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A B S T R A C T   

As the spatial and temporal resolution of remotely sensed imagery has improved over the last four decades, 
algorithms for monitoring and mapping seasonal changes in surface properties have evolved rapidly. Most 
recently, the availability of daily PlanetScope imagery has created new opportunities for monitoring the land 
surface phenology (LSP) of terrestrial ecosystems at high spatial resolution. However, the quality and value of 
LSP information from PlanetScope imagery have not been systematically examined. In this paper, we evaluate 
the character and quality of LSP information derived from PlanetScope by comparing time series of vegetation 
indices and LSP metrics from PlanetScope to corresponding time series and LSP metrics derived from Harmo-
nized Landsat 8 and Sentinel-2 (HLS) imagery and PhenoCams at six sites that span a diverse range of land cover 
types and climate. Results show that vegetation index time series from all three data sources show high temporal 
correlation, and LSP metrics derived from HLS, PlanetScope, and PhenoCam show high agreement with negli-
gible bias. Semi-variograms for phenometrics estimated from PlanetScope imagery indicate that the majority of 
spatial variance captured in PlanetScope phenometrics occurs well below the spatial resolution HLS imagery. At 
the same time, LSP metrics from HLS are most strongly correlated with the 50–75% quantiles of 3 m LSP metrics 
from PlanetScope. This indicates that HLS captures the average phenology at sub-pixel scale captured in Plan-
etScope imagery. Our results represent the first comprehensive comparison of LSP metrics estimated from 
PlanetScope and publicly available moderate spatial resolution imagery, and provide insights regarding: (1) the 
quality and character of LSP metrics derived from HLS and PlanetScope; and (2) the relative merits and trade-offs 
associated with the use of each data source for LSP studies.   

1. Introduction 

Time series of optical remote sensing imagery have been used to 
measure land surface phenology (LSP) for nearly four decades (Justice 
et al., 1985) and are widely used to characterize seasonal-to-decadal 
scale dynamics and changes in ecosystem properties and function 
(Berra and Gaulton, 2021; Morisette et al., 2009; Piao et al., 2019; Zeng 
et al., 2020). In ecosystems dominated by natural vegetation, LSP 
measurements have been used to measure the impact of climate change 
on the timing and duration of growing seasons (Liu et al., 2018; Park 
et al., 2016), to assess the feedbacks of vegetation phenology on land- 
atmosphere interactions (Moon et al., 2020; Richardson et al., 2013; 
Young et al., 2021), and to quantify the sensitivity of ecosystem 
phenology to climate change (Friedl et al., 2014; Moon et al., 2021; 

Seyednasrollah et al., 2020b). In croplands, LSP measurements are 
useful for distinguishing crop types, identifying management practices 
such as double cropping, and modeling crop yields (Cai et al., 2018; 
Chaves et al., 2020; Diao, 2020). More generally, remotely sensed fea-
tures based on LSP metrics are widely exploited for mapping land cover 
and land-use changes (Nguyen et al., 2020; Sulla-Menashe et al., 2019; 
Zhu and Woodcock, 2014). 

Early LSP research leveraged bi-monthly composites of vegetation 
indices from AVHRR (Jonsson and Eklundh, 2002; Justice et al., 1985; 
Reed et al., 1994), and subsequently, 8-day composites from MODIS 
(Ganguly et al., 2010; Jönsson et al., 2010; Zhang et al., 2003). These 
studies demonstrated the power of LSP measurements for monitoring 
ecosystem dynamics over large areas. However, the coarse spatial res-
olution of AVHRR and MODIS limits their utility for applications that 
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require fine-scale information related to phenology. To address this, 
Fisher and Mustard (2007), Elmore et al. (2012), and Melaas et al. 
(2016, 2013) (among others) developed methods based on Landsat 
imagery to estimate LSP at 30 m spatial resolution. Building on these 
efforts, Bolton et al. (2020) used Harmonized Landsat 8 and Sentinel-2 
(HLS; Claverie et al. (2018)) data to create a LSP data set for North 
America at 30 m spatial resolution. 

In the last several years commercial PlanetScope imagery has 
become available, providing new opportunities for LSP measurements at 
high spatial resolution. PlanetScope imagery is acquired by a constel-
lation of CubeSats (180+ as of 2021; Planet, 2021), and provides daily 
imagery for the entire Earth in four bands spanning the visible and near- 
infrared wavelengths at 3 m spatial resolution. Although PlanetScope 
data do not have the scientific quality of publicly available moderate 
spatial resolution imagery such as Landsat 8 and Sentinel-2 (Dash and 
Ogutu, 2016; Houborg and McCabe, 2018; Wang et al., 2020), the 
spatial and temporal resolution of PlanetScope imagery creates new 
opportunities to investigate a wide array of land surface properties and 
processes including near real-time monitoring of carbon emissions 
(Csillik and Asner, 2020), land cover and land-use changes (Qayyum 
et al., 2020), crop monitoring (Breunig et al., 2020; Kimm et al., 2020), 
species mapping (Wicaksono and Lazuardi, 2018), and vegetation 
phenology (Cheng et al., 2020; Dixon et al., 2021; Wang et al., 2020). To 
date, however, no study has explored the effectiveness and accuracy of 
PlanetScope imagery for estimating and monitoring LSP across multiple 
ecosystem types and climate zones. 

In this paper, we explore the quality and utility of high spatial res-
olution daily imagery from PlanetScope for estimating fine-scale data 
LSP across a diverse range of vegetation and land cover types. Specif-
ically, this paper has two primary objectives: (1) to evaluate the density 
and quality of surface reflectance and vegetation index time series from 
PlanetScope relative to corresponding time series from NASA's HLS 
product and vegetation index time series measurements acquired using 
ground-based PhenoCams; and (2) to compare and assess agreement in 
LSP metrics estimated from PhenoCams, PlanetScope, and HLS. To 
address these objectives, we used multiple years of PlanetScope, HLS, 
and PhenoCam imagery acquired at six sites that span a wide range of 
climate and land cover types. 

2. Methods 

2.1. Data and study sites 

The HLS data set includes harmonized time series of Landsat 8 and 
Sentinel-2A and -2B surface reflectance imagery at 30 m spatial reso-
lution with a nominal repeat frequency of ~4 days at the equator and 
more frequent observations poleward. For this work, we used Version 
1.4 of HLS. A detailed technical description of this data product is pre-
sented in Claverie et al. (2018). PlanetScope provides daily imagery in 
the red, green, blue, and near-infrared wavelengths. The ground sample 
distance between PlanetScope pixels varies as a function of satellite 
altitude, but averages 3.7 m. The ‘Analytic Ortho Scene’ product, which 
we use here, is resampled to a uniform spatial resolution of 3 m (Planet, 
2021). These data do not have the radiometric fidelity of HLS imagery 
(Dash and Ogutu, 2016; Houborg and McCabe, 2018; Wang et al., 2020), 
but provide daily observations at order-of-magnitude higher spatial 
resolution relative to HLS. For a more complete description of Planet-
Scope imagery, the reader is referred to the technical product docu-
mentation (Planet, 2021). In this context, it's important to note that 
while most LSP algorithms are designed to be robust to noise, issues 
related to undetected clouds, snow, and even uncorrected BRDF effects 
can compromise the quality of LSP results. 

All available HLS and PlanetScope surface reflectance values located 
within 3 by 3 km windows centered over six study sites equipped with 
PhenoCams (Table A1 and Fig. A1) for the period 2017–2019 were used 
in our analysis. For HLS, we screened time series for contamination by 

clouds and snow at the pixel level (see Bolton et al., 2020). For Plan-
etScope, we excluded images with more than 10% cloud cover based on 
metadata included with the imagery, and then excluded all pixel-scale 
values flagged as contaminated by clouds or snow in the Unusable 
Data Mask provided with the imagery (Planet, 2021). 

In addition to the HLS and PlanetScope data sets, we used time series 
of near-surface camera imagery and vegetation indices available from 
the PhenoCam Network (Milliman et al., 2019; Seyednasrollah et al., 
2019). Specifically, we used data from 6 PhenoCam sites with 9 cameras 
that span a range of vegetation, climate, and land cover types including 
deciduous broadleaf, mixed, and evergreen needleleaf forests, crop-
lands, semi-arid grasslands, and shrublands (DB, MF, EN, AG, GR, and 
SH, respectively; Table A1 and Fig. A1). With the exception of the 
cropland site, which has four cameras in adjacent fields with different 
crops but only one year (2019) of PhenoCam data, we used three years of 
data for our analysis (2017 to 2019). We included data from 2017 for-
ward because Sentinel-2B was launched in March of 2017, providing the 
maximum possible temporal sampling in the HLS dataset. 

2.2. Assessment of data density 

Observation density, and more specifically the number of snow-free 
and cloud-free images during growing season, is a key factor that con-
trols the quality of LSP retrievals from remotely sensed time series 
(Zhang et al., 2018b). Therefore, in the first element of our analysis, we 
quantified the number and timing of clear-sky PlanetScope and HLS 
observations for individual PlanetScope and HLS pixels at each of the 
study sites. To do this, we calculated summary statistics (the mean, 
median, and maximum gap between clear-sky acquisitions) for 1000 
randomly selected pixels from each sensor at each site. 

2.3. Comparison of vegetation index time series from HLS, PlanetScope, 
and PhenoCam 

In the second element of our analysis, we assessed the agreement 
among time series of vegetation indices from HLS, PlanetScope, and 
PhenoCam imagery at each study site. For HLS and PlanetScope, we 
extracted values for the two-band enhanced vegetation index (EVI2; 
Jiang et al., 2008) for one HLS pixel and the median of nine co-located 
PlanetScope pixels (i.e., covering 900 m2 and 81 m2 areas for HLS and 
PlanetScope, respectively) centered over regions of interest (ROI) 
delineated in PhenoCam imagery (see Fig. 2). For the PhenoCams, we 
used the green chromatic coordinate (GCC), which has been shown to 
provide robust time series of canopy greenness (Richardson et al., 
2018a; Sonnentag et al., 2012) and has been previously used to assess 
the quality of LSP metrics from satellite remote sensing (Bolton et al., 
2020; Klosterman et al., 2014; Moon et al., 2019; Zhang et al., 2018a). 

To assess the agreement between EVI2 time series from HLS and 
PlanetScope, we computed summary statistics (correlation coefficient 
(r), root mean square error (RMSE), and bias (PlanetScope - HLS)) at 
each site. To do this, we used a random sample of 100,000 HLS pixels at 
each site for dates when both HLS and PlanetScope imagery were 
available across all three years (i.e., n = 100,000 pixel-days). As part of 
this analysis, and to help attribute observed differences between HLS 
and PlanetScope EVI2 time series, we conducted the same comparison 
for the near-infrared and red bands in each source of imagery. Note that 
both analyses compare 30 m HLS values against 3 m PlanetScope values, 
where each 3 m PlanetScope pixel was randomly selected within each 
30 m HLS pixel. Further, to explore how differences in the spatial res-
olution of HLS and PlanetScope imagery affect our results, we extracted 
and sorted EVI2 values for all 100 PlanetScope pixels located within 
each of the 100,000 randomly sampled HLS pixel-days. We then used 
these data to measure the agreement (correlation, RMSE, and bias) be-
tween EVI2 derived from HLS and each quantile of PlanetScope EVI2 
values located within HLS pixels. 
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2.4. Assessment of phenological metrics 

To estimate phenological metrics (hereafter phenometrics), we used 
the algorithm described by Bolton et al. (2020), which extracts the 
timing of key phenological transition dates during the growing season. 
For HLS, we used the Multi-Source Land Surface Phenology Yearly North 
America 30 m Version 1 product (MSLSP30NA) (Friedl, 2020). For 
PlanetScope, we adapted the algorithm described by Bolton et al. (2020) 
to exclude HLS-based snow and cloud-screening sub-routines (which are 
not directly transferable to PlanetScope imagery) and replaced outliers 
and dormant season values (i.e., values from January, February, 
November, and December) with PlanetScope EVI2 values corresponding 
to the 90th percentile of dormant season values. We adopted this 
approach because screening for snow is challenging in PlanetScope 
imagery and because the higher frequency of observations provided by 
PlanetScope leads to fewer gaps. As we show below, this approach 
yielded highly comparable time series of EVI2 from HLS and 
PlanetScope. 

Using time series of EVI2 from both HLS and PlanetScope, we 
retrieved the timing of greenup onset, mid-greenup, maturity, peak 
EVI2, greendown onset, mid-greendown, and dormancy at each pixel, 
which correspond to the day of year (DOY) when the EVI2 time series 
exceeds 15%, 50%, 90% of EVI2 amplitude during the greenup phase, 
reaches its maximum, and goes below 90%, 50%, 15% of EVI2 ampli-
tude during the greendown phase, respectively (Bolton et al., 2020). In 
addition, we extract the EVI2 amplitude during the growing season for 
each HLS and PlanetScope pixel. We then computed summary statistics 
(correlation, RMSE, and bias) and assessed the agreement between 
phenometrics derived from HLS and PlanetScope. 

In addition to assessing overall agreement, we also explored scaling 
effects in phenometrics estimated from PlanetScope versus HLS using 
two approaches. First, similar to our analysis of scaling effects in EVI2 
data, we measured agreement between each quantile of each pheno-
metric from PlanetScope at 3 m spatial resolution and corresponding 
phenometrics derived from 30 m HLS pixels. To do this, we used 3 m 
PlanetScope data from 100,000 randomly selected HLS pixels across all 
7 DOY phenometrics at each of the six study sites in 2019. Second, we 
computed semi-variograms (Matheron, 1963) for each phenometric at 3 
m spatial resolution derived from PlanetScope imagery using 100,000 
randomly selected PlanetScope pixels for each site in 2019. We used the 
resulting semi-variograms to assess the magnitude and length scale of 
spatial variability captured in PlanetScope imagery. 

Lastly, to provide a ground-based and independent basis for assess-
ing the realism and quality of phenometrics from HLS and PlanetScope, 
we compared mid-greenup and mid-greendown dates (i.e., 

corresponding to the 50% amplitude crossing dates) from each source of 
imagery against corresponding values estimated from PhenoCam GCC 
time series. To do this, we compared the 50% greenup and 50% 
greendown dates provided in the PhenoCam v2.0 data product (Milli-
man et al., 2019) with corresponding phenometrics estimated from HLS 
and PlanetScope (i.e., mid-greenup and mid-greendown, respectively). 
Note that to perform this comparison we used phenometrics estimated 
for individual HLS (30 m) and PlanetScope (3 m) pixels centered over 
each of the PhenoCam sites. 

3. Results 

3.1. Data density 

PlanetScope and HLS both had larger gaps during wintertime, and 
the grassland and shrubland sites located in the Western United States 
had fewer gaps and relatively uniform density of clear-sky acquisitions 
throughout the year compared to sites in the Eastern regions (i.e., GR 
and SH versus DB, MF, and EN, respectively; Fig. 1). Overall, the median 
duration of gaps between clear-sky and snow-free HLS acquisitions 
during the growing season, defined here as March 1 through October 31, 
ranged from 4.1 to 11.0 days across all sites and years (Table 1). As 
expected, PlanetScope imagery had higher frequency of clear-sky ac-
quisitions, with median duration of gaps between clear-sky and snow- 
free acquisitions ranging from 1.0 to 3.9 days across all sites and 
years. For completeness, we provide results that include all available 
imagery (i.e., including November through February) as an appendix 
(Table A2). 

3.2. Cross-sensor comparison of vegetation index time series 

Figs. 2, 3, and 4 show time series from 2017 to 2019 of EVI2 from 
HLS and PlanetScope and GCC from PhenoCam, along with true-color 
PlanetScope and PhenoCam images for each site. Time series for each 
vegetation index across all six sites (Figs. 2d–e, 3f–i, and 4e–h) illustrate 
the density of observations provided by each source of imagery, as well 
as the overall agreement in phenology across the three sensors. The 
deciduous forest and cropland sites (Figs. 2d, 3f–i, and 4e), each of 
which experience strong seasonal variation in leaf area, show the largest 
dynamic range in vegetation indices. Conversely, seasonal variation in 
EVI2 and GCC are lowest at the grassland and shrubland sites (Fig. 4g and 
h). At the croplands site, differences in phenology associated with 
different crop types are clearly identifiable in time series captured by 
each sensor (Fig. 3b–e). 

Surprisingly, EVI2 and GCC time series acquired over evergreen 

Fig. 1. Clear-sky acquisitions for HLS and PlanetScope pixels centered over the PhenoCam camera location at each site for 2017–2019. The numbers on the right- 
hand side indicate the total number of clear-sky views for each data source at each site across all three years. DB: deciduous broadleaf forests; MF: mixed forests; EN: 
evergreen needleleaf forests; AG: croplands; GR: grasslands; SH: shrublands. Table A1 provides site-specific information for each PhenoCam site. 
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needleleaf forests (Figs. 2e and 4f) show seasonal variation that is nearly 
as large as the seasonal variation in deciduous forests (Figs. 2d and 3e). 
The PhenoCam site in Fig. 2 is dominated by mixed forest. Hence, some 

of the seasonal variation in Fig. 2f may be related to broadleaf species in 
the overstory or understory that are visible in the sensor fields of view 
for Landsat 8, Sentinel-2, and the PlanetScope. The forest canopy at the 

Table 1 
Duration of data gaps (in days) between clear-sky acquisitions of HLS and PlanetScope imagery from March to October estimated from 1000 randomly selected pixels 
located in a 9 km2 area centered over the PhenoCam at each site.    

2017 2018 2019 All 

Planet HLS Planet HLS Planet HLS Planet HLS 

DB Mean 6.2 12.3 5.0 9.4 3.6 9.5 4.9 10.4 
Median 3.1 10.2 4.0 5.6 2.6 7.5 3.2 7.8 
Maximum 31 30 29 32 18 35 31 35 

MF Mean 5.5 11.5 7.9 7.7 4.9 8.8 6.1 9.3 
Median 4.0 10.1 4.6 5.4 3.0 6.9 3.9 7.5 
Maximum 27 23 52 25 23 25 52 25 

EN Mean 5.6 18.1 6.5 10.7 3.6 11.9 5.3 13.6 
Median 3.0 13.6 4.0 8.8 3.0 10.7 3.3 11.0 
Maximum 35 39 40 30 13 31 40 39 

AG Mean 4.6 11.2 2.7 7.7 3.1 7.7 3.5 8.8 
Median 2.6 9.2 1.0 5.4 2.0 5.2 1.9 6.6 
Maximum 20 30 19 25 14 35 20 35 

GR Mean 3.5 6.9 2.3 3.7 2.5 4.0 2.8 4.9 
Median 2.0 6.5 2.0 2.8 2.0 3.0 2.0 4.1 
Maximum 20 18 15 23 10 15 20 23 

SH Mean 2.7 6.4 2.2 5.4 2.4 5.9 2.5 5.9 
Median 1.0 5.0 1.0 4.1 1.0 5.0 1.0 4.7 
Maximum 19 23 11 25 22 17 22 25  

Fig. 2. PlanetScope and PhenoCam images along with time series of vegetation indices from PlanetScope, HLS, and PhenoCam imagery at the mixed forest site. The 
images in panels (a)-(c) were all acquired on May 18th, 2019, which is identified by the vertical lines in panels (d) and (e). Panel (a) shows a 3 × 3 km PlanetScope 
image for an area centered over the PhenoCam, which is located inside the red box (panel (b)). Panel (c) shows the regions of interest (ROIs) used to extract GCC time 
series for deciduous broadleaf (DB) and evergreen needleleaf trees (EN) from PhenoCam images. Panels (d) and (e) show time series of vegetation indices from 
PlanetScope (red dots) and HLS imagery (blue dots), along with GCC time series (green dots) for the PhenoCam ROIs. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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evergreen needleleaf forest site (Fig. 4b, f), on the other hand, is 
dominated by conifers, but includes roughly 10% deciduous species; 
hence, part of the seasonality in EVI2 at this site may be caused by de-
ciduous tree species in the sensor fields of view. Further, Seyednasrollah 
et al. (2021) demonstrated that seasonality in GCC time series at conifer 
sites is strongly correlated with changes in pigments, which may also 
explain some of the seasonality in EVI2. 

To illustrate the range of variability and correspondence in 
phenology detected by each of the sensors across different ecosystems, 
Fig. 4 shows time series for 2017–2019 across four sites with different 
plant functional types that span a diverse range of climate regimes 
(deciduous broadleaf forests, evergreen needleleaf forests, grasslands, 
and shrublands). Visual inspection of Fig. 4h suggests that HLS EVI2 
data may have modestly lower sensitivity to phenology in shrublands 
relative to PlanetScope EVI2 and PhenoCam GCC. However, the overall 
agreement in time series, even in ecosystems with relatively weak 
phenology, was remarkably strong (r = 0.84–0.98). It's also worth noting 
that GCC values from some of the PhenoCams start increasing (and reach 
their peak) slightly earlier in spring than EVI2 time series from either 
PlanetScope or HLS (Figs. 2d, e, and 3h), after which GCC closely tracks 
EVI2 for the rest of the season. This requires more investigation but is 

likely a by-product of the oblique view-angle used by the PhenoCams 
and/or differences in the spectral bands used to compute GCC from 
PhenoCam and EVI2 from HLS and PlanetScope (Keenan et al., 2014). 

Overall agreement between 30 m EVI2 from HLS and 3 m EVI2 from 
PlanetScope was high (Fig. 5). Correlation was lowest at the shrubland 
site (r = 0.77), which reflects the low amplitude of variation in EVI2 at 
this site. Interestingly, results shown in Fig. 5 indicate that EVI2 values 
from HLS were systematically higher than those from PlanetScope by 
~0.01–0.05, depending on vegetation type. Comparison of red and near- 
infrared reflectance values from HLS and PlanetScope (Figs. A2 and A3) 
shows that near-infrared reflectances from HLS and PlanetScope are 
highly correlated with negligible bias, but that surface reflectances in 
the red band of PlanetScope were systematically higher than corre-
sponding reflectances from HLS (Figs. A2, A3), which causes HLS EVI2 
values to be higher than PlanetScope EVI2 values. 

Patterns of agreement in EVI2 from HLS and PlanetScope across 
quantiles of PlanetScope EVI2 at subpixel scale show strong corre-
spondence across all quantiles (Fig. 6). Consistent with results shown in 
Fig. 5, correlation between 30 m HLS and 3 m PlanetScope EVI2 quan-
tiles was generally strong (ranging from 0.75–0.97), was lowest in 
vegetation with weak seasonality (shrublands) and highest in vegetation 

Fig. 3. PlanetScope and PhenoCam images, along with time series of vegetation indices from PlanetScope, HLS, and PhenoCams for the cropland site. The Plan-
etScope (panel (a)) and PhenoCam images (panels (b)–(e)) were acquired on June 10th, 2019, which is identified by the vertical lines in panels (f)–(i). Panels (f)–(i) 
show time series of vegetation indices from PlanetScope (red dots) and HLS imagery (blue dots), along with GCC time series (green dots) for the PhenoCam ROIs. The 
red ×'s in panel (a) shows the PhenoCam camera locations. Numbers in the upper right corner of panels (b)–(e) and (f)–(i) identify the fields from which each time 
series was extracted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

M. Moon et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 266 (2021) 112716

6

with pronounced seasonality (deciduous broadleaf forests), and showed 
only modest variation within vegetation types, with maximum correla-
tion generally near the 50th percentile in PlanetScope EVI2 values. 
RMSE and bias were both low, ranging from 0.02 to 0.10 and from 
− 0.08 to 0.01, respectively, and were minimum for larger values of 
PlanetScope EVI2 (quantiles >90%), which is consistent with the sys-
tematic bias we found between HLS and PlanetScope EVI2 values shown 
in Fig. 5 (i.e., lower EVI2 values in PlanetScope). Overall, these results 
imply that despite differences in the spatial resolution, spectral band- 
passes, and radiometric fidelity of HLS and PlanetScope imagery, the 
agreement between vegetation indices derived from each source is high. 
That said, correlation and RMSE show modest systematic variation 
across plant functional types, with shrublands and evergreen needleleaf 
forests (which have weaker seasonality) showing modestly lower overall 
correlation (and higher RMSEs) relative to other cover types. 

3.3. Assessment of phenometrics from HLS, PlanetScope, and PhenoCam 

Comparison of phenological maps retrieved from HLS versus Plan-
etScope demonstrates that PlanetScope imagery resolves fine-scale de-
tails that are not captured by HLS imagery. To illustrate, Fig. 7 shows 
PlanetScope imagery and phenometrics for a 3 × 3 km window centered 
over the PhenoCam at the mixed forest site. The top row of Fig. 7 (a–c) 
shows a true color PlanetScope image acquired on May 18th, 2019 (DOY 
139; just prior to greenup), along with maps showing the estimated DOY 

corresponding to the timing of 50% greenup and the EVI2 amplitude at 
each pixel in 2019 from PlanetScope. The lower row of Fig. 7 (d, e) 
shows the 50% greenup date from HLS and 30 m land cover from the 
USGS National Land Cover Database. Overall agreement in the spatial 
pattern of greenup timing is strong, and the spatial distribution of de-
ciduous and evergreen vegetation is clearly discernible in Fig. 7a and c 
(cf., Fig. 7e). More importantly, the maps shown in Fig. 7a–c illustrate 
the granularity of fine-scale information related to phenology, land 
cover, and plant functional types captured by PlanetScope that is not 
resolved in 30 m HLS imagery (cf., Fig. 7b, c, d). Similar results are 
shown in Fig. 8 for the cropland site, which includes a wider range of 
greenup dates arising from cropping and land management practices 
relative to the mixed forest site. Specifically, comparison of Fig. 8b and 
d reveals that while HLS imagery resolves some sub-field variation in 
phenology at 30 m spatial resolution, the granularity of information 
provided by PlanetScope, both within and across fields, includes sub-
stantial variation at fine spatial scale that is not resolved in HLS imagery. 

To provide a comprehensive and quantitative comparison of DOY 
phenometrics estimated from HLS and PlanetScope across the full range 
of ecosystems included in our analysis, Fig. 9 presents scatterplots 
showing the relationship between DOY phenometrics from HLS versus 
PlanetScope at each site. At seasonal time scale (i.e., across pheno-
metrics), correlation between phenometrics from HLS and PlanetScope 
was high (r = 0.89–0.98) with only modest differences (bias = − 4.5 to 
1.5 days). However, RMSEs ranged from 14.6 to 28.7 days, which 

Fig. 4. PhenoCam images along with time series of vegetation indices from PlanetScope, HLS, and PhenoCam imagery for four different vegetation types: (a) de-
ciduous broadleaf forests; (b) evergreen needleleaf forests; (c) grasslands; and (d) shrublands. The PhenoCam images in panels (a)–(d) were acquired on May 5th, 
2019, which is identified by the vertical lines in panels (e)–(h). Panels (e)–(h) show time series of vegetation indices from PlanetScope (red dots) and HLS imagery 
(blue dots), along with GCC time series (green dots) for the PhenoCam ROIs. Numbers in the upper right corner of panels (a)–(d) and (e)–(h) identify the site from 
which each time series was extracted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reflects variability in phenology that occurs below the 30 m resolution of 
HLS that is captured by PlanetScope imagery. Consistent with this, 
agreement between individual phenometrics from HLS and PlanetScope 
at each site was relatively low (Table 2), with average correlations, 
RMSEs, and biases for each phenometric that ranged from 0.213 to 
0.427, from 12.6 to 30.3, and from − 9.6 to 4.7, respectively. Across 
sites, RMSE between HLS and PlanetScope phenometrics was substan-
tially larger at the AG and SH sites, which suggests that spatial variation 
below 30 m was greater at these sites relative to the DB, MF, EN, and GR 
sites. 

Consistent with results shown in Fig. 9, correlation between 

quantiles of 3 m phenometrics from PlanetScope and 30 m HLS phe-
nometrics was high (r > 0.85), relatively invariant as a function of 
PlanetScope quantile, and tended to be maximum for the interquartile 
range (i.e., 25–75%) of PlanetScope phenometric values (Fig. 10a). The 
one exception was shrublands, where correlation decreased mono-
tonically from 0.95 for the 5th quantile to 0.85 for the 95th quantile 
(Fig. 10b). Variation in RMSEs mirrored the pattern in Fig. 10a for 
correlation, and bias (Fig. 10c) tended to be minimum for the 50-75th 
quantiles across all vegetation types. Together, these results indicate 
that phenometrics from HLS were broadly representative of average 
phenology at sub-pixel scale. 

Fig. 5. Comparison of EVI2 from HLS and PlanetScope: (a) deciduous broadleaf forests; (b) evergreen needleleaf forests; (c) mixed forests; (d) croplands; (e) 
grasslands; and (d) shrublands. PlanetScope EVI2 values were derived from a single randomly selected PlanetScope pixel located within each HLS pixel. 

Fig. 6. Empirical relationship between 30 
m HLS EVI2 values and PlanetScope EVI2 
values at 3 m spatial resolution located 
within HLS pixels: (a) correlation; (b) root 
mean squared error (RMSE); and (c) bias 
(PlanetScope – HLS) between HLS EVI2 
values and quantiles in the distribution of 
PlanetScope EVI2 values located within HLS 
pixels. Note that EN and SH have different 
scales from the other land cover types on the 
vertical axis in panel (a). See the caption for 
Fig. 1 for definitions of acronyms in the 
legend.   
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Semi-variograms for LSP metrics derived from PlanetScope imagery 
at each site demonstrate that spatial variance in 3 m phenometrics 
consistently asymptote at length scales well below the spatial resolution 
of HLS, typically at distances of 9–15 m (Fig. 11). With one notable 
exception, the overall magnitude of spatial variance was relatively 
uniform (peak semi-variance generally ≤25 days) across sites. The 
timing of 15% and 50% greenup at the DB site was remarkably uniform 
(i.e., low semi-variance; Fig. 11a); conversely, the 15% greenup and 
15% greendown phenometrics at the EN site showed higher semi- 
variance relative to semi-variances for the other five phenometrics at 
this site (Fig. 11c). Semi-variance at the AG site was higher than might 
be expected in managed monoculture fields because phenometrics were 
sampled across a diverse set of fields with different crop types, man-
agement practices, and phenology (Fig. 8). The SH site (Fig. 11f) 
exhibited the widest range in overall semi-variance, with much higher 
spatial variance in late-season phenometrics and lower spatial variance 
in early season phenometrics. This is consistent with the pattern shown 
in Fig. 9f, where end-of-season phenometrics from PlanetScope exhibi-
ted much more variability than corresponding end-of-season pheno-
metrics from HLS, and indicates that the timing of phenology at the end 
of the growing season is highly variable at short length scales across 
space at the SH site. It is also worth noting that the nugget variance (and 
hence the uncertainty in LSP metrics from PlanetScope) in the semi- 
variograms shown in Fig. 11 are quite variable across phenometrics 
and sites. The specific mechanisms behind these patterns are unclear and 
require more investigation. 

Finally, comparison of 50% greenup and greendown dates show 
strong 1-to-1 agreement (r > 0.97) with modest bias (<5 days) across all 
three sources of imagery (Fig. 12). Phenometrics estimated from Phe-
noCams during springtime at the MF and EF sites were systematically 
early relative to corresponding phenometrics from HLS and PlanetScope 

(blue and green circles in Fig. 12a and b). This result is consistent with 
patterns in Figs. 2, 3, and 4, where GCC values from PhenoCams start to 
increase and reach their peaks earlier in spring than EVI2 time series 
from either PlanetScope or HLS. Note that the MF site has two points for 
each phenometric in each year (12 points total) derived from two 
different ROIs (one for DB and one for EN) at the site; similarly, the AG 
site has four points for each phenometric, but data are only available 
from one year (2019; 8 points total). 

4. Discussion 

PlanetScope imagery is increasingly being used for scientific appli-
cations focused on terrestrial ecosystems. A common use case is land 
cover and land-use change, where the spatial resolution and temporal 
frequency of PlanetScope imagery can provide information related to 
fine-scale land cover changes that may not be captured by moderate 
spatial resolution sensors such as the Landsat 8 OLI and Sentinel-2 MSI 
(e.g., Loranty et al., 2018; Pickering et al., 2021). Similarly, the use of 
PlanetScope imagery to estimate land surface phenology is a natural use 
case that is becoming more common. For example, John et al. (2020) 
used PlanetScope imagery to detect the timing of flowering in alpine 
wildflowers in Washington State, Chen et al. (2019) used PlanetScope 
imagery in combination with imagery from Sentinel-2 to monitor 
flowering phenology in almond orchards in the Central Valley of Cali-
fornia, and Dixon et al. (2021) used imagery from unmanned aerial 
vehicles and PlanetScope to model the timing of flowering in Eucalypt 
trees in Australia. Wu et al. (2021) also used PlanetScope in combination 
with imagery from unmanned aerial vehicles but focused on autumn 
phenology in a temperate forest site in Northeastern China. Cheng et al. 
(2020) compared phenometrics from both PlanetScope and Sentinel-2 
(at 10 m) against corresponding phenometrics from PhenoCams and 

Fig. 7. Phenometrics derived from PlanetScope and HLS at the mixed forest site. Panel (a) shows a true color image from PlanetScope acquired on May 18th, 2019 
(DOY 139). Panels (b) and (d) show the DOY corresponding to when EVI2 reaches 50% of its seasonal amplitude during springtime from PlanetScope and HLS, 
respectively. Panels (c) and (e) show the magnitude of EVI2 seasonal amplitude from PlanetScope and land cover from the USGS National Land Cover Database 
(NLCD; USGS and Rigge, 2019) in 2016, respectively. 
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Fig. 8. Phenometrics derived from PlanetScope and HLS for the croplands site. Panel (a) shows a true color image from PlanetScope acquired on June 10th, 2019 
(DOY 161). Panels (b) and (d) show the DOY when EVI2 reaches 50% of its seasonal amplitude during springtime from PlanetScope and HLS, respectively. Panels (c) 
and (e) show the magnitude of seasonal amplitude in EVI2 from PlanetScope and the USDA's Cropland Data Layer (USDA, 2020) in 2019, respectively. 

Fig. 9. Scatterplots of DOY phenometrics from HLS versus PlanetScope: (a) deciduous broadleaf forests; (b) evergreen needleleaf forests; (c) mixed forests; (d) 
croplands; (e) grasslands; and (f) shrublands. 
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MODIS at a semi-arid site in Kenya. Using a somewhat different 
approach, Wang et al. (2020) used PlanetScope in combination with 
MODIS to monitor dry season phenology in Amazonia. In agriculture, 
PlanetScope has been used to monitor crop phenology and development 
(Houborg and McCabe, 2018; Myers et al., 2019; Sadeh et al., 2021). 

The studies described above consistently demonstrate that Planet-
Scope imagery provides an effective basis for monitoring phenology 
from remote sensing. However, each of the studies discussed above fo-
cuses on individual phenological events (or sub-seasons) for a single 
ecosystem type. To date, no study has systematically assessed the 
character and quality of vegetation indices and LSP metrics from Plan-
etScope imagery to corresponding time series and metrics derived at 
moderate spatial resolution from freely available Landsat 8 and Sentinel- 
2 imagery. Unlike previous papers, we performed this assessment across 
multiple growing seasons, ecosystem types, and climate domains. 
Further, in addition to assessing the correspondence between vegetation 
indices and LSP metrics from PlanetScope, HLS, and PhenoCams, we 

explore questions related to scaling and the additional spatial detail in 
LSP metrics that 3 m PlanetScope imagery provides relative to 30 m HLS 
imagery. 

Our results demonstrate strong overall agreement in phenometrics 
from HLS, PlanetScope, and PhenoCams across the entire growing sea-
son and a wide range of land cover types. We also show that PlanetScope 
imagery captures substantial fine-scale spatial variation in phenology 
that is not resolved at moderate spatial resolution by HLS. This result is 
not a surprise, but is important because it quantifies the nature and 
character of variation in LSP that is not captured in HLS. Significantly, 
our results show that LSP metrics from HLS accurately capture the mean 
phenology at 3 m spatial resolution measured by PlanetScope. This latter 
conclusion is important because it illustrates how the relative utility of 
LSP metrics derived from PlanetScope versus HL depends on the appli-
cation. For use cases that require fine-scale variation in phenology (e.g., 
high resolution monitoring of crops) our results suggest that Planet-
Scope imagery provides useful information related to canopy-scale 

Table 2 
Summary statistics comparing DOY phenometrics retrieved from HLS and PlanetScope at each site. Each vegetation type (i.e., each column) represents each PhenoCam 
site. Table A1 provides site-specific information for each PhenoCam site.    

DB MF EN AG GR SH Average 

Greenup onset r 0.294 0.217 0.207 0.620 0.155 0.307 0.300 
RMSE 10.7 16.9 30 27.6 16.3 11.3 18.8 
Bias 4.5 7.8 − 6.7 9.5 8.0 5.0 4.7 

Mid-greenup r 0.202 0.396 0.082 0.619 0.399 0.448 0.358 
RMSE 8.3 5.5 16.1 24.2 9.2 12.3 12.6 
Bias − 3.3 2.0 4.5 4.7 4.3 5.3 2.9 

Maturity r 0.286 0.259 0.226 0.560 0.596 0.261 0.365 
RMSE 16.3 13.5 13.7 23.0 7.9 19.7 15.7 
Bias − 1.4 − 3.5 − 1.6 2.5 3.0 5.5 0.7 

Peak r 0.221 0.110 0.028 0.550 0.599 0.176 0.281 
RMSE 24.1 19.0 13.4 23.2 8.0 21.7 18.2 
Bias 6.0 − 6.4 − 4.2 − 2.0 1.5 − 0.6 − 1.0 

Greendown onset r 0.434 0.206 0.146 0.424 0.687 0.168 0.344 
RMSE 20.3 20.1 16.4 24.0 6.0 24.0 18.5 
Bias − 2.7 8.2 − 10.7 − 4.2 − 1.2 − 6.1 − 2.8 

Mid-greendown r 0.694 0.472 0.242 0.402 0.644 0.107 0.427 
RMSE 20.9 11.4 18.3 23.8 15.8 35.0 20.8 
Bias − 12.5 − 5.1 − 9.3 − 9.6 − 12.2 − 8.9 − 9.6 

Dormant r 0.032 0.111 0.097 0.555 0.454 0.029 0.213 
RMSE 26.6 18.7 25.7 30.8 26.9 53.3 30.3 
Bias − 15.3 − 3.8 − 3.7 − 16.4 − 21.0 10.7 − 8.3  

Fig. 10. Empirical relationships between 30 m HLS phenometrics and 3 m PlanetScope phenometrics: (a) correlation; (b) root mean squared error (RMSE); and (c) 
bias (PlanetScope – HLS) between HLS phenometrics and quantiles in the distribution of PlanetScope phenometric values located within HLS pixels. See the caption 
for Fig. 1 for definitions of acronyms in the legend. 
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variation in phenology that is not retrieved in 30 m HLS imagery. 
However, for use cases focused on landscape to regional-scale dynamics 
in phenology (e.g., focused on integrated impacts of climate change), 
our results demonstrate that HLS imagery provides a high-quality basis 
for monitoring phenology and no added benefit is gained from the 
higher temporal and spatial resolution provided by PlanetScope. 

Correlation among time series of EVI2 from HLS and PlanetScope 
and GCC from PhenoCams was uniformly high across all six study sites 
(Figs. 2, 3, 4, and 5). This is notable because each of these data sources 

differs from each other in significant ways. PlanetScope imagery is ac-
quired at daily temporal frequency and fine spatial resolution, but uses 
sensor technology with relatively low radiometric quality (Dash and 
Ogutu, 2016; Houborg and McCabe, 2018; Wang et al., 2020). HLS, on 
the other hand, provides imagery with excellent radiometric quality but 
moderate spatial resolution and lower (typically sub-weekly) frequency. 
PhenoCam imagery provides canopy-scale measurements at sub-daily 
frequency, but imagery is acquired using low-cost digital cameras 
mounted at oblique view angles to the canopy, which impacts the 

Fig. 11. Semi-variograms from 3 m PlanetScope phenometrics at each site: (a) deciduous broadleaf forest; (b) evergreen needleleaf forest; (c) mixed forest; (d) 
cropland; (e) grassland; and (f) shrubland. Vertical dashed lines are included to show the spatial resolution of HLS imagery. 

Fig. 12. Comparison of phenometrics for (a) PhenoCam versus PlanetScope (b) PhenoCam versus HLS, and (c) PlanetScope versus HLS. The values plotted compare 
the day of year (DOY) corresponding to 50% of EVI2 (for PlanetScope and HLS) and GCC (for PhenoCam) amplitude during the greenup (circles) and greendown 
(squares) periods across 3 years from 2017 to 2019. Bias is the systematic difference between PhenoCam, PlanetScope, and HLS (PhenoCam – PlanetScope, Phe-
noCam – HLS, and PlanetScope – HLS, for panels (a), (b), and (c), respectively). 
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relationship between GCC and vegetation canopy properties (Keenan 
et al., 2014; Seyednasrollah et al., 2020a; Sonnentag et al., 2012). Given 
these differences, the overall strong agreement across each of these in-
dependent sources of imagery suggests that each source of imagery 
captures the same fundamental modes of vegetation phenology across a 
range of vegetation and climate types. 

Across multiple growing seasons, phenometrics from PlanetScope, 
HLS, and PhenoCams show high agreement (Figs. 9, 10, and 12). In this 
context, PhenoCams are widely used as a source of high-quality ground- 
based observations of phenology (Hufkens et al., 2012; Liu et al., 2017; 
Seyednasrollah et al., 2019; Zhang et al., 2018a). The strong overall 
agreement between phenometrics from PhenoCams and both HLS and 
PlanetScope imagery supports the conclusion that both HLS and Plan-
etScope provide a reliable basis for monitoring land surface phenology. 
We found no evidence to suggest that the lower radiometric quality of 
PlanetScope negatively impacts the quality of phenometrics estimated 
from time series of PlanetScope imagery. This result aligns with recent 
studies described above that used PlanetScope data to study phenolog-
ical processes (Chen et al., 2019; Cheng et al., 2020; Dixon et al., 2021; 
Wang et al., 2020). 

At intra-annual time scale (i.e., for individual phenometrics), site- 
level agreement between phenometrics from HLS and PlanetScope was 
much lower than aggregate agreement across the growing season (Fig. 9 
and Table 2). We attribute this result to two factors. First, because each 
site covers a small area (i.e., 9 km2) selected to be representative of the 
PhenoCam ROIs at each site, within-site variability in each phenometric 
is low compared to the range of variation in phenology found in most 
landscapes at regional and larger scales (e.g., Bolton et al., 2020; Moon 
et al., 2019; Zhang et al., 2018b). Second, and more importantly, the 
higher spatial resolution of PlanetScope imagery captures fine-scale 
variation in LSP that is not resolved in HLS imagery (Figs. 7, 8, and 
11). Because of this, site-level correlation between individual pheno-
metrics from PlanetScope and HLS is low. This result is consistent with 
results from Cheng et al. (2020), who compared phenometrics derived 
from PlanetScope and Sentinel-2 at landscape scale for both the greenup 
and greendown (~128 km2) and observed similar patterns of agreement. 

Taken together, our results suggest that PlanetScope and HLS pro-
vide retrievals of LSP metrics that are accurate and show uniform pat-
terns of agreement across a wide range of vegetation and climate types. 
Indeed, one conclusion that might be drawn from this work is that 
PlanetScope provides a new standard for LSP studies. However, four 
caveats are worth noting by readers considering the use of PlanetScope 
imagery for LSP applications: 

• First, even though our results demonstrate that the 3 m spatial res-
olution provided by PlanetScope yields substantial information that 
is not resolved at the 30 m moderate spatial resolution provided by 
HLS, it is possible (or even likely) that some of the spatial detail 
retrieved from PlanetScope is not realistic. Specifically, the com-
bined effects of geolocation uncertainty and day-to-day variability in 
PlanetScope overpass times (i.e., BRDF effects from solar geometry) 
introduce noise to phenometrics estimated from PlanetScope imag-
ery. We do not quantify the magnitude of how these factors impact 
our results, and their impact is mitigated by the underlying LSP al-
gorithm, which smooths the time series at each pixel. However, it is 
likely that LSP metrics from PlanetScope imagery are affected by 
variability in EVI2 time series arising from geolocation uncertainty 
and BRDF effects. 

• Second, the utility of 3 m LSP information depends on the applica-
tion. For some use cases (e.g., monitoring crops for pests), high- 
spatial resolution LSP information is clearly useful. However, many 
applications focused on monitoring and mapping regional- and 
larger-scale patterns and dynamics in phenology (e.g., measuring the 
climate sensitivity of entire ecosystems), do not require the spatial 
resolution afforded by PlanetScope imagery. In this context, the re-
sults from this work demonstrate that LSP results from HLS are 

strongly correlated and have near-zero bias with the average of 3 m 
LSP metrics extracted within HLS pixels derived from PlanetScope. 
Hence, unless fine spatial LSP information is required, our results 
indicate that PlanetScope imagery provides little benefit relative to 
HLS for investigations focused on large-scale changes in phenology. 

• Third, for LSP applications applied over large areas, the cost asso-
ciated with purchasing and processing 3 m daily PlanetScope imag-
ery is likely to be prohibitive for many users in the science 
community. Therefore, the choice of which source of imagery is most 
suitable depends on (indeed, will often be dictated by) both the re-
sources available and the application.  

• Fourth, while our analysis includes a wide range of climate and plant 
functional types, the sites we consider are all located in the 
temperate zone, and more work is needed to extend these results to 
sites in the tropics and high latitude ecosystems. 

A final consideration, which we do not address directly in this paper 
but is worth noting, is the role and utility of PlanetScope imagery for 
assessing moderate and coarse spatial resolution LSP data products. 
Specifically, challenges involved in collecting independent data sets that 
are both reliable and directly comparable to LSP results are widely 
documented, and assessment of LSP products has been a long-standing 
issue in the LSP community. In most cases, LSP product assessment 
has been conducted opportunistically, using large numbers of observa-
tions collected for individual plants or trees (e.g., using data from the 
USA National Phenology Network or the Pan European Phenological 
database) (Rodriguez-Galiano et al., 2015; Zhang et al., 2018b), and 
more recently using data from PhenoCams (Hufkens et al., 2012; Moon 
et al., 2019; Richardson et al., 2018b). However, issues related to 
representativeness and scale introduce substantial uncertainty to such 
assessments. Results from this study provide an excellent proof-of- 
concept that PlanetScope imagery provides a useful basis for assessing 
LSP algorithms and data products derived from coarse - (MODIS, VIIRS, 
Proba-V, and Sentinel-3) and moderate- (Landsat and Sentinel-2) spatial 
resolution imagery. 

5. Conclusions 

Land surface phenology is a powerful tool for monitoring and char-
acterizing the nature, magnitude, and timing vegetation phenology over 
large areas at seasonal-to-decadal time scales. In recent years, the LSP 
community has rapidly moved towards higher resolution products based 
on moderate spatial resolution satellite imagery. However, the overall 
effectiveness and accuracy of such higher resolution imagery for esti-
mating and monitoring LSP are not well-characterized. 

In this study, we conducted a multiscale assessment of LSP metrics 
retrieved from Harmonized Landsat 8 and Sentinel-2 (HLS), Planet-
Scope, and PhenoCam imagery. The results show that overall agreement 
between phenometrics from each source of imagery is high, and thus 
indicate that data from both HLS and PlanetScope can be used with 
confidence to monitor LSP over large areas. HLS provides global imagery 
at moderate spatial resolution with high radiometric quality. However, 
phenometrics derived from HLS obscure fine-scale variation in LSP that 
occurs below the 30 m spatial resolution afforded by HLS. Our results 
demonstrate that the higher temporal and spatial resolution provided by 
PlanetScope imagery has substantial value and utility for LSP studies. 
However, questions related to cost and whether or not 3 m imagery is 
needed for many applications impose substantial constraints on wide-
spread adoption of PlanetScope imagery for large-scale studies of 
phenology. In the short term, we conclude that PlanetScope provides a 
useful and effective basis for assessing the quality of LSP algorithms and 
data products at moderate and coarse spatial resolution. In the longer 
term, as more sources of high spatial and temporal resolution imagery 
become available and the LSP community develops the next generation 
of LSP products, it will be important to develop better understandings of 
where, how, and for which applications different sources of imagery are 
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most effective and appropriate. 
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