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Of clockwork and catastrophes: advances in 
spatiotemporal dynamics of forest Lepidoptera
Brian R Sturtevant1,2, Barry J Cooke3 and Patrick MA James4

We applied a systematic global literature survey from the last 
2.5 years on spatiotemporal population dynamics — broadly 
defined — of Lepidopteran forest pests. Articles were 
summarized according to domain-specific (planetary ecology 
— remote sensing, evolutionary ecology — genetics and 
genomics, and theoretical ecology — modeling) contributions 
to contemporary investigation of the above theme. ‘Model 
systems’ dominating our literature survey were native 
Choristoneura fumiferana and invasive Lymantria dispar. These 
systems represent opposing ends of a more general 
equilibrium–disequilibrium gradient, with implications for less- 
studied taxa. The dynamics of Lepidopteran systems defy 
simple modeling approaches. Technologies and insights 
emerging from ‘slower’ science domains are informing more 
complex theory, including predictions of spread, impacts, or 
both posed by more recent invasions and the disrupting effects 
of climate change.
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Introduction
The complexity of forest-defoliator outbreak dynamics 
has led to vigorous debate as to how to best characterize, 
forecast, and respond to them. Periodic, spatially ex-
tensive defoliator outbreaks are thought to emerge from 
one of two possible pathways. In the first, delayed 
density-dependent predator-prey processes produce 

harmonic oscillations in time (i.e. ‘clockwork’ [1]) that 
are synchronized regionally via spatially autocorrelated, 
density-independent factors such as weather. Alter-
natively, the double-equilibrium theory suggests that 
defoliator populations are held at endemic levels by a 
combination of mortality and mating failure at low 
densities [2]. Here, slow ecological processes such as 
gradually increasing food resources and fast processes 
such as dispersal and immigration can flip the system 
into spatially expanding catastrophic outbreaks [3,4]. 
The management implications of the two theories are 
profound for native [5] and exotic [6] species alike. 
While some argue that neither theory is complete, and 
any given system is likely to contain elements of each [7]
— the debate persists [8,9].

Forest pest population and disturbance ecology examine 
comparatively fast processes acting on ecological time-
scales that can be examined effectively with the sciences 
of ecophysiology, community ecology, and landscape 
ecology. However, these disciplines are shaped by 
technologies and insights emerging from ‘slow sciences’ 
that are either focused on processes operating at geolo-
gical timescales (i.e. evolutionary and planetary ecology) 
or take multiple decades to effectively confront empiri-
cally (theoretical ecology). A pest outbreak is thus the 
emergent consequence of process interactions that cross 
scales as well as scientific disciplines (Figure 1).

Using a systematic, global literature review on the 
landscape ecology of forest Lepidopteran pests (January 
2020–June 2022, Supplementary Information 1 to 2), we 
examine current trends and approaches to investigate 
their dynamics, from invasive spread to indigenous 
outbreak patterns. We place this small slice of literature 
(n = 83 papers) — brief in time but broad in scope — in 
context via a novel framework depicted in part by Figure 1. 
Through this framework, we identify new opportunities for 
synergy and scientific advance in research and applications 
on the dynamics of forest Lepidoptera.

Planetary ecology — remote sensing
Investigation of pest disturbance ecology in time and 
space is reliant on spatiotemporal data documenting 
population density (or proxies thereof); environmental 
factors affecting growth, survival, and movement; and 
host abundance and distribution. The planetary sciences 
provide such information via the disciplines of clima-
tology, geomorphology, and remote sensing. Indeed, in 
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the last 2.5 years, 15 studies applied remote sensing 
specifically to the insect taxa covered by this review, 
indicating that it remains an active area of research. 
Nonetheless, only 5 of 54 studies investigating the 
landscape ecology of defoliating pests used remote 
sensing data as analytical inputs (see Supplementary 
Information 2). 

Trade-offs in remote sensing technology resolution 
(spatial, temporal, spectral, and thematic) versus extent 
are well-known [10]. Effective insect host (i.e. tree) 
mapping often requires genus- to species-level differ-
entiation to quantify conditions for defoliators. For ex-
ample, multispectral remote sensing of hosts for C. 
fumiferana either aggregated spruce species (Picea spp.)  
[11] or ignored the less-preferred P. mariana [12,13], 
with important consequences for population dynamic 
inference [14]. Detection of defoliators and the dis-
turbance they cause faces similar challenges. A com-
parative defoliation detection study demonstrated how 
the combination of host breadth, tree species and 
structural diversity, and foliar susceptibility determines 
the effectiveness of change detection when using 
Landsat imagery [15]. The combination of analytical 

methods, public access to archived imagery, and ex-
pansion of technologies such as lidar (light detection and 
ranging) and hyperspectral imagery enables more effec-
tive mapping of forest composition and defoliation de-
tection alike — but such improvements are slow to be 
operationalized [10]. 

Consequently, investigators continue to rely on tradi-
tional source data such as plot- or stand-level forest in-
ventories for hosts, and insect sampling, spot 
assessments, tree-ring analyses, or aerial surveys of in-
sect detection/disturbance. Each source has its strengths 
and limitations. For example, three articles focused on 
the invasion process of L. dispar were constrained to 
county-level (∼50 km2) resolution due in large part to 
the reliance on plot-based forest inventories for host data  
[16–18]. Remote sensing can enable the detection of 
landscape drivers (e.g. terrain, host patterns, etc.) af-
fecting outbreak initiation and spread [19]. Yet, spatial 
resolution is not the only constraint. Tree-ring analysis 
of Malacosoma disstria defoliation revealed spatio-
temporal outbreak dynamics dominated by traveling 
waves such that correlations between host patterns and 
outbreaks were inconsistent between outbreaks [20]. 

Figure 1  
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Relationship between foundational research domains and approaches to pest ecology that inform operational pest risk assessment and management. 
‘Slow’ science domains (S) set the context for the ‘fast’ research approaches (F) that ultimately shape the population ecologies of all pest species, 
from the well-studied model systems to emerging threats for which we have little data. Complexities underlying pest population disturbance ecology 
have posed exceptional difficulties for scientific inquiry, suggesting there may be synergies in sharing insights across disciplines (symbolized by 
permeable dashed boundaries) and across pest problem areas, from indigenous to invasive species.   

2 Ecology  

www.sciencedirect.com Current Opinion in Insect Science 2023, 55:101005 



Traditional forest inventory and health monitoring 
sources will remain important to landscape and regional 
defoliator studies — at least until remote sensing tech-
nologies replace them. 

Our review indicated progress on this front. Two studies 
used national-scale forest maps with enough taxonomic 
detail to be relevant to defoliator outbreak dynamics  
[21,22]. Semiautomated methods in change detection 
within imagery time series [23] and a biome-scale effort 
to map partial disturbances [24] suggests that opera-
tional-scale remote sensing for forest health may not be 
that far off. Application of thermal imagery may enable 
‘early detection’ of tree stress (e.g. [25]), rooted in 
physiological principles [26], with implications for both 
novel population control efforts [2] and controlling the 
spread of invasives [27]. 

Evolutionary ecology — genetics and 
genomics 
Genetic data are increasingly used to improve under-
standing of the spatial and temporal dynamics of out-
breaking forest insect pests. Several studies have 
detected meaningful population genetic structure and 
connectivity at regional to continental scales across a 
variety of Lepidoptera taxa (Supplementary Information 
2). For invasive species, detection of population struc-
ture within their native ranges can refine anticipated 
invasion dynamics or the possible climatic envelopes of 
the invading populations (e.g. [28]). Importantly, how-
ever, observed or genetically inferred connectivity and 
spread rates do not necessarily translate into outbreak 
dynamics [29]. 

For native or naturalized species, population genetic 
variation may be exploited to investigate the relative 
importance of different spatial processes in driving out-
breaks. For example, Larroque et al. [30] used popula-
tion differentiation at the leading edge of a C. fumiferana 
outbreak to document a genetic traveling wave, in-
dicating dispersal as an important factor underlying 
outbreak spread, while Larroque et al. [21] applied 
landscape genetics to understand the role of spatial 
heterogeneity in C. fumiferana population connectivity. 
Nonetheless, genetic differentiation in space can be 
sensitive to the timing of sampling relative to the out-
break phase [4] and challenging to detect within cyclic- 
irruptive systems [31]. Meaningful contributions of po-
pulation genetics to managing forest pest outbreaks will 
require a new framework that accounts for the influence 
of population cycling (bottlenecks, synchrony, phase- 
dependent dispersal, etc.) and is an active area of re-
search across multiple taxa [32]. 

Genomics and genetics are also making contributions to 
the characterization of trophic interactions in 

outbreaking systems. Recent examples include studies 
of within-species genomic differentiation among popu-
lations sampled on different host tree species [33], 
characterization of predator diets [34], and parasitoid 
identification [35]. Such tools have potential to improve 
monitoring of trophic interactions thought to affect the 
outbreaks of forest Lepidoptera. More specific to spatial 
ecology, genetic approaches are further contributing to 
our understanding of the population connectivity of 
parasitoid natural enemies relative to their insect 
hosts [36]. 

Finally, the development of reference genomes may 
advance our understanding of pest outbreak dynamics 
and suggest novel methods for pest mitigation or control. 
Reference genomes have recently been developed for 
multiple outbreaking species (Supplementary 
Information 2) and hold potential to further clarify the 
role of eco-evolutionary adaptation in outbreaking po-
pulation dynamics (e.g. [37]). As with remote sensing 
technology, these recent advances are only beginning to 
have an impact on the field of insect pest disturbance 
ecology. Continued emphasis on interdisciplinary colla-
boration is needed however to fully leverage the benefits 
of these novel genomic resources and to make mean-
ingful contributions to understanding and managing 
outbreaks. 

Theoretical ecology — modeling 
Modern computing technologies are giving rise to new 
methods in statistical analysis, applied mathematics, and 
risk analysis. As with the above technological advances, 
we found heavy research investment in so-called ‘model 
systems’ — C. fumiferana in Canada and L. dispar in the 
United States — supplemented with a more diverse 
global research effort devoted primarily to ‘emerging 
threats’ (Supplementary Information 1 to 2). These two 
model systems span the full array of dynamical state 
space — from equilibrium to disequilibrium — and thus 
potentially serve as useful templates for understanding 
emerging threats resulting from new species introduc-
tions or rapid changing native pest dynamics in response 
to climate change (Figures 2, 3). 

Although these model systems have been investigated 
for decades (Supplementary Information 1), they are 
revealing important new complexity when scrutinized 
using novel techniques and datasets. For C. fumiferana, 
high-resolution tree-ring data going back to the start of 
the 20th century indicate that although populations 
cycle somewhat synchronously across the province of 
Quebec, there are significant differences in outbreak 
timing and duration among intervals in time and space 
important in forecasting future outbreak impacts, but 
whose cause is not yet understood [38]. For L. dispar, 
defoliation monitoring in the eastern United States 
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exhibited roughly periodic outbreaks through most of 
the 20th century, with occasional minor outbreaks be-
tween the major decadal cycles [39]. Yet, before that, 
they exhibited a sustained pattern of eruption. This 
fundamental shift in dynamics was attributed to the in-
troduction of a viral biocontrol agent vectored by an in-
troduced parasitic fly. The sudden transition in 1906 
from sustained catastrophe to clockwork, and another 
abrupt decline in outbreak intensity in 1989 coinciding 
with a new fungal agent, represents a significant devel-
opment in our understanding of dynamic stability. Not 
only is stability not guaranteed, but the dynamics may 
emerge out of community ecology, involving factors we 
have yet to study, let alone understand. 

Consistency is starting to emerge from dynamics in the 
native C. fumiferana [40] and M. disstria [20] systems, and 
even the invasive L. dispar [41]: outbreak behavior is 
mediated by host forest landscape structure, but it takes 
high-quality forest and pest data, combined with modern 
analytical methods to tease out the drivers underlying 
the dynamics. Indeed, similar dynamics have been de-
tected with emerging pests such as Cydalima perspectalis 
by using sophisticated nonlinear growth models bor-
rowed from the ecology of model systems [42]. Land-
scape-driven departures from expected clockwork-like 

Figure 2  
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Dynamical behavior across taxa. Native insect pest systems (blue) are 
more likely to exhibit equilibrium (i.e. dynamic stability) relative to 
invasive pests (gold). However, climate change could cause equilibrium 
systems to move toward disequilibrium (right arrow, purple) and 
naturalization could cause invasive pest outbreaks to attenuate (left 
arrow, orange).   

Figure 3  
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Sankey plot of information flows across the thematic nodes identified in Figure 1 (linkages between research domains and approaches) and Figure 2 
(dynamical behavior across taxa) (Methods in Supplementary Information 1 to 2). The recent literature reviewed covered six taxonomic families 
(second column) and spanned the full range of scientific approaches identified in Figure 1 (third and fourth columns). The systems studied ranged from 
equilibrium cycling ecology to disequilibrium invasion ecology, and everything nonstationary in-between (first column, following a color ramp 
consistent with Figure 2). The two ‘model systems’ proposed in Figure 2 stand out as thick information flows, in gold (dominated by L. dispar, family 
Eribidae) and blue (dominated by C. fumiferana, family Tortricidae), suggesting that insights from model systems might assist with understanding the 
dynamics of the less well-studied systems. Taxonomic information flows transition to scientific domains (i.e. Figure 1) by column 3, ultimately 
informing ecological disciplines (column 4). 
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outbreak behavior are often responsible for the most 
significant forest impacts (e.g. [43]). 

A similar exchange of insights has occurred regarding 
‘Allee effects’ and ‘fat-tailed’ dispersal kernels. Once in 
the domain of invasion ecology, these insights were 
foundational to the ‘Slow the Spread’ program for L. 
dispar in the United States [27] but they are now central 
to the ‘Early Intervention Strategy’ for C. fumiferana in 
eastern Canada [2,5]. Disentangling the independent 
roles of dispersal and population growth in driving pest 
spread is a central theme in pest population modeling, 
and advances are being made in both native dynamics 
and invasion ecology. 

There is increasing model-based evidence that long- 
range dispersal in some Lepidoptera is common, is 
adaptive [44], and is driven by weather, population 
density, and forest condition [45], resulting in a broader 
range of spatial dynamics beyond weather-driven cycle 
synchronization — with genetic analyses providing fresh 
insights [4,21,30]. For invasive species, a common trend, 
even where females are flightless, is to formulate models 
that treat dispersal implicitly, to demonstrate the 
movement effects wrought by host forest landscape 
structure [17] or human vectoring [16]. The implicit 
approach has also been used successfully in spread 
analysis of emerging threats to quantify the effects of 
landscape geometry, host distribution, and human in-
frastructure on dispersal and spread [42,46,47]. 

A major source of population disequilibrium that is being 
investigated for both indigenous and invasive species is 
climate change. To firmly link climate change to the 
growth, dispersal, and spread of populations, sophisti-
cated mechanistic models of causation are required [48]. 
Species distribution models are premised on the idea of 
adaptation to a range of environmental parameters, and 
there are several examples where these models are 
clarifying the conditions under which invasive spread 
may occur [49]. It is increasingly clear that climate 
warming can result in a wide range of changes in dyna-
mical behavior, from damping [50–52] to excitation  
[22,53,54], depending on how climate affects the under-
lying trophic interactions. 

Conclusions 
Reviewing the full breadth of literature of the past few 
years, we note that studies of invasive pests are domi-
nated by studies of L. dispar (Erebidae), and studies of 
native pests are dominated by studies of C. fumiferana 
(Tortricidae) (Figure 3). These two model systems are 
still being studied from every angle possible — from the 
slow sciences of evolutionary, planetary, and theoretical 
ecology — to the faster sciences of ecophysiology, 
landscape ecology, and community ecology — and using 

every new technology that the 21st century has to offer 
— from remote sensing, to high-throughput genetics, to 
advanced computational mathematics, and statistics. 
These systems continue to defy simplistic modeling 
approaches (e.g. [55]), suggesting that these models are 
only a starting point for a necessary deep dive into real- 
world spatiotemporal complexity in outbreak dynamics. 
Even the most sophisticated models of C. fumiferana 
eruption dynamics ‘explain’ only 50% of the target var-
iance, and these ‘explanations’ are heuristic, not me-
chanistic [56]. Population ecology continues to adopt 
perspectives and approaches from community ecology. 
As this happens, simplified analytical mathematics of 
theoretical ecology [9,57] start to lose relevance. The 
question is not whether a clockwork approximation [1] of 
Lepidopteran outbreak behavior is superior to Holling’s 
catastrophe theory [3], but rather which processes are 
dominant where and when (i.e. system’s context). 

The emerging threats that receive less or only recent 
attention are well-positioned to benefit from insights 
derived from the model systems we have discussed. Our 
review suggests deep insights are emerging from inter-
disciplinary research of model systems that has been 
adequately framed such that it may be generalized and 
therefore more readily adaptable for use in different 
operational contexts [58]. Our Figures 1–3 are our at-
tempt to highlight the strong basis for exactly this kind 
of generalization, from model systems to emerging 
threats, from indigenous species to invasive species, and 
from North America to forested systems worldwide. 
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