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Abstract
In deciduous forests, spring leaf development and fall leaf senescence regulate the timing and duration of photosynthesis 
and transpiration. Being able to model these dates is therefore critical to accurately representing ecosystem processes in 
biogeochemical models. Despite this, there has been relatively little effort to improve internal phenology predictions in 
widely used biogeochemical models. Here, we optimized the phenology algorithms in a regionally developed biogeochemi-
cal model (PnET-CN) using phenology data from eight mid-latitude PhenoCam sites in eastern North America. We then 
performed a sensitivity analysis to determine how the optimization affected future predictions of carbon, water, and nitrogen 
cycling at Bartlett Experimental Forest, New Hampshire. Compared to the original PnET-CN phenology models, our new 
spring and fall models resulted in shorter season lengths and more abrupt transitions that were more representative of obser-
vations. The new phenology models affected daily estimates and interannual variability of modeled carbon exchange, but 
they did not have a large influence on the magnitude or long-term trends of annual totals. Under future climate projections, 
our new phenology models predict larger shifts in season length in the fall (1.1–3.2 days  decade−1) compared to the spring 
(0.9–1.5 days  decade−1). However, for every day the season was longer, spring had twice the effect on annual carbon and 
water exchange totals compared to the fall. These findings highlight the importance of accurately modeling season length 
for future projections of carbon and water cycling.

Keywords Phenology · Biogeochemical modeling · AmeriFlux · Deciduous forests · Forest carbon cycling · Hubbard 
Brook · PhenoCam

Introduction

In deciduous forests, the timing of seasonal changes in 
leaf area is closely tied to ecosystem-level shifts in car-
bon, water, and nutrient cycling. When new photosynthetic 
tissues  (leaves) emerge in the spring, deciduous forests 
transform from carbon sources to carbon sinks, and from 
evaporation- to transpiration-dominated systems. New 
leaves cause abrupt changes in canopy structure, affecting 
ecosystem-level sensible and latent heat exchange (Hogg 
et al. 2000), surface roughness (Young et al. 2021), and 
albedo (Ollinger et al. 2008; Hollinger et al. 2010). In the 
fall, as deciduous forests transition back to dormancy, they 
also transition to a more passive exchange of carbon, water, 
and nutrients. The timing of these transitions is critically 
important because they regulate how long deciduous for-
ests remain active, directly affecting annual carbon uptake 
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(Goulden et al. 1996; Richardson et al. 2010) and water-use 
(Zha et al. 2010). Therefore, being able to predict the timing 
of seasonal transitions in deciduous forests is of great impor-
tance for biogeochemical modeling and future projection of 
land–atmosphere exchange (Richardson et al. 2012).

Growing seasons in deciduous forests are already length-
ening in response to climate change worldwide (Piao et al. 
2019). The timing of seasonal transitions in the spring and 
fall (i.e., the dates and duration of phenology changes) are 
particularly sensitive to changing temperatures. Increas-
ing global temperatures are causing spring to arrive earlier 
(Jeong et al. 2011) and fall to arrive later (Liu et al. 2016) 
compared to just a few decades ago. These longer growing 
seasons have led to higher rates of annual gross primary 
productivity (GPP), and net ecosystem productivity (NEP) 
(Richardson et al. 2010; Dragoni et al. 2011; Keenan et al. 
2014). However, increasing temperatures are also associated 
with higher rates of ecosystem respiration (Duveneck and 
Thompson 2017) and water use (Beamesderfer et al. 2020) 
that can counteract increases in forest carbon uptake (e.g. 
Sanders-Demott et al. 2020). Therefore, the future effects 
of longer growing seasons on ecosystem-level carbon and 
water cycling are not fully understood. Predictions range 
from slight increases in NEP (Richardson et al. 2009) to 
stable long-term trends due to increased rates of ecosystem 
respiration (Piao et al. 2007). Thus, future warming condi-
tions will likely result in tradeoffs between increases in pho-
tosynthetic uptake and increases in ecosystem respiration.

Biogeochemical models are frequently used to better 
understand how ecosystems use carbon, water, and nutri-
ents under current and future conditions. These models 
range in complexity from simple processes at individual 
sites to complex land–atmosphere feedbacks at the global 
scale. Although biogeochemical models are widely used to 
make inferences about ecosystem functioning, these models 
tend to have poor representations of phenology, oftentimes 
overestimating growing season length (Levis and Bonan 
2004; Randerson et al. 2009; Richardson et al. 2012; Chen 
et al. 2016). Overestimating growing season length directly 
affects the amount of modeled carbon, water, or even nutri-
ents exchanged in biological processes. Integrating empiri-
cal observations of phenology into existing biogeochemical 
models can overcome these weaknesses to represent growing 
season lengths more accurately (Reyer et al. 2013).

The phenology algorithms within biogeochemical mod-
els are used to simulate changes in leaf area index (LAI). 
Spring models conventionally trigger the onset of leaf devel-
opment based on the accumulation of temperature over a set 
threshold (e.g., growing degree days, GDD). Simple spring 
models use accumulated warming temperatures (e.g., Lany 
et al. 2016; Menzel et al. 2006; Miller-Rushing and Primack 
2008), but may also include photoperiod, water balance and/
or chilling requirements (Morin et al. 2009; Körner and 

Basler 2010). Like spring, fall senescence is also regulated 
by temperature (Estrella and Menzel 2006) and photoperiod 
(Estiarte and Peñuelas 2015). Fall phenology models use 
cold temperatures under a certain threshold, accumulating 
in a manner similar to GDD, called chilling degree days 
(CDD). Compared to spring, fall senescence is less well 
characterized in modeling efforts. This is in part because 
it has received less attention in the literature, and is less 
predictable because leaf senescence can be more suddenly 
affected by harsh weather such as frost, or wind (Gallinat 
et al. 2015). Despite many advances in modeling spring 
and fall phenology (e.g., Basler 2016; Hufkens et al. 2018), 
incorporating more sophisticated phenology models into 
biogeochemical models has lagged as a priority in model 
development.

Using empirical data to train phenology models is becom-
ing more practical as the availability of phenology data has 
increased with automated methods of observation (Richard-
son et al. 2018). Near-surface remote sensing is a powerful 
way to monitor phenology in deciduous forests in a con-
sistent and reproducible manner. Digital repeat photogra-
phy (i.e., time lapse) is one example of near-surface remote 
sensing offering a cost-effective, automated tool for visu-
ally monitoring forest ecosystems from years to decades at 
an intermediate scale of observation between ground-based 
observations and satellite-based remote sensing (Richard-
son et al. 2018). The PhenoCam Network provides near-real 
time, open-access digital repeat photography and developed 
techniques to extract data that can quantify seasonal changes 
in vegetation phenology based on a greenness index (Son-
nentag et al. 2012).

In this project, we use PhenoCam data to calibrate phe-
nology models to regional long-term datasets, then use the 
new models to ask the following: (1) how does altering the 
spring and fall phenology algorithms affect future modeled 
carbon, water, and nutrient exchange in a northern deciduous 
forest? And (2) does phenological variation in spring or fall 
have a larger influence on modeled ecosystem-level carbon, 
water, and nutrient cycling? We predicted that altering the 
phenology algorithms would shorten the period of modeled 
photosynthetic activity and therefore reduce the amount of 
modeled carbon, water, and nutrients used annually. We 
hypothesized that longer springs would have a larger effect 
on carbon and water cycling compared to fall because day-
length in the spring is longer and rates of incoming solar 
radiation are higher compared to the fall (Zhang et al. 2020). 
By addressing these questions, we improve our understand-
ing on the effects of changing climate on phenology and how 
that regulates important ecosystem processes.
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Methods

We used existing near-surface remote sensing data from 
eight different northern forests of North America to train 
spring and fall phenology models (Fig. 1). Using data from 
several different northern deciduous forests allows us to use 
more years of data to train models and makes models that 
are more generalizable across region. Each of the forests 
used for model training had some combination of maple 
(e.g., Acer saccharum and Acer rubrum), beech (Fagus gran-
difolia), and birch (e.g., Betula alleghaniensis and Betula 
papyrifera) species in the overstory. Each site had between 
6 and 14 years of PhenoCam data available for training mod-
els, in total we used 96 site years of data to train the models.

Detecting transition dates using PhenoCam

We estimated transition dates in the spring and fall of each 
site year using long-term PhenoCam data (Richardson 
et al. 2018). Provisional data from the PhenoCam website 
(phenocam.nau.edu) were collated and used to estimate 
transitions at the beginning and end of each of the spring 
and fall transitions using phenocamR package (Hufkens 
et al. 2018) in the R Statistical Software (R Core Team 
2020). We first extracted greenness values from a region 
of interest in PhenoCam images that was representative 
of the forest canopy, an approach that is well suited for 

canopy-level, or “species ignorant” modeling. The relative 
greenness of a pixel (i.e., green chromatic coordinate or 
Gcc) in each region of interest is calculated by dividing the 
average green intensity value by the sum of the red, blue 
and green intensities across all pixels. To reduce the noise 
associated with illumination and suboptimal lighting, we 
extracted the  90th percentile of the Gcc across a 3-day 
moving window (Richardson et al. 2018). For more infor-
mation on processing digital images to extract phenology 
dates, see Sonnentag et al. (2012). In the spring, we esti-
mated the transition dates as the dates Gcc values reached 
the 10% and 80% of the maximum seasonal amplitude. In 
the fall, we found greenness was unable to predict transi-
tion dates late enough to capture the end of leaf senes-
cence (based on ground observations at Hubbard Brook 
and measured leaf area index from Bartlett Experimental 
Forest [see Toda and Richardson 2018]). We found that 
using yellow chromatic coordinate (Ycc; equivalent to 1 
minus the blue chromatic coordinate, Kosmala et al. 2016) 
was better suited for modeling the end of leaf senescence 
because it could predict fall transition dates later than Gcc 
(for more information, see Fig. S1 in the Supplementary 
Materials). For this reason, we used a combination of Gcc 
and Ycc to predict the start and end of fall senescence—
the start of the fall transition was estimated as the date the 
Gcc reached 50% of the seasonal amplitude, and the end 
of the fall transition was the day Ycc reached 50% of the 
seasonal amplitude.

Fig. 1  Sites used to select and 
train phenology models based 
on PhenoCam data. Ground 
observations were used to vali-
date model performance at Hub-
bard Brook. Future phenology 
projections and biogeochemical 
cycling (using PnET-CN) were 
modeled at Bartlett Experimen-
tal Forest
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Model selection, calibration, and validation

We evaluated a variety of phenology transition date mod-
els that represent a range of environmental drivers and 
levels of complexity (Table 1). The spring models have 
been evaluated in many different forest types and repre-
sent some of the best-known phenology models used to 
predict the spring transition. The fall models have not been 
widely tested (but see Richardson et al. 2006; Delpierre 
et al. 2009) and the drivers of fall senescence in mesic 
deciduous forests are not well known. Our models require 
a combination of accumulating warming temperature, pho-
toperiod, and accumulating chilling temperatures.

The spring and fall phenology models were calibrated 
using the phenoR package (Hufkens et al. 2018). We first 
parameterized models for the beginning and end of the 
season based on dates extracted from PhenoCam: 10% 
of the seasonal Gcc amplitude in the spring and 50% of 
the seasonal Ycc amplitude in the fall. Then, to model 
the duration of the transition period, we trained models 
to predict the end of the spring transition, and the begin-
ning of the fall transition by holding all other parameter 
values constant except for the critical value of accumulat-
ing temperature. By doing so, we are effectively modeling 
four dates for each year—the initiation and completion 
of both spring onset and fall senescence for each model. 
Modeling the beginning and end of phenology transitions 
is important because the rate of leaf development or senes-
cence can vary independently from year-to-year (Kloster-
man et al. 2018). We optimized models using a gener-
alized simulated annealing algorithm (GenSA package; 
Xiang et al. 2013) in the phenoR package that identifies 
the global minima of different combinations of parameter 
values for each model. We ran 25 chains (i.e., individual 

ensembles) of 40,000 iterations and identified the param-
eter sets with the lowest root mean square error (RMSE) 
as the parameters that best fit the data.

The calibrated models were then evaluated against the 
ground-based observations of spring and fall phenology 
transitions from Hubbard Brook Experimental Forest, in 
the White Mountains of New Hampshire, USA (Likens 
et al. 1970; Fahey et al. 2005). Spring leaf development and 
fall leaf senescence data were collected every 3–7 days dur-
ing spring and fall since the early 1990s. Individual marked 
trees were given a score of 0–4 for both spring and fall tran-
sitions; 0 corresponding to no leaves and 4 corresponding 
to fully developed leaves (see Richardson et al. 2006). We 
compared estimates from our calibrated models to the lin-
early interpolated ground observations that ranged from 0–4. 
In the spring we compared our dates to the date the ground 
observations reached a 3 out of 4 (50% canopy closure), and 
in the fall we compared our dates to the date ground observa-
tions reached a 1 out of 4 (no more green in the canopy, half 
of the leaves have fallen) – see Richardson et al. (2006) for 
more information.

We selected the three best performing spring models for 
future projections based on the lowest Akaike information 
criterion (AIC) values. We included three spring models 
(each representing different drivers), and both fall models 
for future projections of phenology transitions and ecosys-
tem processes. We included more models than just the top 
performing spring and fall models (i.e., also including mod-
els with ΔAIC > 2) for quantifying uncertainty of our model 
outputs.

Future phenology projections

We modeled phenology transition dates into the future at 
Bartlett Experimental Forest to year 2100 with an ensemble 

Table 1  Phenology models 
selected for parameterization 
and testing

Models are listed by season and number of parameters. The driver codes refer to: T accumulating warming 
temperature, P photoperiod, C accumulating chilling temperature

Model name Model code Season Drivers # of 
param-
eters

References

Linear regression LIN Spring T 2 Hufkens et al. (2018)
Thermal time TT Spring T 3 Cannell and Smith (1983)
Photothermal-time PTT Spring T, P 3 Črepinšek et al. (2006)
M1 M1 Spring T, P 4 Blümel and Chmielewski (2012)
Sequential SQ Spring C, T 8 Hanninen (1990)
Parallel PA Spring C, T 9 Hanninen (1990)
Sequential M1 SM1 Spring C, T, P 9 Hufkens et al. (2018)
Parallel M1 PM1 Spring C, T, P 10 Hufkens et al. (2018)
Cooling degree day CDD Fall C 3 Richardson et al. (2006)
Cooling degree day 

and photoperiod
CDDP Fall C, P 3 Delpierre et al. (2009)
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of six different future climate scenarios from NA-CORDEX 
data archive (Mearns et al. 2017). The archive offers a selec-
tion of different downscaled future climate projections based 
on General Circulation Model (GCM) simulations in the 
Coupled Model Intercomparison Project, Phase 5 (CMIP5) 
multi-model ensemble (Maurer et al. 2007). We selected six 
climate models based on the criteria that the models (1) had 
daily data resolution, (2) had representative climate path-
ways (RCP) 4.5 and 8.5, and (3) were bias corrected based 
on Daymet gridded datasets. The Daymet corrected data-
sets were chosen because the phenology transition models 
described above were fit using Daymet data in the phenoR 
package—this minimized biases associated with transition-
ing from historic data to future climate projections. These 
two RCPs represent two projections of atmospheric green-
house gas concentrations under high (RCP 8.5) and interme-
diate (RCP 4.5) human emission scenarios.

Biogeochemical modeling in PnET‑CN

Finally, we performed a sensitivity analysis to better under-
stand how phenology models affect rates of modeled carbon, 
water, and nitrogen cycling. We used the Photosynthesis 
and Evapotranspiration Model (PnET)—a simple biogeo-
chemical model developed in New England forests (Aber 
and Federer 1992; Aber et al. 1996). The family of PnET 
models is built on the relationships that maximum photo-
synthetic rate is a function of leaf area and foliar nitrogen 
concentrations (see Ollinger et al. 2008) and that stomatal 
conductance is a function of the actual photosynthesis rate. 
We used a daily version of the PnET-CN model, a model that 
has been adapted to run at the daily timescale and includes 
both carbon (C) and nitrogen (N) cycling (Aber et al. 1997). 
PnET-CN has been tested in several biomes (Thorn et al. 
2015) and has previously been validated at Bartlett Experi-
mental Forest (Ollinger and Smith 2005). In the remainder 
of this manuscript, we refer to the daily version of PnET-CN 
simply as PnET.

Previous work has shown the default spring phenology 
model in PnET predicts spring onset too early, and the dura-
tion of leaf development lasts too long (Chiang and Brown 
2007; Klosterman et al. 2018). Less is known about the per-
formance of PnET’s fall phenology models. We replaced the 
default phenology models with new spring and fall phenol-
ogy models described above, and ran the model to year 2100 
to assess the effects the phenology algorithm has on model 
output. The default spring phenology model for spring onset 
in PnET is a simple growing degree day (GDD) model (i.e., 
an ecodormancy model) that begins on day of year 61 and 
accumulates daily temperatures above 0 °C until a user-
defined parameter threshold is reached. This is similar to the 
Thermal-time (TT) model used in model selection and vali-
dation section. Once leaves emerge, they continue to develop 

until a second user-defined GDD threshold is reached. Fall 
senescence in PnET is indirectly affected by temperature and 
is triggered by the date that leaves in different canopy layers 
reach a negative carbon balance (due to cooling temperatures 
and shortening day lengths). We used a similar two-tiered 
approach of simulating the start and end of the spring and 
fall transitional periods.

We replaced the default phenology models in PnET 
with regionally calibrated models while keeping all other 
inputs and drivers constant. We ran the model at Bartlett 
Experimental Forest, hindcasting from 2004 to 2020 and 
forecasting to year 2100. This site was selected because an 
existing AmeriFlux tower established in 2004 (Ouimette 
et al. 2018; Richardson 2004) allows us to evaluate model 
performance compared to eddy covariance data. For the 
period overlapping with tower measurements (2004–2020), 
we used temperature, precipitation, and solar radiation 
from the DayMet interpolated dataset as PnET model driv-
ers (Thornton et al. 2020). For future model runs, we used 
projections of temperature, precipitation, and solar radiation 
from one of the NA-CORDEX future climate projections. 
We selected the projection with the lowest bias compared 
to Daymet data over the 2004–2020 period. The projection 
(EC-Earth RCA4) had an average level of warming for RCP 
8.5 over the next 80 years (~ 0.5 °C per decade) compared to 
other models. We held other model drivers constant (atmos-
pheric  CO2,  O3, and deposition of  NH4, and  NO3) to remove 
variability not directly related to phenology. We used input 
parameters initially developed by Aber et al. (1996) from 
site-specific measurements from Harvard Forest and later 
refined by Ollinger et al. (2002) for implementation of PnET 
at Hubbard Brook. Vegetation-specific input parameters such 
as foliar nitrogen and specific leaf weight were developed 
directly from field measurements in the region.

We compared the daily modeled GPP, NEP, and ecosys-
tem respiration to the corresponding daily tower based esti-
mates from 2006 to 2020. We then compared how annual 
totals of modeled carbon exchange, as well as evapotran-
spiration (ET), water-use efficiency (WUE), and nitrogen 
mineralization (Nmin), were affected by altering the phe-
nology subroutine. To ensure the model runs were close to 
equilibrium, we used long spin-up times (i.e., the length of 
time a model is run since initiation, by recycling climate 
driver data) and chose not to include past disturbance after 
spin-up was complete. Using long spin-up times is standard 
practice for these types of ecosystem-level biogeochemical 
modes because they alter carbon and nutrient pools to bal-
anced levels that more accurately represent natural systems. 
However, long spin-up times result in close to “steady-state” 
conditions. We decided to use the long spin-up times with-
out past disturbance simulation because they resulted in 
more realistic carbon and nutrient pool sizes, albeit they 
also resulted in modeled NEP that was closer to steady state 
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than the eddy covariance data suggest [Bartlett Experimental 
Forest is a consistent carbon sink (Ouimette et al. 2018)]. 
We account for this when comparing model outputs relative 
to fixed phenology models (i.e., spring and fall transitions 
occurring at the same day of year), because these differences 
isolate the effects of the phenology models on carbon, water, 
and nutrient cycling outputs.

Results

Model selection and validation

By training spring and fall phenology models based on data 
from the eight regional PhenoCam sites, we found our spring 
models were better at predicting transition dates compared to 
fall models (Fig. 2) based on root mean square error (RMSE) 
and r2 values. The spring models consistently fit the data bet-
ter (with an average RMSE of 6.7 days) than the fall models 
(an average RMSE of 8.7). We determined the best fitting 

spring models were the sequential M1 (SM1), the parallel 
(PA), and the photothermal-time (PTT) models based on 
AIC (Table 2). These three models required different drivers, 
only sharing warming temperature as the common driver 
across models. More complex spring models (including pho-
toperiod and, or chilling requirements) tended to outper-
form the simplest models (i.e., those requiring only warm-
ing temperatures) but having more variables or parameters 
did not always result in improved model fits based on AIC. 
For example, the PTT model fit the spring validation data-
set as well as any other model (based on RMSE and r2) but 
required a third of the parameters of the other top models. 
For the fall models, the simpler model that only requires 
accumulating cold temperature (CDD) performed better than 
the other fall model which also includes photoperiod based 
on RMSE or r2

Models performed slightly better for the validation 
dataset (i.e., 28 years of ground observations at Hub-
bard Brook) compared to the regional training dataset 
(i.e., 96 sites years of PhenoCam data from 8 sites). This 

r2 = 0.62

Spring

r2 = 0.39

Fall

r2 = 0.56

r2 = 0.33

r2 = 0.6

CDD CDDP

SM1 PTT PA

28
0

30
0

32
0

28
0

30
0

32
0

10
0

11
0

12
0

13
0

14
0

15
0

10
0

11
0

12
0

13
0

14
0

15
0

10
0

11
0

12
0

13
0

14
0

15
0

100

110

120

130

140

150

100

110

120

130

140

150

280

300

320

100

110

120

130

140

150

280

300

320

Observed transition date from PhenoCam (day of year)

M
od

el
le

d 
tr

an
si

tio
n 

da
te

 (
da

y 
of

 y
ea

r)

Bartlett Experimental Forest

Cary Institute

Harvard Forest

Howland Forest

Laurentides

Proctor Maple

Queen’s

Turkey Point

Spring Spring

Fall

Fig. 2  Modeled vs. observed spring and fall transition dates using the 
three best fitting spring models and the two fall models for all site 
years and sites (represented by different shapes and colors) used for 

model training. The spring models represent the initiation of spring 
onset, and the fall models represent the completion of fall senescence. 
The drawn line is a one-to-one line



247Oecologia (2023) 201:241–257 

1 3

Table 2  Model performance for 
start of spring and end of fall 
phenology models based on the 
training dataset (8 sites across 
the region) and the validation 
dataset (Hubbard Brook) based 
on ground observations

Models followed by an asterisk (*) indicate the models that were used for future projections. Model perfor-
mance for spring and fall dates estimated from PnET are included for comparison, but we cannot report the 
AIC for because the PnET algorithms were not parameterized

Model code Season AIC training RMSE training r2 Training RMSE 
validation

r2 validation

SM1* Spring 371.1 6.2 0.62 4.0 0.69
PTT* Spring 373.9 6.7 0.56 3.6 0.73
PA* Spring 374.0 6.3 0.60 4.3 0.73
M1 Spring 374.3 6.6 0.56 4.5 0.73
TT Spring 376.4 6.7 0.55 3.5 0.71
PM1 Spring 384.4 6.7 0.55 3.7 0.72
SQ Spring 386.5 6.8 0.55 3.6 0.70
LIN Spring 398.6 7.6 0.40 5.5 0.45
PnET Spring – 19.7 0.27 10.3 0.46
CDD* Fall 415.5 8.3 0.39 4.1 0.30
CDDP* Fall 432.6 9.0 0.33 6.1 0.28
PnET Fall – 12.1 0.09 9.3 0.03

Fig. 3  Validation of best 
performed spring onset (top 
panel) and fall senescence (bot-
tom panel) models at Hubbard 
Brook. The different colors and 
shapes represent the different 
phenology models that were 
parameterized and tested against 
the ground observations (black 
squares)

validation shows our models captured the magnitude and 
variability of an independent dataset reasonably well 
(Fig. 3), justifying the conclusion that the models are 
not overfit to the training dataset. This also suggests that 
models trained using near surface remote sensing data (in 
this case, PhenoCam data) can be validated using inde-
pendently derived ground-based measurements that rely 
on entirely different methods (also see Fig. S2).

Future phenology projections

Each of the calibrated models predicted earlier spring and 
later fall transition dates under all future climate scenar-
ios (Fig. 4) with larger shifts in growing season length 
during the fall compared to spring. Spring models predict 
an average advancement of 0.9 and 1.4 days  decade−1 for 
RCP 4.5 and RCP 8.5, respectively. In comparison, the 
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average fall senescence dates were 1.2 and 2.9 days later 
 decade−1 for RCP 4.5 and 8.5, respectively. Based on this 
ensemble of future climate scenarios, our models predict 
the growing season in northern deciduous forests of North 
America will lengthen by 2–5 days  decade−1 depending 
on the climate scenario, with more pronounced changes 
projected in the fall compared to the spring.

Implications for daily PnET model output

Incorporating new spring and fall models into PnET resulted 
in transition dates that matched the interannual variability 
of observed phenology dates better than the original PnET 
phenology algorithm. The unrepresentatively high interan-
nual variability predicted by PnET suggested the original 
phenology algorithm was overly sensitive to temperature 
compared to the new models. The original PnET spring 
algorithm performed reasonably well at estimating the 
beginning of the spring transition dates compared to the vali-
dation dataset at Hubbard Brook (r2 = 0.44; RMSE = 10.3), 
but not as well as the new spring models (r2 = 0.69–0.73; 
RMSE = 3.6–4.3). For the fall, the original PnET algorithm 

did well at predicting the average end of fall date (October 
21st compared to the average observed date of October 19th) 
at Hubbard Brook, but the high variance in PnET’s esti-
mates resulted in overall poor fits with observed transitions 
(r2 = 0.03; RMSE = 9.3). Therefore, we found our new mod-
els performed much better at predicting independent ground 
observations compared to PnET.

Incorporating new spring and fall phenology models 
into PnET also resulted in shorter phenology transitions 
that had better agreement with transition duration estimated 
from PhenoCam data at Bartlett Experimental Forest. The 
original PnET spring phenology model tended to predict the 
onset of spring too early in the season (27 April) followed 
by a disproportionately slow leaf development ending much 
later than observations (25 Jun). This almost 2 months of 
leaf development was uncharacteristically long compared 
to the average 16-day spring transitions estimated from 
PhenoCam. The new spring phenology models resulted in 
the initiation of leaf development starting later (08 May) 
and end of leaf development ending much earlier (25 May) 
than the original PnET model, resulting in a leaf develop-
ment period of 16–17 days on average. The duration of the 

Fig. 4  Projected spring and fall 
transition dates from 2020 to 
2099 using two different rep-
resentative concentration path-
ways (RCP). Light gray lines 
represent individual projections 
from the CMIP5 future climate 
projections from the NA-
CORDEX Program (Mearns 
et al. 2017). The ensemble mean 
(average of the six individual 
climate projections) is in black 
and standard deviation around 
the mean is represented with 
a colored ribbon. The spring 
transition dates are in red and 
fall transition dates in blue. 
The equation represents a least 
squares linear regression of the 
ensemble mean over time with 
the y-intercept representing the 
projected transition date at year 
2020. All regression lines are 
significant at an alpha of 0.05
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fall transition period using the PnET model was also longer 
than using the new models. The PnET fall phenology model 
started fall senescence approximately around the same time 
as the new models (26 Sep) but the end of fall senescence 
was on average 9 days longer (25 Oct) than the new models. 
As a result, the PnET fall transitions lasted nearly a month, 
while the observations and new model predictions lasted 
approximately 3 weeks. The early initiation in spring, and 
late fall senescence from PnET phenology models resulted 
in longer season lengths overall, but the long duration 
of transition periods resulted in a shorter period with maxi-
mum LAI (Fig. 5). The more rapid phenology transitions 
resulting from the new models showed clear improvements 

in spring LAI, but for the years with LAI data available, the 
PnET fall models resulted in better fits. However, there were 
other problems associated with fall transitions produced by 
PnET. The beginning of the fall transition was a fixed date 
(i.e., no interannual variability), and the end was sometimes 
2 weeks later than observations from PhenoCam. As a result, 
the duration and the end of the fall transitions were found to 
be unrealistically variable.

We found that altering the phenology algorithms in PnET 
resulted in relatively small improvements between daily 
modeled and measured ecosystem carbon exchange (Fig. 5). 
The most notable improvements were found between mod-
eled and measurement NEP. The more rapid phenology 
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Fig. 5  Average daily observed (black) ecosystem carbon exchange 
and leaf area index (LAI) at Bartlett Experimental Forest versus daily 
modeled values using the original PnET phenology model (red) and 
the average of the new phenology models (blue). Ecosystem carbon 
exchange variables [gross primary productivity (GPP), ecosystem res-
piration, and net ecosystem productivity (NEP)] are the mean daily 

estimates from 2004 to 2019. The  r2 values represent the relationship 
between average daily measured vs. modeled values. Modeled and 
measured LAI are mean daily values from 2013 to 2015. LAI was 
measured using the fraction of PAR (fPAR) technique described in 
Toda and Richardson (2018)
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transitions from the new models resulted in better agreement 
with measured NEP. The slow transitions from the original 
PnET models resulted in unrepresentively slow increases in 
NEP, and in the late fall senescence resulted unrealistically 
late net carbon uptake (Fig. 5). However, daily GPP and 
ecosystem respiration were less impacted by the phenology 
algorithms than we had expected; the original PnET phenol-
ogy subroutine produced daily estimates of carbon exchange 
that performed as well as using the new phenology models. 
The slower transitions used in the original PnET model fit 
the gradual increases and decreases found in tower-based 
measurements of GPP and ecosystem respiration reason-
ably well (Fig. 5). As a result, we found the new spring and 
fall models resulted in minimal differences in the agreement 
between modeled and measured values of GPP and ecosys-
tem respiration.

Our models demonstrated smaller advancements 
(2.6–3.6 days  decade−1) in spring compared to the PnET 
spring model (advancing at 3.8 days  decade−1) using the 
projection with the lowest bias compared to Daymet data 
(EC-Earth RCA4, RCP 8.5). In the fall, the PnET phenology 
model predicted the end of canopy senescence around the 
same time as the new models, but with much higher interan-
nual variability than the new models. The original PnET fall 
model predicted smaller future changes in fall transitions 
than new models, with fall arriving 1.1 day  decade−1 later 
compared to 1.9–2.0 days  decade−1 using the new models.

Implications for annual PnET model outputs

Despite the differences in phenology model structure, the 
new phenology models had relatively small effects on annual 
ecosystem carbon and water cycling. The effects of longer 
growing seasons using the original PnET phenology algo-
rithm (i.e., earlier spring onset and later fall senescence com-
pared to the new models) were compensated by longer and 
slower transitions to and from maximum LAI (i.e., the right 
answer was obtained for the wrong reason). As a result, there 
were only subtle differences in annual outputs of carbon 
and water cycling resulting from altering the models. Com-
pared to other annual model outputs, the largest differences 
were seen in modeled GPP and NEP (Fig. 6). New models 
resulted in lower interannual variability of GPP and NEP 
compared to the original PnET phenology model. Using the 
original PnET phenology models resulted in modeled GPP 
increasing at a slightly faster rate (4.3 ± 0.5 g C  m−2  year−1) 
compared to the new models (3.7 ± 0.1 g C  m−2  year−1). This 
relatively small difference in modeled GPP over the sam-
pling period resulted in a very slight increasing trend for 
modeled NEP using the PnET phenology model (0.1 ± 0.5 g 
C  m−2  year−1), compared to the slight decreasing trend in 

NEP using the new models (− 0.3 ± 0.2 g C  m−2  year−1). 
These differences demonstrate that incorporating new phe-
nology models does indeed result in differences in annual 
modeled GPP and NEP over long timescales. Altering the 
phenology models had smaller effects on projections of 
water use (transpiration and WUE) and nitrogen cycling 
(Nmin). Similar to the carbon exchange variables, the tim-
ing of transpiration was altered with the optimized phenol-
ogy models and concentrated over a shorter period, but over 
annual timescales the effects were fairly small. As a result, 
the future projections of annual transpiration and WUE show 
minor sensitivity to altering the PnET phenology model to 
the new models.

By comparing the output using one fixed transition (i.e., no 
interannual variability of spring or fall transitions) to output 
with both seasons fixed to constant transition dates, we can iso-
late the effect of either spring or fall transitions on model out-
put. Using these fixed phenology dates, we found that longer 
seasons in the spring had larger effects on modeled carbon and 
water cycling compared to longer seasons in the fall (Fig. 7). 
For every day the season was extended in the spring, GPP 
increased by an average of 10.2 ± 0.2 g C  m−2 compared to 
4.8 ± 0.1 g C  m−2 for the fall. Extended seasons in the spring 
or fall had smaller effects on ecosystem respiration than GPP, 
with slopes of 4.4 ± 0.1 g C  m−2   day−1 and 3.3 ± 0.1 g C 
 m−2  day−1 for spring and fall, respectively. As a result, NEP 
was also more sensitive to the spring transition date compared 
to fall, increasing by 5.7 ± 0.1 g C  m−2  day−1 and 1.5 ± 0.1 g C 
 m−2  day−1 for spring and fall, respectively. We found similar 
effects on water cycling; longer growing seasons in the spring 
had larger effects on transpiration (0.29 ± 0.005 cm  m−2  day−1) 
compared to fall (0.14 ± 0.003 cm  m−2  day−1), as with water 
use efficiency. The longer seasons had relatively little effect 
on nitrogen mineralization on annual scales. Based on these 
models' outputs, our analysis shows that for each day the sea-
son gets longer, spring can have as much as double the effect 
on the net carbon uptake and water use compared to fall.

Our calibrated phenology algorithms predicted springs will 
have smaller shifts in growing season length compared to the 
fall (Fig. 4, in days  decade−1), but our biogeochemical model 
predicts springs will have larger effects on carbon cycling for 
every day of change (Fig. 7, in g C  m−2  day−1). By combining 
these projections, we estimate spring will have a larger overall 
effect on NEP in the future (increasing by 5.2–8.7 g  m−2 C 
 decade−1 in the spring compared to 1.7–4.8 g C  m−2  decade−1 
in the fall), but spring and fall will have similar influences on 
GPP (increasing by 9.3–15.3 g C  m−2  decade−1 in the spring 
compared to 5.3–15.4 g C  m−2  decade−1 in the fall). We found 
that increases in respiration in the fall were higher relative to 
GPP, therefore spring phenology had a larger overall effect 
on NEP.
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Discussion

Spring and fall phenology are often overlooked aspects of 
biogeochemical modeling despite their importance in defin-
ing the duration of photosynthetic carbon uptake and plant 
water use each year. Here, we use regional phenology data 
to train leaf development and leaf senescence algorithms in 
an ecosystem-level biogeochemical model. Using empiri-
cal data to train phenology algorithms is becoming easier 
due to the growing amount of open-source phenology data 
(Crimmins et al. 2017; Richardson et al. 2018; Templ et al. 
2018) and tools (Hufkens et al. 2018) available. We found 

that incorporating the new phenology algorithms into PnET 
resulted in outputs that better fit measured NEP (as seen 
in Desai et al. 2010), but the model did not show any nota-
ble improvements for GPP and ecosystem respiration. On 
the daily scale, we show that the phenology algorithms 
exert a strong control on the timing of carbon and water 
cycling, but had surprisingly small effects on the magni-
tude and long-term trends of the future annual predictions. 
By improving the phenology subroutine in biogeochemi-
cal models, we strengthen a well-documented weakness of 
ecosystem modeling (Levis and Bonan 2004; Randerson 
et al. 2009; Richardson et al. 2012).
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Fig. 6  Annual modeled carbon exchange [gross primary productivity 
(GPP), ecosystem respiration, and net ecosystem productivity (NEP)], 
water-use efficiency, transpiration, and nitrogen mineralization using 
PnET phenology subroutine (red line and dashed red trendline) mod-
eled to year 2100 compared to output using the new models (blue cir-

cles and solid blue trendline). The error bars represent the standard 
deviation of  the  outputs using  different combinations of  new mod-
els. Trend lines represent linear regressions of the timeseries—only 
regression lines that were significant at an alpha of 0.05 are included
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We found that parameterizing phenology models using 
empirical data from multiple PhenoCam sites allowed us to 
produce phenology models that are broadly applicable to the 
northeastern deciduous forests of North America. We did 
not find that spring models requiring chilling requirements 
showed any improvements over models that used warm-
ing temperatures and photoperiod, similar to other North 
American (Melaas et al. 2016) and European (Basler 2016) 
tree species. This likely suggests the species in this region 
have sufficient winter chilling temperatures to release bud 
dormancy (Vitasse et al. 2011). Previous work has shown 
that including chilling temperatures can improve species 
specific models (Chiang and Brown 2007; Kaduk and Los 
2011; Jeong et al. 2012; Flynn and Wolkovich 2018) but our 
canopy-level approach did not benefit from chilling tempera-
tures enough to justify the additional model parameters. It is 
possible that in the future, warmer winters in North America 
may require more sophisticated models that include chilling 
requirements (Morin et al. 2009), but this is not currently 

the case in these northern deciduous forests. This illustrates 
an inherent weakness in extrapolating beyond current con-
ditions into a future where phenology may be affected by 
other factors.

Our results demonstrate that fall transition dates derived 
from PhenoCam are reproducible and robust enough to train 
fall models that can be validated against ground observa-
tions. We found that using the yellowness of a forest canopy 
from PhenoCam, in addition to greenness, can be a useful 
metric for predicting the end of fall senescence in these for-
est types (Kosmala et al. 2016). We also found that incor-
porating these fall models into PnET allowed us to improve 
predicted leaf senescence dates produced from the original 
phenology algorithms that were overly sensitive to climate 
drivers. These are promising findings for the future of mod-
eling fall senescence in deciduous forests. However, we also 
find our fall models were unable to capture the year-to-year 
variability as well as the spring models—also found by 
Vitasse et al. (2011). Our more complex fall model (CDDP, 

Fig. 7  Relative influence of spring and fall phenological transitions 
on annual carbon cycling [gross primary productivity (GPP), ecosys-
tem respiration, and net ecosystem productivity (NEP)], transpiration, 
water use efficiency, and nitrogen mineralization. These values were 
derived by taking the difference between one-season-fixed models 
and models with both spring and fall fixed phenology transitions to 

remove interannual variability unrelated to phenology transitions. The 
red circles represent models with new spring phenology algorithms 
and fixed fall transition dates (i.e., no interannual variability) and the 
blue triangles represent models with  new fall phenology algorithms 
and fixed spring transition dates. Trend lines represent linear regres-
sions—all regression lines were significant at an alpha of 0.05



253Oecologia (2023) 201:241–257 

1 3

including photoperiod and temperature) also did not show 
any improvements over the simpler temperature only model. 
As previously documented, we found fall transitions were 
more difficult to characterize compared to spring transitions 
because they can be unexpectedly sudden in response to 
stressful environmental conditions including heavy rainfall 
events, heat stress (Xie et al. 2018), frost, or wind events 
(Gallinat et al. 2015). Compared to the literature, our models 
predict future changes in spring and fall transition dates that 
are either on track with, or less than, observations from other 
North American deciduous forests over the last few decades 
(de Beurs and Henebry 2005; Jeong and Medvigy 2014; 
Piao et al. 2019). Our models project growing season length 
will be more affected in the fall compared to the spring as 
temperatures are expected to increase over the next few dec-
ades [as documented by Jeong et al. (2011) and Zhu et al. 
(2012) from the early 1980s to mid 2000s]. Combined, our 
projections suggest growing season lengths will change by 
2.0–4.7 days  decade−1 depending on future climate projec-
tions. These are similar to other recent projections for north-
eastern North America (Piao et al. 2019) but are less than 
historical observations (Wang et al. 2015).

Using the original PnET spring algorithm, the beginning 
of spring was triggered too early, had higher variability, and 
lasted much longer than observed transitions from Pheno-
Cam (as seen previously in Klosterman et al. 2018). We 
also found that original PnET algorithms predicted highly 
variable end of fall senescence dates, and because the start 
of senescence was fixed (i.e., no interannual variability), the 
duration of the fall season was poorly constrained. Despite 
the clear improvements our models had on season lengths 
generated by PnET, we were surprised that altering the phe-
nology algorithms only marginally affected the magnitude 
of modeled carbon, water, and nutrient cycling on annual 
timescales (contrary to our hypothesis that shorter seasons 
would lead to decreased modeled carbon, water, and nutri-
ent use). On a daily timescale, we found incorporating the 
new algorithms resulted in faster seasonal changes in carbon 
uptake and transpiration. As a result, the slower phenologi-
cal transitions between active and dormant periods in the 
original PnET model compensated for uncharacteristically 
long growing season lengths, and annual totals were similar 
in magnitude to the new model outputs. We also note the 
longer seasons predicted by the original PnET algorithms 
are likely benefited by the 14% of the stand composed of 
evergreen conifers (Ouimette et al. 2018). Conifers tend 
to have longer periods of carbon uptake compared to their 
deciduous counterparts, and the tower-based GPP occurring 
before leaves are present and after leaves senesce is likely 
from uptake from conifer species, coincidentally resulting 
in better agreement with the original PnET outputs. Despite 
this, our new models resulted in notable improvements in 

PnET’s ability to model NEP compared to tower-based 
estimates.

All of our simulations suggested increasing trends in GPP 
and plant water use (i.e., transpiration) at Bartlett Experi-
mental Forest over the next 80 years (see also Chen et al. 
2016). Our projected GPP increases of 5–8 g C  m−2  day−1 
are on the upper end of the empirical observations in the lit-
erature (Falge et al. 2002; Piao et al. 2007; Baldocchi 2008). 
Projections of future NEP and WUE, however, demonstrated 
relatively stable long-term trends. Modeled NEP showed 
increased variability under future climate change, but no 
increasing trend due to counteracting increases in GPP and 
ecosystem respiration in response to longer growing seasons 
and elevated temperatures (as also described by Piao et al. 
2007; Duveneck and Thompson 2017). The stable long-term 
trend in NEP in this study was largely due to the long spin-
up times used in the model calibration process (Thornton 
and Rosenbloom 2005) and our decision not to simulate past 
disturbance. We accounted for the effects of long spin-up 
times (and incidentally, increasing temperature) by taking 
the difference of modeled outputs from a fixed spring and 
fall phenology model. Differences between dynamic and 
fixed phenology models demonstrated that phenological 
change (i.e., the longer growing seasons) did, in fact, have a 
positive effect on annual modeled NEP.

Our results indicate that, compared to the fall, longer grow-
ing seasons in the spring have a larger effect on carbon and 
water cycling for every day of change, as hypothesized. Com-
pared to fall phenology, spring phenology had a larger effect 
on annual GPP relative to ecosystem respiration and therefore 
also had a larger effect on NEP (contrary to findings by Wu 
et al. 2013a, b). This may be partly due to higher tempera-
tures in the spring also having higher rates of incoming solar 
radiation and soil moisture compared to the fall. Increasing 
temperatures in fall months may actually result in net car-
bon losses despite the later leaf senescence (Piao et al. 2008) 
because ecosystem respiration can respond to increasing fall 
temperatures more than GPP (Barichivich et al. 2013). These 
findings are, however, different from Keenan et al. (2014), 
where later fall phenology was associated with higher rates of 
both NEP and GPP compared to the spring. Presumably, the 
larger effects on modeled ecosystem carbon and water balance 
in our models are due to longer daylength during leaf develop-
ment compared to leaf senescence allowing for higher levels 
of photosynthetic uptake (see Zhang et al. 2020). The seasonal 
effects on ecosystem respiration were less apparent because 
ecosystem respiration is less affected by daylength and more 
affected by temperature. While our projections suggest that 
both early springs and late falls will result in increased carbon 
uptake, spring was clearly more influential on annual model 
outputs due to the longer days and higher rates of GPP early 
in the season compared to the fall.
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Conclusions

Training phenology models at four different seasonal transi-
tions (start of onset, end of onset, beginning of senescence, 
and end of the senescence) allowed us to improve a biogeo-
chemical model’s ability to estimate a deciduous forest’s 
growing season length. The optimized phenology subroutine 
resulted in season lengths that were shorter and more repre-
sentative of phenology observations. Our work establishes 
a theoretically rigorous, but still straightforward, method to 
improve existing ecosystem-level biogeochemical models 
to be more representative of actual ecosystem processes. By 
highlighting direct effects of longer growing seasons on eco-
system carbon and water cycling, we quantitatively showed 
the importance of improving phenology models in modeling 
ecosystem-scale processes.
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