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ABSTRACT

We review experimental studies to evaluate how the nitrogen cycle influences
the response of forest net primary production (NPP) to elevated CO,. The
studies in our survey report that at the tissue level, elevated CO, reduces leaf
nitrogen concentration an average 21%, but that it has a smaller effect on
nitrogen concentrations in stems and fine roots. In contrast, higher soil nitrogen
availability generally increases leaf nitrogen concentration. Among studies that
manipulate both soil nitrogen availability and atmospheric CO,, photosynthetic
response depends on a linear relationship with the response of leaf nitrogen
concentration and the amount of change in atmospheric CO, concentration.
Although elevated CO, often results in reduced tissue respiration rate per unit
biomass, the link to changes in tissue nitrogen concentration is not well studied.

1The US government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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At the plant level, soil nitrogen availability is an important factor that often
constrains the response of woody plant growth to elevated CO,. Also, increased
nitrogen availability and elevated CO, have opposite effects on the relative
allocation of carbon to aboveground and belowground biomass. At the eco-
system level, the effects of elevated CO, on tissue nitrogen concentration, plant
growth, and biomass allocation have the potential to alter soil nitrogen avail-
ability indirectly by influencing decomposition, nitrogen mineralization, and
nitrogen fixation. Our analyses in this review indicate that the nitrogen cycle
plays an important role in the response of forest NPP to elevated CO,. Because
interactions between the nitrogen cycle and elevated CO, are complex and our
understanding is incomplete, additional research is required to elucidate how
such interactions affect forest NPP.

INTRODUCTION

Net primary production (NPP) is the net rate at which the vegetation in an
ecosystem captures carbon from the atmosphere. Forests, which cover 43% of
the terrestrial biosphere, are potentially responsible for 72% of annual global
terrestrial NPP (69). Humans rely on a portion of this production for fiber,
fuel, and food. During the past 250 years the combustion of fossil fuels and
deforestation have increased atmospheric carbon dioxide from preindustrial
levels of approximately 280 ppmv to 353 ppmv in 1990 (128). The projection
is that CO, concentrations will reach 500 ppmv by the year 2040, and 800
ppmv by the year 2100, if no steps are taken to limit CO, emissions (128).
This projection necessitates that the scientific community advance its under-
standing concerning the sensitivity of forest NPP to elevated CO,.

The availability of inorganic nitrogen often limits production in terrestrial
ecosystems, and increased forest production in response to nitrogen fertiliza-
tion has been observed in numerous studies (6365, 122). A number of studies
have recently reviewed various aspects of NPP response to elevated CO, (3,
14, 16, 38, 42, 44, 76, 83, 93, 98, 102, 127, 134). Many of the reviews identify
uncertainties that represent gaps in our knowledge about the role of nitrogen
in the response of forest ecosystems to elevated CO,. Knowledge about the
influence of nitrogen on forest carbon dynamics is a major issue that limits,
in part, the ability of ecologists to model the response of terrestrial ecosystems
to global change (121a). In this study we discuss the potential role of nitrogen
in the response of forest NPP to elevated CO,.

MAJOR LINKAGES BETWEEN THE CARBON AND
NITROGEN CYCLES

The carbon and nitrogen cycles are closely coupled in terrestrial ecosystems
(Figure 1). Nitrogen exerts control over the rates of several carbon cycling
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Figure 1 A generalized representation of carbon and nutrient cycles in terrestrial ecosystems.
Carbon enters the vegetation pool (Cv) as gross primary production (GPP) and transfers either to
the atmosphere as autotrophic (plant) respiration (Ra) or to the soil pool (Cs) as litter production
(Lc); it leaves the soil pool as heterotrophic respiration (Ru). Nitrogen enters the vegetation pool
(Ns) from the inorganic nitrogen pool of the soil (Nav) as NUPTAKE. It transfers from the
vegetation to the organic soil pool (Ns) in litter production as the flux LN. Net nitrogen min-
eralization (NETNMIN) accounts for nitrogen exchanged between the organic and inorganic
nitrogen pools of the soil. Nitrogen inputs from outside the ecosystem (NINPUT) enter the inorganic
nitrogen pool; losses leave this pool as the flux NLOST.

processes including net primary production (NPP). Net primary production is
the difference between gross primary production (GPP; i.e. gross assimilation
of carbon captured through photosynthesis), and plant respiration (R,; the
energy cost of metabolic activity). Because both gross primary production and
plant respiration represent biochemical processes that are catalyzed by nitro-
gen-rich enzymes, the rate of these processes depends, in part, on the nitrogen
content of tissue. Also, because the construction of new tissue requires nitrogen
in addition to carbon, gross primary production may depend on the nitrogen
status of the plant. Nitrogen status is influenced by both the amount of nitrogen
stored in vegetation (Ny) and the supply of nitrogen to vegetation (NUP-
TAKE). The supply to vegetation depends on effort expended by the plant to
obtain nitrogen from the soil and the amount of nitrogen available in the soil
solution (N,v). Soil nitrogen availability is influenced by plant uptake (NUP-
TAKE), the net amount of nitrogen mineralized during the decomposition of



476 MCGUIRE, MELILLO & JOYCE

soil organic matter (NETNMIN), inputs from the atmosphere (NINPUT) that
include nitrogen fixation and deposition of atmospheric nitrogen, and nitrogen
losses both to the atmosphere and to groundwater (NLOST). Thus, nitrogen
may play a role in the response of forest NPP to elevated CO, by influencing
tissue, plant, and ecosystem processes.

The effects of elevated CO, on NPP have been investigated at the tissue,
plant, and ecosystem levels. Studies at the tissue level have focused primarily
on the response of net photosynthesis and tissue respiration. Net photosynthesis
is the net amount of carbon assimilated during photosynthesis and is the
difference between gross assimilation and the leaf respiration that occurs
simultaneously with photosynthesis (36). In contrast to studies at the tissue
level, those at the level of the individual plant have focused primarily on the
response of growth, which is NPP minus biomass losses such as herbivory and
litter production (L¢ in Figure 1). Because growth is essentially equivalent to
NPP if biomass losses are negligible, growth is generally a better integrative
measure of NPP than are net photosynthesis and respiration because of the
difficulties in continually measuring both of these processes for entire plants.
For practical reasons, studies at the plant level generally focus on the response
of “potted” seedlings in growth chambers, greenhouses, and field chambers.
Although these studies integrate the response of photosynthesis and respiration
for individual organisms, they do not necessarily capture the feedback between
plant and soil processes that operates in ecosystems. Studies at the ecosystem
level focus primarily on how growth responds to elevated CO, in the context
of plant and soil interactions.

TISSUE-LEVEL RESPONSES

Tissue-level processes that may be affected by elevated atmospheric CO,
include photosynthesis and respiration. Net photosynthesis in plant leaves
represents both carbon gain and loss during the process of photosynthesis;
carbon loss is caused by aerobic respiration occurring simultaneously with
gross assimilation. Aerobic respiration, which represents the oxidative energy
cost of numerous enzyme-catalyzed biochemical pathways, results in carbon
loss in the form of CO, from all plant tissues. One way that the nitrogen cycle
potentially interacts with elevated atmospheric CO, to influence tissue meta-
bolism is through effects on enzyme concentrations in tissue.

Nitrogen is a major constituent of enzymes, and changes in nitrogen con-
centration of tissue generally reflect changes in enzyme concentration. Al-
though nitrogen concentration of woody plant tissues is commonly observed
to decline in response to long-term exposure to elevated atmospheric CO,,
much more information is available for leaf tissue (77 reports in Table 1) than
for stems (18 reports) and fine roots (26 reports). Among the reports in our
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survey, the mean decrease of leaf nitrogen concentration is 21% in response
“to elevated CO,. In 10 reports no change in nitrogen concentration occurs, and
in 2 it increases. Decreases in leaf nitrogen concentration are greater than
decreases in other tissues (Kruskal-Wallis Test, H = 24.1, P < 0.0001, df = 2);
decreases in stems (7%) and fine roots (7%) are not statistically distinguishable.
It is not clear whether decreases in stem and fine root nitrogen concentration
are different from no change; tests for differences are not significant but have
low power to detect differences (0.22 for stems and 0.33 for roots vs. desired
0.80). Among 33 reports in our survey, the mean decrease in plant nitrogen
concentration is 15%, which is statistically different from no change.
Although elevated CO, generally reduces leaf nitrogen concentration when
the nitrogen fertilization regime is held constant, a different pattern emerges
if changes in nitrogen concentration are examined across fertilization treat-
ments. When compared to the nitrogen concentration at the lowest level of
nitrogen availability, higher levels of nitrogen availability generally lessen the
reduction or increase the nitrogen concentration of leaves in woody plants
grown at elevated CO, (Table 2; Paired-sample r-test, t = 4.31, P = 0.0003, df
= 23). Of the 24 comparisons in Table 2, a further reduction in leaf nitrogen
concentration is observed under conditions of higher nitrogen availability only
for Eucalyptus grandis and the nitrogen-fixing species Alnus rubra. Leaf
nitrogen concentrations increase for Pinus taeda, Populus tremuloides, and
Salix X dasyclados when elevated CO, is accompanied with nitrogen fertili-
zation. Although increased nitrogen availability and elevated CO, have oppo-
site effects on leaf nitrogen concentration, the extant data are too few to
determine whether nitrogen concentrations in stems, fine roots, and whole
plants of woody vegetation are similarly affected. Clearly, more information
is needed on how elevated CO, interacts with nitrogen availability to affect
nitrogen concentrations in stems, fine roots, and whole plants in woody vege-
tation.

Effects on Net Photosynthesis

For plants grown in elevated CO,, three photosynthetic acclimation responses
are observed: downregulation, upregulation, and depressed photosynthesis
(58). Downregulation occurs when the photosynthetic capacity of plants grown
in elevated CO, decreases in comparison to plants grown at baseline CO,, but
the rate of photosynthesis for plants grown and measured at elevated CO, is
still higher than the rate for plants grown and measured at baseline CO,. For
plants grown at elevated CO, compared to those grown at baseline CO,, higher
photosynthesis measured at both baseline and elevated CO, is defined as
upregulation, and lower photosynthesis measured at both baseline and elevated
CO, is defined as depressed photosynthesis.

The long-term responses of net photosynthesis have been reviewed for
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Pne/Pnb

Figure 2 The relationship between photosynthetic response (Pne/Pnb), percent change in nitrogen
concentration of leaf tissue (ILEAFN), and amount of change in atmospheric CO2 in ppmv (dCO2),
where Prb is the net photosynthetic rate per unit area for plants grown and measured at both baseline
COz2 and the lowest level of nitrogen fertilization in the experiment, Ppe is the net photosynthetic
rate for plants grown and measured at elevated CO2 and/or higher levels of nitrogen fertilization.
The plane is described by Pae/Pnb = 0.95924 + 0.00298 dLEAFN + 0.00178 dCO2 (F = 33.1, P<
0.0001, df =2,43). Data are from studies than manipulate both soil nitrogen availability and elevated
CO:2 for woody species, and these are documented in Tables 2 and 3.

woody species grown in elevated CO, (30, 16, 42). In a review of the photo-
synthetic responses of 16 woody species described in studies published in the
1980s, Eamus & Jarvis (30) observed that, for most experiments, carbon
assimilation of plants grown and measured at elevated CO, is greater than that
of plants grown and measured at baseline CO,. Similarly, in a review of studies
published in the early 1990s, Ceulemans & Mousseau (16) observed that
elevated CO, enhances photosynthesis by an average 40% among 12 conifer
species and 61% among 53 broadleaf species. Among 69 reports in Gunderson
& Whullschleger (42), net photosynthesis is 44% higher on average for plants
grown at elevated CO,. However, when measured at baseline CO,, photosyn-
thesis for plants grown at elevated CO; is an average 21% lower than for plants
grown at baseline CO,. The observations of Gunderson & Wullschleger (42)
indicate downregulation; only 8 of 69 reports indicate upregulation, and only
4 of 20 reports indicate depressed photosynthesis. Downregulation appears to
be the predominant photosynthetic acclimation response of woody plants to
elevated CO,.
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Among studies that manipulate both CO, and nitrogen availability, the mean
enhancement of photosynthesis to elevated CO, at the lowest level of nitrogen
availability is 40%, while the mean enhancement at higher levels of nitrogen
availability is 59% (Table 3; paired-sample r-test, ¢t = 2.41, P = 0.0239, df =
24). Relative to photosynthesis and nitrogen concentrations of the lowest
fertilization treatment in each experiment, a linear relationship exists between
photosynthetic enhancement, change in leaf nitrogen concentration, and the
amount of CO, change (Figure 2):

Pre/Pnb = 0.95924 + 0.00298 dLEAFN + 0.00178 dCO:, 1.

where Py, is net photosynthesis per unit leaf area for plants grown and meas-
ured at both baseline CO, and the lowest level of fertilization in the experiment,
P, is net photosynthesis rate for plants grown and measured at elevated CO,
and/or higher levels of nitrogen fertilization; dLEAFN is the percent change
in nitrogen concentration between leaves corresponding to the measurement
of Py, and those of P,.; and dCO, is the concentration difference in ppmv
between elevated and baseline CO,. Baseline CO, was defined for each ex-
periment as the CO, concentration that best represents contemporary atmos-
pheric CO,. The relationship explains 61% of the variability in P,/P,, (F =
33.1, P < 0.0001, df = 2,43). Both independent variables are significant
(dLEAFN: P = 0.0154; dCO,: P < 0.0001), and each variable contributes
significantly to the variance explained by the relationship. The intercept, which
is significantly different from 0 (P < 0.0001), does not significantly differ from
the expected 1.0 for no changes in leaf nitrogen and CO,. In the absence of
changes in nitrogen availability, photosynthetic response depends on how leaf
nitrogen concentration responds to elevated CO,. Severe reductions in leaf
nitrogen cause depressed photosynthesis, moderate to small reductions cause
downregulation, and increases cause upregulation. Because nitrogen availabil-
ity affects dLEAFN, the response of photosynthesis to elevated CO, also
depends on changes in nitrogen availability. Although other factors such as
water availability would be useful to include in a relationship of photosynthetic
response to elevated CO,, the relationship indicates that nitrogen availability
and nitrogen allocation play important roles in the acclimation of photosyn-
thesis to elevated CO,.

Acclimation to elevated CO, can occur by affecting one or more of three
aspects of leaf-level carbon assimilation (93, 102): carboxylation, light harvest,
and carbohydrate synthesis. Under saturating light conditions at low levels of
intercellular CO,, assimilation is limited by the quantity and activity of ribulose
bisphosphate carboxylase (rubisco), the enzyme that is primarily responsible
for capturing atmospheric carbon in the production of sugars. Rubisco may
accept either CO, (carboxylation) or O, (oxygenation) as a substrate; oxygena-
tion is responsible for photorespiration. Because CO, competes with O, for
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rubisco binding sites, enhancement of photosynthesis by elevated CO, is pos-
sible through increased carboxylation and decreased oxygenation. Carboxyla-
tion increases with rising intercellular CO, to levels at which the regeneration
of rubisco, and thus the ability to fix carbon, is limited by the light-harvesting
machinery of photosynthesis. At high levels of intercellular CO,, the enzy-
matically controlled rate of carbohydrate synthesis, which affects the phos-
phate regeneration that is necessary for harvesting light energy, may regulate
the fixation of carbon.

Because rubisco represents a substantial proportion of leaf nitrogen (35),
photosynthetic rate is generally correlated with the nitrogen content of leaves
(35, 37). Reduced nitrogen availability has often been observed to decrease
both leaf nitrogen content and photosynthesis (18, 34, 41, 53, 103, 104, 125).
If lower nitrogen concentrations of leaves in response to elevated CO, primar-
ily reflect lower rubisco concentrations, then lower assimilation over the car-
boxylation-limited range of intercellular CO, is expected in plants grown at
elevated CO,. It has been suggested that if elevated CO, causes intercellular
CO, generally to rise above this region, then lower rubisco levels may be
advantageous because they represent the allocation of nitrogen away from
excess rubisco capacity (102) to other activities such as fine root function (33)
and enzymes of the light-harvesting machinery and carbohydrate synthesis (38,
102, 105, 112, 117, 127).

One explanation for acclimation to elevated CO, is that restricted rooting
volume in small pots causes photosynthesis to be regulated by sink activity
(5). A mechanism proposed to explain this phenomenon is that the accumula-
tion of carbohydrates in leaves induces feedback to reduce phosphate regen-
eration (10, 105), a phenomenon labeled “end-product inhibition.” This
explanation is consistent with the observed accumulation of photosynthate in
leaves of some plants that have received long-term exposure to elevated CO,
(15, 26, 28, 31, 43, 87, 111, 129). Most of the evidence concerning end-product
inhibition is from studies of herbaceous plants, and the hypothesis does not
explain acclimation in trees when rooting volume is not restricted (42). Because
end-product inhibition may represent an artifact of inappropriate pot size (5,
10, 116; but see 8, 50, 61, 62), true photosynthetic acclimation in response to
elevated CO, may be best understood in terms of the allocation of nitrogen
and other components to leaf function, i.e. carbon capture, and root function,
i.e. the acquisition of nutrients and water (see 58).

Effects on Respiration

The study of respiration responses to elevated CO,, a rapidly expanding field,
has recently been reviewed by Amthor (3), Bunce (14), and Wullschleger et
al (134). Emerging evidence indicates that the long-term acclimation of woody
plants to elevated CO, often results in reduced leaf respiration rates (6, 45, 46,
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95, 130, 131, 133) and perhaps in reduced respiration rates for whole seedlings
(13, 72, 95). When the leaf respiration response has been partitioned into
growth and maintenance components, the reduction is dominated by mainte-
nance respiration (131). Although growth respiration per unit leaf biomass may
decrease (130, 131), larger leaves in elevated CO, may compensate for the
reduced rate (131; see also 95). Similarly, Norby (76) reports that although
the respiration rate per unit fine root biomass was decreased in Quercus alba
grown at elevated CO,, increased fine root density probably results in higher
total fine root respiration. Reid & Strain (95) observed decreased respiration
per belowground biomass for Acer saccharum, but not for Fagus grandifolia;
total belowground respiration was not affected by elevated CO, in either
species. In contrast, both maintenance respiration per stem volume and growth
respiration per stem increment in Q. alba are unaffected by long-term accli-
mation to elevated CO, (132), but higher rates of stem growth cause higher
total stem respiration.

Changes in tissue nitrogen concentrations may have effects on both growth
and maintenance respiration. The energy required to construct tissues with
reduced nitrogen/protein concentrations may be less at elevated CO, (131, 134;
but see 57). Maintenance respiration involves the energy cost of many cell
functions, which include numerous biochemical pathways, cell repair, mem-
brane function, and protein synthesis and maintenance. Protein synthesis and
maintenance represent a substantial proportion of maintenance respiration (88),
and a linear relationship often exists between tissue maintenance respiration
and tissue nitrogen concentrations (101). Wullschleger et al (131) documented
a linear relationship between leaf respiration rates and leaf nitrogen concen-
trations among Liriodendron tulipifera plants grown at ambient and elevated
levels of atmospheric CO,, but Azcon-Bieto et al (6) observed that respiration
per unit leaf nitrogen declined for Lindera benzoin plants grown in elevated
COs,. To our knowledge, these are the only reported relationships among tissue
respiration, nitrogen concentration, and elevated CO, for woody species. Ad-
ditional research is required to elucidate the role that changes in tissue nitrogen
concentration play in the acclimation response of tissue respiration to elevated
CO; (134).

PLANT-LEVEL RESPONSES

Studies of tissue-level responses to elevated CO, and nitrogen availability help
us to understand how these two variables interact to affect the exchange of
carbon between the plant and the atmosphere on a per unit biomass or per unit
leaf area basis. For us to understand how whole-plant carbon exchange is
affected, we need to know how growth and biomass allocation are influenced.
The responses of growth and allocation are important to consider because
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resources may be allocated so that growth becomes equally limited by all
resources, i.e. carbon, nutrients, and water (2, 9, 17, 96). In this section we
examine how changes in nitrogen availability and atmospheric CO, interact
to influence growth and allocation.

Effects on Growth

Among the studies reviewed by Eamus & Jarvis (30), a doubling of CO,
reportedly increased biomass approximately 40%. Ceulemans & Mousseau
(16) observed that biomass increased 38% for conifer species and 63% for
broadleaf species in response to elevated CO,. In studies in which both CO,
and nitrogen availability were manipulated, the mean increase in biomass to
elevated CO, at the lowest level of availability is 35%, while at higher levels
of nitrogen availability, the mean increase is 71% (Table 3; Wilcoxin Signed
Rank Test, W = 883.0, P < 0.0001, N = 55). In comparison to the biomass
accumulation at baseline CO, and the lowest level of nitrogen availability,
elevated CO, accompanied by increased nitrogen availability enhanced bio-
mass an average 6.5 times the baseline biomass among the 55 reports in our
survey. These analyses indicate that low nitrogen availability constrains the
response of growth to elevated CO,; they contrast with the conclusion of Idso
& Idso (44) that “the percentage increase in plant growth produced by raising
the air’s CO, content is generally not reduced by less than optimal levels of
... soil nutrients.”

Effects on Allocation

Eamus & Jarvis (30) observed that, under conditions of low nutrient availabil-
ity, trees increase the proportion of root biomass in response to elevated CO,,
but under conditions of high nutrient availability, root proportion may decrease,
remain unaltered, or increase. Citing unpublished work (by SD Wullschleger),
Norby (76) indicates that the mean response of root/shoot ratio to elevated
CO, is an increase of 6% among 224 observations for woody species, and that
there is no effect of nutrient status on the response. Reports in the review by
Ceulemans & Mousseau (16) are dominated by increases in root/shoot ratio,
which the authors interpreted as investment to ensure better acquisition of
mineral nutrients in poor forest soils. They also observed that, at higher levels
of nutrients, the change in root/shoot ratio is less. For studies that manipulate
nitrogen availability, we observe trends for these patterns, but they are not
statistically significant. At the lowest levels of nitrogen availability, the mean
increase in root/shoot ratio is 1%, and at higher levels the mean change is 2%
(Table 3). These observations are not statistically distinguishable from each
other (Paired-sample t-test, t =0.764, P = 0.4508, df = 32) and are not different
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from no change in root/shoot ratio. Because the power of the test for differences -
is low (0.05 vs. desired 0.80), the conclusion from Table 3 that elevated CO,
has no effect on root/shoot ratio among studies that manipulate nitrogen avail-
ability is probably an artifact of inadequate sample size. Studies that manipulate
nitrogen availability in woody species clearly identify an effect of increased
nitrogen availability in reducing root/shoot ratio. In comparison to root/shoot
ratios at baseline CO, and the lowest level of nitrogen availability, the mean
decrease in root/shoot ratios for elevated CO, accompanied with higher nitro-
gen availability is 21% (Table 3), which is significantly lower than changes
in root/shoot ratio at the lowest level of nitrogen availability (Paired-sample
t-test, t = 5.30, P < 0.0001, df = 31). Thus, elevated CO, and increased soil
nitrogen availability have opposite effects on relative allocation of above-
ground and belowground biomass.

ECOSYSTEM-LEVEL RESPONSES

The CO, responses of tissue nitrogen concentration, growth, and relative
allocation of biomass to root function appear to be functionally linked (58).
Our analyses in this review indicate that tissue nitrogen concentration, growth,
and root/shoot ratio in woody species are affected by changes in atmospheric
CO, and soil nitrogen availability. Because most experiments with woody
plants involve seedlings or saplings, the possibility exists that reduced tissue
nitrogen concentration and root/shoot ratio may, in part, represent the indirect
effect of elevated CO, in accelerating development (1, 20, 76, 20). If the
responses of nitrogen concentration, growth, and biomass allocation persist
throughout development, they have the potential to alter soil nitrogen avail-
ability indirectly. In this section we examine how elevated CO, may influence
soil nitrogen availability through effects on plant nitrogen concentration and
on plant growth and allocation.

Effects of Changes in Plant Nitrogen Concentration

The effect of elevated CO, in reducing nitrogen concentration of plant tissue may
alter soil nitrogen availability by influencing decomposition. Rates of leaf
decomposition are often correlated with several indices of nitrogen litter quality,
which include nitrogen concentration, carbon/nitrogen ratio, and lignin/nitrogen
ratio (67). Nitrogen concentration generally is positively correlated with decom-
position, whereas the other two indices generally are negatively correlated.
Compared to leaf litter of woody plants grown at baseline CO,, decreased
nitrogen concentration for leaf litter of plants grown at elevated CO, has been
observed for Liquidambar styraciflua (sweetgum; 66), Quercus alba (white oak;
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82), Castanea sativa (sweet chestnut; 24), Fraxinus excelsior (ash; 23), Betula
pubescens (birch; 23), Acer pseudoplantanus (sycamore; 23), Picea sitchensis
(sitka spruce; 23), Liriodendron tulipifera (yellow poplar; 83), Acer rubrum (red
maple; 68), and Acer pennsylvanicum (striped maple; 68). Increased carbon/ni-
trogen ratio has been observed for all these species except sitkaspruce and yellow
poplar, where carbon/nitrogen ratio was the same. Increased lignin/nitrogen ratio
was observed for all species except white oak, in which it decreased from 5.7 to
4.8, and yellow poplar, in which it was the same.

The predicted decay rates for white oak, which were determined from
lignin/nitrogen and lignin/phosphorus ratios of leaf litter, suggest there would
be no difference between litter derived from plants grown in baseline and those
in elevated CO, (82). In contrast, rates of decay for maple species, also
determined from lignin/nitrogen ratios, suggest decay rates per unit of litter
would be slower for elevated-CO, material (68). For sweet chestnut leaf litter
incubated with only microflora and protozoa, mass loss was 60% less for litter
derived from elevated CO, plants than that from baseline CO, plants (24).
However, mass loss was similar between the CO, treatments for litter incubated
with nematodes and collembola in addition to microflora and protozoa; the
addition of isopods increased mass loss by 30% in the elevated CO, treatment.
The enhanced decomposition was attributed to a change in the microflora
community, which became dominated by white-rot fungus. Among decompo-
sition experiments with leaf litter of ash, birch, sycamore, and sitka spruce,
cumulative respiration rates were lower for litter derived from elevated CO,
plants among the three deciduous species, but rates were similar for spruce
(23). Significantly lower mass loss was observed for both birch and spruce,
but there was also a nonsignificant trend for lower mass loss in ash. Cumulative
nitrogen mineralization did not differ between CO, treatments for any of the
four species. No difference in mass loss rates were observed for yellow poplar
after two years of decomposition in litter bags (83).

If decomposition and nitrogen mineralization are depressed because of
CO,-induced changes in litter quality, soil nitrogen availability may be
reduced in ecosystems. Our earlier analyses suggest that reduced nitrogen
availability has' the potential to limit both photosynthetic and growth re-
sponses to elevated CO,. Thus, reduced litter quality resulting from elevated
CO, has the potential to cause long-term negative feedback to constrain the
response of NPP. Reductions in leaf litter quality seem to be common among
woody species, but these may not be universal. If nitrogen is not resorbed
from fine roots prior to senescence, as suggested by Nambiar (74), then the
response of fine root nitrogen concentration may be a good indicator of
changes in fine root litter quality (76). Small reductions in the nitrogen
concentrations of fine roots and stems may contribute to lower total litter
quality, but to our knowledge no published studies examine how elevated
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CO, affects decomposition of fine root and stem litter in woody plants. One -
study of fine root decomposition in a grass reports lower decomposition rates
for root residue from plants grown in elevated CO,; a lower decomposition
rate is associated with an increase in carbon/nitrogen ratio from 18 in baseline
plants to 32 in elevated-CO, plants (39). At present, the available data suggest
that CO,-induced reductions in litter quality may depress decomposition
rates, but the data are ambiguous. Effects on nitrogen mineralization of
CO,-induced reductions in litter quality are less well documented. Also, there
is no information on how nitrogen mineralization might be affected by the
combination of CO,-induced reductions in decay rate and enhancements in
litter production. Clearly, more research is needed on the potential for
CO,-induced reductions in litter quality to decrease soil nitrogen availability
and cause long-term feedback that constrains the response of forest NPP to
elevated CO,.

Effects of Changes in Growth and Allocation

Increased growth and root/shoot ratio in response to elevated CO, have the
potential to increase production of belowground biomass in forest ecosystems.
Belowground biomass represents both storage in coarse roots and investment
for the acquisition of nutrients and water by fine roots. To the extent that
increased belowground inputs are manifested in enhanced fine root growth,
nitrogen uptake to plants might increase because of additional or more efficient
exploration of soil volume by rooting systems. However, in mature ecosystems
itis not clear whether the soil exploration by rooting systems is saturated under
present CO, conditions. Increased production in response to elevated CO, may
also enhance the transfer of carbon to microbes by means of increased fine
root turnover or by the exudation of soluble organic carbon from roots into
the soil. If elevated CO, causes greater inputs of root-derived carbon into the
soil, it may increase nitrogen availability by enhancing nitrogen fixation (59)
or nitrogen mineralization (135).

Symbiotic nitrogen fixers acquire carbon from their host plants and provide
inorganic nitrogen to their hosts. Elevated CO, enhances nitrogen fixation per
plant for symbiotic associations involving woody species by increasing nodule
mass (4, 75, 115), nodule number (4), or nitrogenase activity per nodule (4).
In addition to carbon availability, nitrogen fixation may be limited by phos-
phorus availability (27). Elevated CO, enhances colonization of ectomycor-
rhizae in woody plants (55, 83, 85), presumably because of enhanced root
exudation of soluble carbon (80). Because mycorrhizae are important for
supplying phosphorus to plants, increased inputs of root carbon into the soil
may indirectly affect nitrogen availability by helping to supply phosphorus to
symbiotic nitrogen fixers. Effects of elevated CO, on nitrogen fixation may
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have important consequences for NPP of tropical forests, where symbiotic
nitrogen fixation is more important than in extratropical regions (83). The
consequences may be especially relevant for tropical forests that occur on
extremely weathered soils, which are often deficient in phosphorus (108).
Whereas the effects of elevated CO, on symbiotic nitrogen fixation have
received some attention, the effects on asymbiotic nitrogen fixation have not
been addressed by the scientific community. Because asymbiotic nitrogen
fixation may be important for most of the atmospheric nitrogen fixed in some
ecosystems (83), progress is needed to understand how elevated CO, may
affect this potentially important process.

It has also been hypothesized that if elevated CO, results in a greater flow
of carbon from roots to soil, then nitrogen mineralization may be enhanced
(135). This hypothesis makes the prediction that: 1. microbial growth in the
vicinity of the root will be enhanced by increased root turnover or exudation,
and 2. that nitrogen mineralization will be increased by higher rates of proto-
zoan grazing on microbial populations (19) or by increased rates of organic
matter decomposition (135). Enhanced decomposition of organic matter could
increase nitrogen availability through greater mineralization of microbial ni-
trogen derived from either root residues or native soil organic matter (135).
Zak et al (135) tested the hypothesis for Populus grandidentata grown in open
top chambers. For elevated CO, treatments, they observed root and microbial
biomass increased, net nitrogen mineralization increased in short-term labora-
tory incubations of the bulk soil, respiration rates were higher in the rhi-
zosphere, and there were nonsignificant trends for higher rates of respiration
and nitrogen mineralization in the bulk soil.

Although the results of the experiment are consistent with the hypothesis of
Zak et al (135), an alternative explanation for the results may be related to the
fact that they added inorganic nitrogen to all treatments (4.5 g N m~2 over a
47-day period). If microbial growth were simultaneously limited by both
carbon and nitrogen availability, then this inorganic nitrogen addition may
have stimulated microbial growth in the elevated-CO, treatments because of
increased root-derived carbon inputs into the soil (see 121). The enhanced
microbial growth, if it causes increased grazing by protozoa or increased
microbial turnover, could result in higher mineralization rates. This interpre-
tation of the Zak et al (135) results, if correct, has important implications for
the effects of elevated CO, on forest growth in regions of the world where
soils receive substantial inputs of anthropogenic nitrogen from the atmosphere
(see 70). Clearly, the link between nitrogen availability and CO,-induced
inputs of carbon into the soil is complex, and additional research is required
to elucidate how elevated CO, and nitrogen availability interact to influence
nitrogen cycling in forest ecosystems.
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CONCLUSION

The interaction between soil nitrogen availability and elevated CO, is impor-
tant to consider because: 1. nitrogen availability is spatially variable (65), and
2. elevated temperature, which might accompany elevated CO, (71), has the
potential to affect soil nitrogen availability by influencing decomposition (63,
65, 69, 90, 91, 119, 120). To make progress in modeling the response of forest
ecosystems to global change, the scientific community needs to improve its
understanding of how nitrogen availability and elevated CO, interact to affect
forest NPP. In this study we identified important influences of the nitrogen
cycle in the potential response of forest NPP to elevated CO,. At the tissue
level, effects appear to be related to changes in tissue nitrogen concentration,
and they may influence photosynthetic and respiration responses to elevated
CO,. However, it is important to recognize that increased nitrogen availability
and elevated CO, have opposite effects on nitrogen concentration of leaf tissue.
Although more research is needed to understand how changes in nitrogen
concentration affect biochemical and physiological processes, an important
challenge will be to understand the mechanisms responsible for changes in
tissue nitrogen concentration. Research to address this issue requires attention
at the levels of both tissue and plant. At the plant level, soil nitrogen availability
is an important factor that often constrains the response of woody plant growth
to elevated CO,. Also, increased nitrogen availability and elevated CO, have
opposite effects on the relative allocation of carbon to aboveground and be-
lowground biomass. Thus, changes in nitrogen availability in response to
climatic changes influence the ability of vegetation to incorporate elevated
CO, into production. Effects of elevated CO, at the tissue and plant levels
may have important consequences for nitrogen cycling at the ecosystem level,
but our knowledge of how CO,-induced changes in litter quality and in root-
derived soil carbon influence nitrogen availability is based on a small number
of studies. Additional research is required at the ecosystem level to understand
how interactions of the nitrogen cycle and elevated CO, affect forest NPP.
Factorial studies that manipulate both atmospheric CO, and soil nitrogen
availability for whole ecosystems would advance understanding.
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