pine (Pinus strobus).
Aboveground biomass is the forest growth currency in LANDIS-II, and
cell occupancy of individual species defines forest composition spa-
tially. Taken together, changes in aboveground biomass and forest
composition are useful metrics to capture forest growth and succes-
sional responses to disturbance and are therefore appropriate response
variables for our sensitivity analysis (Duveneck et al., 2017).

We limited our parameter selection to twenty based on what was
computationally feasible. We selected parameters that were newly in-
troduced with the PnET-Succession extension or were linked to the
photosynthetic mechanisms targeted by the extension. Parameter se-
lection was motivated by either a parameter's known importance to the
model, or by large uncertainty about the input value for the parameter.
The selected parameters were chosen to lead to a better understanding
of both the model and the specific contribution of each parameter to
output variance. Some parameters tested (foliar nitrogen (FolN), max-
imum specific leaf weight (SLWmax), optimal temperature for photo-
synthesis (PsnTOpt), and the fraction of the amount of active woody
biomass that is allocated to foliage per year (FracFol)) were species-
specific, and we jointly varied these linearly across species. The values
sampled by FAST for these parameters ranged from 0 to 1, where “0”
meant that each species' sampled parameter value was 90% of its de-
fault value, and “1” meant that it was 110% of its default value for each
species. The FolN range for each species was set to include the middle
90% of values from the NERC foliar chemistry database (Table 2)
(Northeastern Ecosystem Research Cooperative, 2016) and was also
varied linearly within those bounds. Climate parameters (average
monthly maximum and minimum temperature values (Temp), monthly
carbon dioxide concentration (CO2), monthly precipitation (Precip),
and monthly photosynthetically active radiation (PAR)), were varied
across the range predicted from 2000 to 2100 provided by the Regional
Concentration Pathway 8.5 emission scenario (IPCC, 2013) as simu-
lated by the Hadley Global Environment Model v.2-Earth System Global

Table 1
PnET-Succession parameters selected for use in the sensitivity analysis.

Name Type Description Units

TOroot Single value Fraction of root biomass lost per year to damage, breakage, or death Proportion/yr
TOwood Single value Fraction of wood biomass lost per year to damage, breakage, or death Proportion/yr
DNSC Single value Proportion of NSC relative to total active biomass that will be maintained as long as net photosynthesis exceeds

maintenance respiration
Proportion of active biomass

MaintResp Single value Loss of NSC due to maintenance respiration proportion NSC lost/month
EstMoist Single value Tuning parameter to control the sensitivity of establishment to soil moisture. Unitless
EstRad Single value Tuning parameter to control the sensitivity of establishment to light level. Unitless
WUEcnst Single value Constant in equation for computing water use efficiency as a function of VPD None
FrActWd Single value Shape parameter of negative exponential function that calculates the amount of woody biomass that has active

xylem capable of supporting foliage
Unitless

IMAX Single value Number of subcanopy layers into which each major canopy layer is subdivided Number of layers
PrecLossFrac Single value Proportion of precipitation that does not enter the soil Proportion
RootingDepth Single value Soil depth to which roots typically penetrate mm
WRP Single value Disturbance Frequency (Average time needed to disturb a cumulative area equal to the size of the landscape) yrs
CO2 Monthly Atmospheric CO2 concentration ppm
Temp Monthly Maximum monthly temperature Maximum and minimum °C
PAR Monthly Photosynthetically active radiation above the upper canopy layer umol/mˆ2/sec
Precip Monthly Monthly precipitation mm/mo
FolN Species-specific Foliar nitrogen content % by weight
SLWmax Species-specific Maximum specific leaf weight at the top of canopy g/mˆ2
PsnTOpt Species-specific Optimal temperature for photosynthesis °C
FracFol Species-specific Fraction of the amount of active woody biomass that is allocated to foliage per year Proportion/yr
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Circulation Model downscaled for New England, obtained from the
USGS Geo Data Portal (Stoner et al., 2013). For these parameters, we
sampled from within the range of average annual climate values – a
single value per parameter. After sampling this average annual para-
meter value (e.g. the average temperature for the year), we then
parameterized the model using the monthly values corresponding to the

year from the data with the closest average annual value (e.g., the year
with the closest average temperature to the sampled value was chosen,
and then the monthly values were extracted from that year's data)
(Table 3). For Temp, an overall average for each year was used for
sampling. Then, the monthly maximum and minimum temperature
values (Tmax and Tmin) required by PnET-LANDIS-II were selected

Table 2
Tree species simulated and species-specific parameter minimum (min) and maximum (max) values used in the GSA, along with the default (def) values for each
parameter and species. Full unit descriptions are described in Table 1.

Species FolN (%) SLWmax (g/mˆ2) PsnTOpt (°C) FracFol (proportion/yr)

Min Max Def Min Max Def Min Max Def Min Max Def

Abies balsamea 0.941 2.03 1.4 194 237 215 17.1 20.9 19 0.108 0.0132 0.12
Acer rubrum 1.02 2.54 2.6 72.0 88.0 80 23.4 28.6 26 0.0270 0.0330 0.03
Acer saccharum 1.25 2.63 2.1 63.0 77.0 70 20.7 25.3 23 0.0270 0.0330 0.03
Betula alleghaniensis 1.65 3.22 2.2 72.0 88.0 80 18.9 23.1 21 0.0270 0.0330 0.03
Betula lenta 2.05 3.19 2.26 72.0 88.0 80 18.9 23.1 21 0.0270 0.0330 0.03
Betula papyrifera 1.33 3.19 2.3 72.0 88.0 80 18.9 23.1 21 0.0270 0.0330 0.03
Carya glabra 1.53 2.65 2.6 81.0 99.0 90 20.7 25.3 23 0.0270 0.0330 0.03
Fagus grandifolia 1.49 2.98 1.8 72.0 88.0 80 20.7 25.3 23 0.0270 0.0330 0.03
Fraxinus americana 1.52 2.93 2.5 76.5 93.5 85 22.5 27.5 25 0.0270 0.0330 0.03
Ostrya virginiana 1.24 2.12 2.02 90.0 110 100 20.7 25.3 23 0.027 0.0330 0.03
Picea glauca 0.875 1.24 1.4 225 275 250 18.0 22.0 20 0.108 0.132 0.12
Picea mariana 0.630 1.04 1.2 225 275 250 18.0 22.0 20 0.108 0.132 0.12
Picea rubens 0.680 1.47 1.2 225 275 250 18.0 22.0 20 0.0270 0.0330 0.03
Picea resinosa 0.810 1.39 1.7 225 275 250 18.9 23.1 21 0.108 0.132 0.12
Pinus strobus 0.960 1.70 2.0 212 259 235 18.9 23.1 21 0.108 0.132 0.12
Populus grandidentata 1.79 3.05 2.5 104 127 115 19.8 24.2 22 0.0270 0.0330 0.03
Populus tremuloides 1.40 3.37 2.5 104 127 115 19.8 24.2 22 0.0270 0.0330 0.03
Prunus serotina 1.67 4.15 2.8 81.0 99.0 90 22.5 27.5 25 0.0270 0.0330 0.03
Quercus alba 1.85 2.27 2.5 90.0 110 100 23.4 28.6 26 0.0270 0.0330 0.03
Quercus prinus 1.99 2.04 2.39 81.0 99.0 90 23.4 28.6 26 0.0270 0.0330 0.03
Quercus rubra 0.780 2.87 2.5 76.5 93.5 85 21.6 26.4 24 0.0270 0.0330 0.03
Quercus velutina 1.90 3.13 2.7 76.5 93.5 85 21.6 26.4 24 0.0270 0.0330 0.03
Thuja occidentalis 0.830 1.43 1.3 221 270 245 18.0 22.0 20 0.117 0.143 0.13
Tilia americana 1.90 3.13 2.6 67.5 82.5 75 20.7 25.3 23 0.0270 0.0330 0.03
Tsuga canadensis 0.830 1.66 1.1 176 215 195 18.9 23.1 21 0.0720 0.0880 0.08
Ulmus americana 2.29 3.43 2.3 76.5 93.5 85 20.7 25.3 23 0.0270 0.0330 0.03

Fig. 1. Conceptual flow diagram of our sensitivity
analysis methods combining global and local sensi-
tivity analyses. Using the range of parameter varia-
tion, we started by completing a Fourier Amplitude
Sensitivity Test and a Method of Morris analysis.
These two methods summarized the influence of
each parameter (which corroborated each other).
Next, we evaluated the proportion of variance in
total biomass and cell occupancy of dominant species
at multiple timesteps. Then, we conducted hier-
archical partitioning in order to identify hierarchical
relationships among and interaction effects between
parameters. Finally, using the most influential para-
meters identified from above, we conducted local
sensitivity analyses to determine the magnitude and
degree of nonlinearity of the variation in total bio-
mass and cell occupancy of dominant species.
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together from the data for the year whose average temperature was
closest to the sampled value. The sampled climate parameters were held
constant across years in each simulation. Other parameters were not
species nor temporally specific and were composed of a single value for
a given scenario, (e.g., maintenance respiration (MaintResp) and the
proportion of non-structural carbon to be maintained when net pho-
tosynthesis exceeds MaintResp (DNSC)). These values were varied
within their limits as defined by the PnET-Succession user manual or
expert knowledge of the model (Table 3) (Gustafson et al., 2017b).

2.2. Global sensitivity analyses

We performed the FAST analysis using the R package fast (R
Development Core Team, 2006; Reusser et al., 2011). FAST is a var-
iance-based sensitivity analysis that calculates the main effect (i.e.,
excluding interactions with other parameters), of each parameter on
variation in model outputs. FAST generates parameter samples to be
used as simulation inputs within the bounds of a user-defined minimum
and maximum value for each parameter by assigning each parameter a
characteristic frequency. Each parameter is systematically varied at this
frequency within the bounds defined by the maximum and minimum
values across all of the parameter samples, and the model is then run on
each set of parameter samples. Afterward, a fast Fourier transform is
applied to observed variation in model outputs to produce a power
spectrum. The values from the first four multiples of the characteristic
frequencies for each parameter are summed and divided by the total
summed power spectrum across all frequencies to calculate the main
effect sensitivity indices (Cukier et al., 1975). We generated 8378
samples, four times the minimum number required by the Nyquist
criterion (i.e., the function frequency limits and the corresponding
discrete sampling rate required to describe a continuous function; see
(Jerri, 1977)), to ensure convergence (McRae et al., 1982; Saltelli and
Bolado, 1998). We then used each parameter sample to conduct a
LANDIS-II simulation. To capture variation in behavior through the
successional trajectories experienced over time, we calculated FAST
sensitivity indices at each 5-year time-step of the simulations.

We performed MoM using the R package sensitivity to rank para-
meters in order of importance, to determine directionality of para-
meters, and to estimate the extent to which each parameter interacts

with other parameters or affects outputs nonlinearly (Iooss et al., 2015;
R Development Core Team, 2006). In contrast to FAST, which calcu-
lates "main effect" indices, MoM estimates total effect indices for the
model parameters, which include influence over model outputs due to
interactions with other parameters. We designed our MoM analysis to
sample 40 one-at-a-time paths (r) for the 20 parameters (k), for a total
of (r)*(k+1) = (40)*(20 + 1) = 840 model runs in addition to those
by FAST. The minimum and maximum values constraining parameter
sampling were the same as those used in FAST (described above and
listed in Tables 2 and 3). MoM returns a single "elementary effect" for
each parameter for each path, which summarizes the influence of that
parameter through the individual path. The mean of the elementary
effects (μ) is used to calculate the total effect index for each parameter.
The sign of the mean of the elementary effects then corresponds to
directionality of the parameter's influence, with the exception of when
the parameter has both positive and negative effects on model outputs,
in which case the sign of the individual elementary effects would have
to be analyzed (Campolongo et al., 2007; King and Perera, 2013). The
mean of the absolute values of the elementary effects for each para-
meter (μ*) has also been used to summarize the parameter's global in-
fluence over a particular output while incorporating non-monotonic
behavior (Campolongo et al., 2007). Finally, the standard deviation of
the elementary effects (σ) around the mean (μ) corresponds to the
combined nonlinearity and interactions associated with each para-
meter.

2.3. Regression tree analysis

We performed a regression tree analysis (RTA) using the PARTY
package in R (Hothorn et al., 2006). RTA is a non-parametric technique
for recursively partitioning a continuous variable into increasingly
homogeneous subsets, where the partitions are identified by testing all
potential partitions across all values of all the predictor variables then
selecting the partition that maximizes the difference between groups
(De'ath and Fabricius, 2000). RTA results in a dendrogram that shows
the hierarchical relationships among predictors and between predictors
and the response. The same samples developed for the FAST analysis
were reused, with biomass outputs from years 0 and 200 as the response
variables. The specific RTA implementation within the PARTY package
is called "conditional inference trees", which requires a significant dif-
ference (p-value < 0.05, as determined from a Monte Carlo randomi-
zation test) in order to create a partition in the regression tree. This
technique minimizes bias and prevents over-fitting and the need for
regression tree pruning (De'ath and Fabricius, 2000; Hothorn et al.,
2006; Hothorn and Zeileis, 2015).

2.4. Local sensitivity analysis

Finally, we conducted a LSA to detect the magnitude of each
parameter's influence at a point in parameter space in model output
units (rather than relative to variance in outputs from other para-
meters), and to determine whether LANDIS-II outputs respond non-
linearly to linear variation across each parameter's range. Like the
MoM, the LSA results also indicate directionality and magnitude of
parameter influence. We performed an LSA on the top four influential
parameters identified in the FAST analysis for each type of output
(biomass and landscape composition). We performed 24 total simula-
tions for the local sensitivity testing on each output type: simulations
were performed at six evenly spaced values across the parameter's
possible range while all other input parameters were held at their ca-
librated values, for each of the four parameters tested. In order to assess
variation over time, output values were assessed at each five-year time
step for each simulation.

Table 3
Scenario specific parameter minimum and maximum values used in the GSA.
Full unit descriptions are described in Table 1. Note that the climate parameters
(bottom four rows) were filled with monthly values from the year with the
closest average value from predicted data from 2000 to 2100 provided by the
Regional Concentration Pathway 8.5 emission scenario (IPCC, 2013) as simu-
lated by to the Hadley Global Environment Model v.2-Earth System Global
Circulation Model downscaled for New England obtained from the USGS Geo
Data Portal (Stoner et al., 2013).

Min Max

TOroot (Proportion/yr) 0.0100 0.0300
TOwood (Proportion/yr) 0.00100 0.0200
DNSC

(Proportion)
0.0100 0.500

MaintResp (proportion NSC lost/month) 0.00100 0.00500
EstMoist (Unitless) 2.00 20.0
EstRad (Unitless) 2.00 20.0
WUEcnst (None) 8.00 13.0
FrActWd (Proportion/yr) 3.00e-5 1.00e-4
IMAX (Number of layers) 3.00 10.0
PrecLossFrac (Proportion) 0.0500 0.600
RootingDepth (mm) 600 1000
WRP (yrs) 50.0 500
CO2 (ppm) 400 927
Temp (°C) 8.16 17.33
PAR (umol/mˆ2/s) 289 353
Precip (mm) 57.8 158
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3. Results

3.1. Global sensitivity analyses

Based on the FAST results, MaintResp was the most influential
parameter for determining total landscape biomass output by the model
across a 200-year simulation (Fig. 2A). Although FolN was more in-
fluential for determining total biomass than MaintResp during model
initialization (year 0), the influence of FolN for determining total
landscape biomass declined quickly after year 0, giving FolN a slightly
lower average index value than that of MaintResp. Other influential
parameters included the climate parameters – CO2, Temp, and Precip –
and precipitation loss fraction (PrecLossFrac), which determines the
proportion of water that does not enter the soil.

The FAST analysis also indicated that the same parameters to which
biomass outputs are sensitive tend to be important in determining
species composition (Fig. 2 B, C, & D). The three species differed
somewhat regarding the relative influence of the most important
parameters for determining species cell occupancy, with FolN ex-
plaining more variance in cell occupancy of Quercus rubra than in the
other two species. However, the same parameters were influential for
determining cell occupancy for each of the three species; FolN, Main-
tResp, DNSC, the amount of woody biomass capable of supporting fo-
liage (FrActWD), and sensitivity of establishment to light (EstRad).
Climate parameters were not influential in determining species com-
position, contrary to our results for outputs which are directly related to
growth. For both total landscape biomass and species cell occupancy
tests, PAR, establishment parameters, rooting depth (RootingDepth),
and disturbance frequency (WRP) were not identified as being very

influential.
Temporal variation in the FAST sensitivity index for each parameter

indicated how the relative influences of particular variables on model
outputs changed through time. As noted above, total landscape biomass
was especially sensitive to FolN early in each simulation, where the
parameter's variation accounted for one-third of the variation in output
landscape biomass. After 200 simulation years, variation explained by
FolN only accounted for ten percent of output variance. In contrast,
MaintResp explained ten percent more variation in total landscape
biomass by the end of simulations than at the beginning. The change in
relative influence of the two variables is a result of increasing biomass
in the simulations, which is associated with increases in the contribu-
tion of MaintResp. Temporal variation was observed in the FAST results
for cell occupancy as well, where the influence of FolN increased with
time. From year 0 to year 200, the influence of FolN on Quercus rubra
occupancy increased from approximately thirty percent to explaining
over half the variation in cell occupancy by year 200.

Building on the results from FAST, the MoM analysis estimated total
effect sensitivity values for each parameter. When ordered by absolute-
valued indices (μ*), the parameter rankings of MoM closely mirror the
rankings of the FAST analysis (Table 4). Additionally, the sign of mean
elementary effects for each parameter indicated directionality for the
influence of the parameter (Figure A1). The large standard deviations
(σ) of the sets of elementary effects for the input parameters also sug-
gested a substantial amount of combined nonlinearity and/or interac-
tions between parameters. See Appendix I for a more detailed ex-
planation of the MoM results.

Fig. 2. Sensitivity results from the FAST analysis showing the fraction of variance explained for each input parameter for A) total landscape biomass, B) occupied
cells of Quercus rubra, C) occupied cells of Acer rubrum, and D) occupied cells of Pinus strobus. Increasingly lighter points indicates later simulation time steps.
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3.2. Regression tree analysis

While we performed the RTA across time-slices of the model, we
found that most of the relevant information offered by the RTA was
contained within the analysis at year 0 and at year 200, which are
presented here (Figs. 3 and 4). The RTA of total biomass accumulated
during model initialization (year 0) partitioned the simulations into 12

terminal nodes, which are shown as boxplots in Fig. 3. Each boxplot
shows the distribution of year 0 biomass within the subset of simula-
tions in that branch of the regression tree. Consistent with the findings
of FAST, the RTA shows that FolN, CO2 and MaintResp explain much of
the variation in the year 0 biomass. Indeed, of the 11 partitions that the
RTA identified, 10 came from those three variables. Temp entered as a
significant variable only in the relatively small subset of simulations
(n= 1664) where FolN and CO2 were high and MaintResp was low.
The first partition at the top of the RTA was based on whether FolN was
greater or less than 44% of its potential range, indicating FolN as the
most significant predictor variable overall. Not surprisingly, higher
values of FolN were associated with greater biomass. Working down
both sides of the tree for high and low values of FolN, the next splits
were based on whether CO2 concentration was greater or less than
∼620 ppm. Higher values of CO2 were associated with higher levels of
biomass. At this level in the regression tree, the analysis has partitioned
four groups of simulations that represent high/low FolN and high/low
CO2; the corresponding values of biomass in these simulations range
from 14,449 g/m2 with low FolN and low CO2, to 29,661 g/m2 with
high FolN and high CO2. Below this level on the regression tree, the
predictor variables diverge. Within the branch with high FolN (the right
side of the tree), MaintResp was identified as the next most predictive,
for both the high and low CO2 groups. Within the branch with low FolN
(the left side of the tree), FolN was again identified as the most pre-
dictive, for both high and low CO2 groups. Overall, by the bottom of
tree and thus at the point where RTA cannot identify any additional
significant partitions, the simulations with low MaintResp (< 0.003)
and the highest levels of FolN (> 0.7) had the highest average year 0
biomass. The lowest levels of year 0 biomass occurred when FolN was
below 0.2 and CO2 was below 620 ppm.

By year 200 of the simulations, FolN, CO2, and MaintResp were still

Table 4
Rankings of input parameters from average indices of FAST and MoM (μ*)
across simulation years 0, 50, 100, 150 and 200 for each parameter's influence
over total landscape biomass. The similarity in the parameter rankings suggests
robustness of the GSA results.

Ranking FAST MoM

1 MaintResp MaintResp
2 CO2 CO2

3 FolN FolN
4 Temp Precip
5 Precip Temp
6 TOwood PrecLossFrac
7 PrecLossFrac TOwood
8 WUEcnst WUEcnst
9 TOroot TOroot
10 IMAX PsnTOpt
11 PsnTOpt SLWmax
12 SLWmax FrActWd
13 FrActWd IMAX
14 RootingDepth RootingDepth
15 DNSC DNSC
16 PAR PAR
17 WRP WRP
18 EstRad FracFol
19 FracFol EstRad
20 EstMoist EstMoist

Fig. 3. Regression tree analysis for total aboveground biomass (g m−2) for model initialization (year 0). Circles show the predictor variable that was selected to be
partitioned, the size of the sample of runs (n) that remain at that branch in the tree, and the average value of biomass (bm) before the partition. The lines below each
circle indicate the break points for that predictor that maximize the difference in the response (i.e., biomass). Box plots at the terminal nodes show the variation
within the response (biomass) within that branch of the tree.
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identified as the most influential variables, and thus they represent the
most common partitions in the tree (Fig. 4). However, their relative
importance had shifted. At year 200, the first partition is on MaintResp,
followed by CO2, then FolN (Fig. 4). Like time 0, the RTA partitioned
CO2 in the mid-600s. Working down the side of the tree with higher
values of MaintResp, the climatic variable Temp entered as a significant
predictor. Overall, after 200 years, simulations where MaintResp
was<0.003, CO2 concentrations were>606 ppm, FolN was>0.43
and TOwood was< 0.01 had the highest average biomass.

3.3. Local sensitivity analysis

Results from the LSA showed that simulations at calibrated values
responded to variation in selected (most influential) input parameters
as expected relative to each other given the results of the GSA and RTA
analyses. The local analysis supported the direction and magnitude of
the influence of each parameter on total biomass (Fig. 5) and species
occupancy (Fig. 6), both of which had been indicated by GSA. While
increasing MaintResp and Temp inputs decreased landscape biomass,
increasing FolN and CO2 inputs increased landscape biomass. Ad-
ditionally, the LSA revealed particular nonlinear effects in the range of
variation for each parameter. These effects had been captured in the
standard deviation of elementary effects from the MoM GSA, but MoM
does not discriminate between interactions and non-linearities. In
contrast, the LSA can identify regions of nonlinearity across points in
parameter space but cannot identify interactions. For example, while
the change in total biomass corresponded nearly linearly with change in
MaintResp at year 200, the model showed much higher sensitivity to
FolN in the middle of the parameter's range than near the lower and
upper limits of its range.

4. Discussion

Our primary objective in this study was to identify the most

influential parameters within a mechanistically based FLM—i.e., the
coupled LANDIS-II-PnET-Succession framework. De Brujin et al. (2014)
developed this succession module with the goal of moving away from
earlier succession modules within LANDIS-II, which were largely phe-
nomenological and whose most influential parameters were not ex-
plicitly linked to processes that govern tree growth and forest devel-
opment and are essentially unknowable outside of some limited range
of observations. Given that the goal of PnET-Succession was to develop
a module driven by eco-physiological first principles, it is not surprising
that the most influential parameters we identified were FolN, Main-
tResp, and CO2. All three parameters are closely linked to the me-
chanisms of tree growth and survival. This contrasts with sensitivity
analyses of the biomass-succession extension to LANDIS-II (Scheller and
Mladenoff, 2004) which found that maximum allowable biomass and
maximum annual NPP were most sensitive (Simons-Legaard et al.,
2015; Thompson et al., 2011). In this context, the PnET model re-
presents significant progress toward an FLM that can be reasonably
expected to simulate forest processes under future conditions of climate
and atmospheric chemistry that have not been observed in the past.
Nonetheless, each of these parameters has distinct limitations for use in
an FLM and present challenges for model users.

The importance of FolN as identified by our global SA reflects the
original design of the original PnET family of models developed in the
1990s (Aber et al., 1997, 1995; Ollinger et al., 1998), all of which use
FolN to represent N availability and to estimate gross photosynthesis. In
the context of LANDIS-II/PnET-Succession, this is consistent with the
developers' intentions to have broad-scale mechanistic underpinnings
within the model and reflects the fact that foliar nitrogen concentra-
tions are strongly linked to rates of photosynthesis and ecosystem-scale
carbon assimilation across forests worldwide (Reich et al., 1997). From
the perspective of the user of Landis-II/PnET-Succession, there are
many published studies and public databases documenting foliar N that
can aid parameterization, such as the Foliar Chemistry Database
(Northeastern Ecosystem Research Cooperative, 2016) which we used

Fig. 4. Regression tree analysis for the biomass response variable at year 200. Details of each figure component are described in the caption for Fig. 3.
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Fig. 5. Local sensitivity analysis of biomass through time of the top four most influential parameters from the FAST analysis, where all other parameters are set at
calibrated values.

Fig. 6. Local sensitivity analysis of three species cell occupancy from the top four species-specific most influential parameters from the FAST analysis, while all other
parameters are set at calibrated values. Note that seemingly missing plots occur as the top three selected parameters were different across species.
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here. Within LANDIS-II/PnET-Succession, FolN is a species-specific
parameter, which results in differential growth rates among species and
allows users to simulate within-stand competition, which is an ad-
vancement over the earlier, lumped-parameter versions of PnET-II.

While the model allows FolN to vary by species, FolN cannot vary
over space, nor through vertical layers of a canopy in the current im-
plementation. Neglecting spatial variability in foliar N (and thus N
availability) is a limitation of the model. Correlational studies using
broad-scale remote sensing data, like that from the Airborne Visible/
InfraRed Imaging Spectrometer (AVIRIS) and the MODerate-resolution
Imaging Spectroradiometer (MODIS), have described the potential use
of these datasets for mapping the spatial variation of FolN in temperate
forests (Lepine et al., 2016; Ollinger et al., 2008b). And, modifications
to PnET-Succession are also being tested to allow FolN to vary vertically
in response to light availability (Gustafson et al., 2018). Our results
suggest that developing the model's capability to make FolN more dy-
namic rather than as a species constant is a high priority for manage-
ment and could greatly reduce uncertainty in model results.

MaintResp was also among the most influential parameters in our
sensitivity analyses. MaintResp is the amount of non-structural carbon
lost to maintenance respiration each month and is used in the calcu-
lation of cohort NPP and mortality. MaintResp is affected by tempera-
ture (de Bruijn et al., 2014) and is thus consistent with the model's more
mechanistic underpinnings and utility for modeling forest change in
future climates. However, the formulation of MaintResp is greatly
simplified as compared to the respiration calculations in the original
version of PnET-II (Aber et al., 1995), and it is applied universally
across all species. This formulation was required to achieve computa-
tional tractability (Gustafson et al., 2017b). The consequence of these
simplifications is that MaintResp is not an empirically measurable value
and has a definition that does not exist outside the model. From the
user's perspective, MaintResp is effectively a tuning parameter. While
we see no obvious alternative, having a tuning parameter as among the
most sensitive in the model is challenging from the perspective of de-
veloping an FLM based on mechanisms that are expected to perform
predictably, including under conditions that have not been observed
and thus not tuned to. Future improvements to the model should in-
corporate maintenance respiration requirements to growth that can be
measured and tested, preferably at a landscape scale.

CO2 was the other parameter that our SA analyses identified as
highly influential. Greater CO2 concentrations result in increased water
use efficiency and increased rates of photosynthesis, and atmospheric
CO2 concentrations are expected to continue to rise even further to
unprecedented levels (Keenan et al., 2013). Our findings support other
studies using the PnET family of models, including Ollinger et al.
(2008a), which found CO2 to be more influential than temperature in
predicting changes to NPP over multiple climate change scenarios
throughout the 21st century. The long-term effects of increasing CO2 on
forest growth and demographics remain highly uncertain and comprise
an area of rapidly developing research (Norby et al., 2010; Schimel
et al., 2015). Given this, the model's high sensitivity to CO2 should be
viewed with a level of caution commensurate with the uncertainty in
the broader scientific understanding. Like MaintResp and FolN, CO2's
effect on the model should continuously be evaluated as improvements
are made to the understanding of the physiological effects of CO2 on
forest growth.

Using a hybrid methodology of combining GSA, RTA, and LSA to
assess output sensitivities provided unique insights about LANDIS-II/
PnET-Succession (Pianosi et al., 2016). The main effect indices from the
FAST analysis allowed us to understand the output variation driven by
each parameter tested within the GSA. Additionally, the MoM analysis
returned sensitivities corresponding to the total effects of each para-
meter. The rankings of parameters under the MoM results were similar
to those of FAST, attesting to the robustness of our results. However,
despite their similarity in this study, FAST and MoM results are not
directly comparable as they are estimating different values: main effect

indices for FAST, and total effect indices for MoM. Depending on the
scale of interactions, though, they might often yield similar rankings as
we found in this study. MoM and LSA indicated the directionality of
each parameter's influence on outputs, and MoM indicated the extent to
which each parameter interacted with other parameters and/or ex-
hibited nonlinearity. For example, MoM and LSA showed that in-
creasing FolN resulted in greater biomass, which is consistent with the
known role of foliar nitrogen in determining the maximum rate of
carboxylation and the maximum rate of electron transport during
photosynthesis (Walker et al., 2014). Likewise, increasing MaintResp
reduced total landscape biomass, because high ratios of respiration rate
to photosynthetic rate are known to deplete carbon stores (Van Oijen
et al., 2010). To then examine in detail how the influence identified by
GSA methods is partitioned, RTA allowed us to identify parameter
break points and specific parameter interactions. In part, the parti-
tioning by RTA reflected the parameter rankings from the other ana-
lyses. Additionally, we can visually inspect the output variation in the
box-plots in Figs. 3 and 4 alongside the parameter variation that pro-
duced it to identify interactions. For example, the RTA output at year
200 shows CO2 contributing to greater variation at low values of
MaintResp than at high values of MaintResp, and TOwood appears to
contribute substantially to variation in outputs when FolN and CO2

values are high, and when MaintResp is low. Finally, the LSA allowed us
to examine the nonlinearity of the effects of individual parameters on
model outputs at a particular part of parameter space.

5. Conclusions

While each SA method offered additional information about the
influence of input parameters on model outputs, they also overlapped
significantly in their conclusions. Fundamentally, all methods sup-
ported FolN, MaintResp, and CO2 as being highly influential. This
combination approach provided a more robust analysis and associated
conclusions than if we had used just one of these methods alone. By
using all four methods (FAST, MoM, LSA, and RTA) in consort, we were
able to assemble a more complete picture about the influence of each
parameter and ultimately, a greater understanding of LANDIS-II/PnET-
Succession (Pianosi et al., 2016).

We have presented a thorough analysis of the sensitivity of LANDIS-
II/PnET-Succession outputs to variation in twenty input parameters.
Our work here builds upon that of Gustafson et al. (2017a), and where
our analysis overlapped, our results were consistent. Specifically, the
directionalities of the effects of Temp and Precip parameters on biomass
in this study were the same as shown in their sensitivity analysis. While
the magnitude of the response of biomass to variation in Temp versus
Precip in Gustafson et al. (2017a) suggested that Precip was a stronger
driver of biomass than Temp in their simulations, our analysis instead
suggests that Temp has slightly more influence than Precip over bio-
mass outputs. This discrepancy is likely due to differences in the sam-
pling of parameter space. The local analysis performed by Gustafson
et al. (2017a) was not designed to compare the relative influences of
parameters to each other and instead aimed to capture individual
parameter directionality and parameter interactions. As such, they only
varied Temp and Precip values over limited ranges. On the other hand,
our analysis was specifically designed to sample each parameter
throughout its possible input range, allowing us to compare the overall
importance of parameters for determining model output values. We
selected proportional ranges of variation for climate variables and
tested the influence of all input parameters through the space of var-
iation of the other parameters, which should make comparing the re-
lative influence of parameters more reliable.

We evaluated the area within a landscape occupied by three species,
identified the parameters that contribute most to variation in model
outputs, and described their effects. Our sensitivity analysis showed
little similarity between the effects of input parameters on different
response variables, with total landscape biomass being driven primarily
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by parameters directly influencing carbon assimilation, such as FolN
and MaintResp, and with cell occupancy being driven more by para-
meters associated with carbon allocation. Strikingly, the sensitivity of
cell occupancy to each of various input parameters was highly variable
between species. This highlights the known danger of extrapolating the
results of a sensitivity analysis on one model variable to different re-
sponse variables. As demonstrated in previous studies, to understand
the sensitivity of a specific model output to various input parameters,
that output must be individually tested (Rosolem et al., 2012; van
Werkhoven et al., 2008). Another important feature of our analysis was
implementing the SA across time steps as in Reusser et al. (2011). Our
analysis showed that some parameters, like FolN in the landscape
biomass analysis, exert much more influence early in the simulations
than in later time steps. Others, like MaintResp, may become more
influential through time.

Across temperate forests, the influential parameters FolN, CO2,
Temp, and Precip are relatively well-supported by data for estimating
their values. However, data supporting other important parameters
MaintResp, FractWD, DNSC, and EstRad are less easily estimated,

despite the ecological realism of these variables. Given that our analysis
has shown a tendency of these parameters to strongly influence model
outputs, this uncertainty contributes to greater uncertainty in model
outputs. In the absence of additional data or model modification, the
process of determining values for these parameters should then be
guided by calibration, and the analysis of outputs must consider un-
certainty in the high-influence, high-uncertainty parameters (Higgins
et al., 2003).
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Appendix I. Method of Morris Results

We performed MoM alongside FAST in order to 1) corroborate conclusions about relative parameter influences over the total biomass output with
estimates of total effects, 2) determine the direction of influence of each parameter, and 3) investigate the summed effects of parameter interactions
and nonlinearities.

MoM is different from FAST in that it estimates a total effects index for each model parameter. Total effects indices differ from the main effects of
FAST in that they incorporate interactions with other parameters.

Our MoM analysis sampled 40 one-at-a-time paths (r) for the 20 parameters (k) for a total of (r)*(k+1) = (40)*(20 + 1) = 840 model runs. The
upper and lower bounds for the MoM sampling of each parameter were the same as those used in FAST (Tables 2 and 3). All analysis was done in R,
using the MoM functions included in the package sensitivity.

The MoM analysis, like the FAST analysis, was performed at different time points through the simulations. The raw output at each time point
consisted of 40 elementary effect indices for each of the 20 parameters (a 40 × 20 matrix). The mean of the elementary effects for each parameter
gives the estimated total effects (μ), the sign of the mean of the elementary effects the average directional effect of each parameter, and the standard
deviation of the elementary effects (σ) indicates the combined interactions and nonlinearity for the parameter. Additionally, the mean of the absolute
values of the elementary effects gives an “absolute” total effects index (μ*) that better accounts for the overall influence of parameters that can have
positive and negative influence on the output (Campolongo et al., 2007). Figure A1 shows each of these values from our MoM at 5 time points for
each parameter.

Figure A1. Sensitivity results from the MoM analysis. The parameters are ranked down the y-axis decreasing by average μ*. The leftmost panel shows μ*, the
“absolute” total effects index for each parameter. The middle panel shows μ, the estimated total effects index for each parameter. Values below zero indicate that the
parameter has a negative relationship with total biomass outputs, while values above zero indicate that the parameter value has a positive influence on total biomass
outputs. The rightmost panel shows σ, the estimated value of combined interactions and nonlinearities associated with each parameter.
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