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1  |  INTRODUC TION

Global terrestrial ecosystems take up around one-third of human 
emission of CO2 (Friedlingstein et al., 2020). With recent climate 
change, the seasonality of terrestrial ecosystems, a sensitive 
indicator of biosphere–climate interactions, has been reported 
to be changing (Piao et al., 2007; Seddon et al., 2016). Longer 
growing seasons have been associated with increased carbon up-
take by many ecosystems (Keenan et al., 2014), but the dominant 

controls of the growing season length remain relatively poorly 
understood.

The start of growing season (SOS) has been found to have ad-
vanced in most ecosystems and is known to be largely controlled by 
air temperature in temperate and boreal ecosystems (Chmielewski 
& Rötzer, 2002; Song et al., 2010; Yu et al., 2013). However, mod-
eling of the timing of the end of growing season (EOS) has been 
challenging, as the mechanisms that control the EOS have not been 
thoroughly investigated or well understood (Lang et al., 2019; Zhang 
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Abstract
The length of the growing season has a large influence on the carbon, water, and en-
ergy fluxes of global terrestrial ecosystems. While there has been mounting evidence 
of an advanced start of the growing season mostly due to elevated spring air tem-
peratures, the mechanisms that control the end of the growing season (EOS) in most 
ecosystems remain relatively less well understood. Recently, a strong lagged control 
of EOS by growing season photosynthesis has been proposed, suggesting that more 
productive growing seasons lead to an earlier EOS. However, this relationship has 
not been extensively tested with in-situ observations across a variety of ecosystems. 
Here, we use observations from 40 eddy-covariance flux tower sites in temperate 
and boreal ecosystems in the northern hemisphere with more than 10 years of ob-
servations (594 site-years), ground observations of phenology, satellite observations 
from the Moderate Resolution Imaging Spectroradiometer (MODIS), and three leaf 
senescence models to test the extent of a relationship between growing season pho-
tosynthesis and end of season senescence. The results suggest that there is no signifi-
cant negative relationship between growing season photosynthesis and observed leaf 
senescence, flux-inferred EOS estimates, or remotely sensed phenological metrics, 
in most ecosystems. On the contrary, while we found negative effects of summer air 
temperatures and autumn vapor pressure deficit on EOS, more productive growing 
seasons were typically related to a later, not earlier, EOS. Our results challenge recent 
reports of carry-over effects of photosynthesis on EOS timing, and suggest those 
results may not hold over a large range of ecosystems.
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et al., 2020), and many studies found a much smaller scale of EOS 
changes compared with the SOS changes (Jeong et al., 2011; Park 
et al., 2016). There are many factors that may contribute to the 
changes of EOS, such as the limiting factors of plant productivity 
of air temperature, radiation, soil moisture, and VPD (Archetti et al., 
2013; Körner & Basler, 2010). At the same time, other factors such as 
nutrient supply, sink limitation, and photoperiod, as well as a poten-
tial influence of soil moisture limitation on EOS globally (Buermann 
et al., 2018; Lian et al., 2021; Liu et al., 2016) may also play a role in 
EOS changes.

Recently, it has been suggested that growing season photosyn-
thesis may have a significant negative impact on EOS in some plants. 
That is to say, if the plants had a very productive growing season, 
they are more likely to senesce their leaves early (Zani et al., 2020). 
Zani et al. (2020) used observations from the European Phenology 
Network and controlled experiments to test the effects of growing 
season photosynthesis on the timing of leaf senescence and found 
that more productive growing seasons led to earlier leaf senescence 
in central European forests. They hypothesized a strong role of sink 
limitation in these species. However, they modeled the gross pri-
mary productivity (GPP) following the Lund-Potsdam-Jena General 
Ecosystem Simulator (LPJ-GUESS) model, which may introduce 
some uncertainties due to the model parameterization, and the 
study was limited to specific species in central Europe. Also, their re-
sults contradict the findings of most free-air CO2 enrichment (FACE) 
experiments, in which the leaf senescence dates are typically either 
delayed or remained unchanged (Norby, 2021). An earlier senes-
cence under higher GPP would have large implications for expected 
EOS changes under climate change, but further testing with more 
diverse and distributed phenology and photosynthesis observations 
is needed.

Typically, phenological metrics of different species are recorded 
by visual observations, or digital cameras at specific sites (Richardson 
et al., 2018a). The most successful efforts include the European phe-
nology network and the USA National Phenology Network that pro-
vide more than 60 years of observations (van Vliet et al., 2003). In 
recent years, the seasonal cycles of remotely sensed observations 
such as vegetation indices (VIs), sun-induced fluorescence and veg-
etation optical depth, and flux tower observations have also been 
widely used to estimate key phenological metrics at landscape and 
larger scales (D’Odorico et al., 2015; Gonsamo et al., 2012; Joiner 
et al., 2014; Wu et al., 2017; Yang & Noormets, 2021; Zhang et al., 
2019). These metrics provide insight into the changes of seasonal 
cycles of greenness and/or carbon fluxes in a diverse array of eco-
systems, with significant potentials for understanding phenology–
climate interactions (Tang et al., 2016). These global and regional 
observations also provide a unique opportunity to test phenological 
hypotheses in different ecosystems, particularly when co-located 
eddy-covariance (Novick et al., 2018; Pastorello et al., 2020), ground 
and remote sensing observations can be combined.

In this study, we used flux observations from 40 eddy-covariance 
sites that have measurement records of more than 10 years to test 
the relationship between growing season photosynthesis and EOS 

across a variety of ecosystems. These sites represent a large sub-
section of main biomes in North America and Europe (eight biome 
types according to the International Geosphere-Biosphere Program 
(IGBP)) from 1992 to 2017 and have a total of 589 site-years of ob-
servations. In addition, we used long-term ground phenological re-
cords co-located with eddy-covariance measurements at a site in the 
northeastern US (Harvard Forest), along with phenological metrics 
from the MODIS global land cover dynamics product at all sites stud-
ied, and three leaf senescence models. Doing so, we aim to address 
the following questions:

1.	 Are there significant carry-over effects of growing season 
photosynthesis on EOS in most sites and ecosystems?

2.	 What are the most important factors that contribute to EOS 
changes?

3.	 Does the introduction of growing season photosynthesis improve 
model predictions of EOS?

2  |  MATERIAL S AND METHODS

2.1  |  Flux tower measurements

We used 40 sites from the FLUXNET 2015 dataset (http://fluxn​
et.fluxd​ata.org/; Baldocchi, 2008; Pastorello et al., 2020) and 
AmeriFlux (https://ameri​flux.lbl.gov/; Keenan et al., 2019; Novick 
et al., 2018) in this study (Table S1). We focused on ecosystems that 
had a strong seasonal cycle of photosynthesis (e.g., no tropical sites 
were selected). Also, we removed sites that had a double growing 
season (i.e., double peaks in the growing season GPP most likely 
due to site management and/or water stress), as indicated by the 
GPP time series (Figure S1). For sites in both the FLUXNET 2015 and 
AmeriFlux databases, we chose the source with a longer record of 
observations.

For 12 out of 15 sites within AmeriFlux that do not provide 
gap-filled and partitioned data, we used the R package REddyProc 
to gap-fill and partition net ecosystem change (NEE) into GPP and 
ecosystem respiration (REco) using the nighttime partitioning model 
(Reichstein et al., 2005; Wutzler et al., 2018). Similar results were 
found when using the daytime partitioning method (Figure S2; 
Lasslop et al., 2010).

To determine growing season photosynthesis, we summed up 
the hourly or half-hourly GPP within the period. We determined 
the start of the growing season as outlined in Section 2.4 and used 
the first day that has daylength of fewer than 11.2 h as the end date 
for the calculation of end of growing season photosynthesis (to 
avoid introducing spurious correlations between EOS and growing 
season photosynthesis, following Zani et al., 2020). Also, follow-
ing the method used in Fu et al. (2017), we calculated the envi-
ronmental conditions (air temperature (Tair), vapor pressure deficit 
(VPD) and global radiation (Rg)) in different seasons in the Northern 
Hemisphere (Summer: June, July, and August; Fall: September, 
October, and November).
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2.2  |  Phenological records from Harvard Forest

We used observations from the Phenology of Woody Species 
at Harvard Forest dataset from 1991 to 2017, obtained from 
the Harvard Forest Data Archive (hf003-08, O’Keefe, 2019; 
Richardson et al., 2006). Phenological observations (spring and 
fall) have been recorded for more than 33 woody species around 
the Harvard Forest starting from 1991 (for spring phenology) 
and 1992 (for autumn phenology). Leaf phenology dates were 
recorded by looking at the percentage of the leaves that have 
emerged (spring) and dropped (fall). We used the dates within the 
dataset when 50% of leaves has emerged or dropped each year. 
The mean fall dates at species level provided with the dataset 
were used and we focused on the two dominant species within the 
eddy-covariance tower footprint, that is, Red Oak and Red Maple, 
in the forest (Finzi et al., 2020).

2.3  |  MODIS global land dynamics product

We used the MODIS land cover dynamics product (MCD12Q2, Zhang 
et al., 2003) downloaded from Oak Ridge National Laboratory's 
Distributed Active Archive Center (with a spatial resolution of 
500 m, combined from Terra and Aqua, collection 6). This dataset 
provides a global estimate of several phenological metrics since 
2001. Technically, it identifies phenological metrics derived from the 
seasonal time series of MODIS-observed enhanced vegetation index 
(EVI). The original EVI time series was gap-filled and smoothed, and 
then fit to a logistic model. Detailed information of the process can 
be found in Zhang et al. (2006), and Ganguly et al. (2010). We used 
the date when EVI last crossed 15% (the MCD12Q2 Dormancy date) 
of the segment EVI amplitude, EOS, as the leaf senescence metric. 
We only used the pixel on which the flux tower centered from the 
MCD12Q2 dataset.

2.4  |  Determination of phenological metrics from 
flux measurements

To determine the phenological metrics (i.e., SOS and EOS) from 
flux-estimated GPP, we applied a widely used double-logistic curve 
fitting method (Gonsamo et al., 2012). The method has proven to 
work well in most sites and ecosystems (D’Odorico et al., 2015; 
Lu et al., 2018). To retrieve the key phenological dates, we used 
the half-hourly GPP estimates from the FLUXNET or AmeriFlux 
datasets. First, we summed up the gap-filled half-hourly GPP at 
the daily scale; then, we filtered out years when the data coverage 
was not sufficient (fewer than 100 days of GPP estimates); finally, 
we fit the daily GPP time series to the following double-logistic 
model:

The seven free parameters (a1, a2, a3, b1, b2, d1, and d2) were de-
termined using nonlinear curve fitting. a2–a1 and a3–a1 represent 
the difference between the winter background value and the ampli-
tude of the summer peak growing season values. d1 and d2 are the 
transition curvature parameters, while b1 and b2 are the midpoints in 
DOYs of these transitions for green-up and senescence/abscission, 
respectively.

This method identifies the SOS as the start of the slope of the 
ascending curve and EOS is identified as the end of the descend-
ing curve (the inflection point). We followed the method used in 
Gonsamo et al. (2012) to identify the thresholds from the logistic 
model (1), which estimates the SOS and EOS as:

We compared the EOS estimates from both flux tower estimated 
GPP and remotely sensed EVI (Figure S3). The EOS estimated by the 
two methods were comparable, but mismatches can be evident in 
some ecosystems. Overall, we found that the flux-inferred and re-
motely sensed EOS metrics were significantly correlated (p <  .01), 
and especially for deciduous broadleaf forest (DBF) and mixed forest 
(MF) sites, though GPP EOS had a higher dynamic range in all eco-
systems. For ecosystems where the seasonality of canopy greenness 
is more difficult to detect (e.g., grassland, GRA), the two EOS esti-
mates varied substantially.

To compare the relationship between growing season photosyn-
thesis, leaf senescence metrics, and environmental conditions, we 
linearly detrended all time series to reduce the likelihood of extra-
neous correlations.

2.5  |  Modelling of leaf senescence dates

First, to analyze the relationship between environmental factors 
and the timing of senescence, we developed structural equa-
tion models using the Structural Equation Models Optimization 
in Python (semopy) package (Igolkina & Meshcheryakov, 2020). 
This package provides a concise way to test the structural re-
lationships between different variables and to build structural 
equation models. We used structural equation models to com-
pare three different ways of empirically predicting the EOS using 
environmental conditions. In model a, we used all environmental 
variables (summer and autumn Tair, summer and autumn Rg, and 
summer and autumn VPD) to predict the EOS directly; in model b, 
we used summer environmental variables (summer Tair, summer Rg, 
and summer VPD) to predict the growing season photosynthesis 
and used predicted growing season photosynthesis with autumn 
environmental variables (autumn Tair, autumn Rg, and autumn VPD) 
to predict the EOS; in model c, we used growing season photo-
synthesis from flux observations and the autumn environmental 

(1)GPP (t) = a1 +
a2

1 + exp ( − d1 (t − b1))
+

a3

1 + exp ( − d2 (t − b2))

(2)SOS = b1 −
4.562

2d1
,

(3)EOS = b2 +
4.562

2d2
.
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3086  |    LU and KEENAN

variables (autumn Tair, autumn Rg, and autumn VPD) to predict the 
EOS.

In addition, we compared three different process-oriented leaf 
senescence models by examining their performance for predicting 
autumn senescence dates at the Harvard forest site. The first model 
we assessed is the cold-degree day model that combines the use 
of both air temperature and photoperiod (Delpierre et al., 2009). 
When thresholds of air temperature (Tb) and photoperiod (Pstart) 
are reached, the control of air temperature and photoperiod over 
autumn leaf senescence is modeled via the cumulative cold-degree 
days as follows:

where the CDD(d) is the cold-degree day at day(d) with the air tem-
perature of T(d) and photoperiod P(d). Then the CDD(d) of each day is 
accumulated. The modeled leaf senescence date (Ymod) was set as the 
first day that the accumulated CDD (aCDD) reached a critical threshold 
as follows:

Here, Ycrit is a threshold to be determined. In this manuscript, we refer 
to this model as the CDD model.

It has also been reported that spring phenology is associated 
with autumn phenology, and a revised version of the CDD model 
has been proposed to accommodate these effects (Keenan & 
Richardson, 2015). In this spring phenology influenced autumn phe-
nology model (SIAM), the threshold of Ycrit is set as:

Here, Sa is the spring phenology anomaly of the associated years. Also, 
as Zani et al. (2020) suggest, growing season photosynthesis might 
have an impact on the end of the growing season. We therefore also 
modified the model as follows to represent this hypothesis:

Here, the GPP represents the growing season canopy photosynthesis. 
In this manuscript, we referred to this model as the photosynthesis-
influenced autumn phenology (PIA) model. To estimate the free pa-
rameters in the three different models, we used the Pymcmcstat 
Markov-chain Monte Carlo python package (Miles, 2019). We esti-
mated the parameters used in the three models 100 times, and sam-
pled parameters resulting in the 95th percentile of model performance.

To examine differences in projections of future autumn phe-
nology change from the three different autumn phenology mod-
els, we estimated the delays of autumn senescence date across 
5°C of projected future temperature changes. For the SIAM model, 
we predicted the sensitivities of spring phenology dates to air 

temperature to be 3 d−1 °C−1 according to the model ensemble as-
sessed in Migliavacca et al. (2012). For the PIA model, we predicted a 
6 gC year−1 m−2 °C−1 increase in growing season photosynthesis with 
the increase in air temperature as this is the overall slope at Harvard 
Forest according to our results.

3  |  RESULTS

3.1  |  No evidence for the carry-over effects of 
growing season photosynthesis on EOS

At the site level, we focused on the observations from Harvard 
Forest, which provide a long-term record of eddy-covariance 
measurements and phenological metrics of Red Oak (the most 
dominant species in the forest, Figure S4). We found positive but 
non-significant relationships between growing season photosynthe-
sis and EOS dates either when using ground phenological records or 
MODIS estimates (p > .05).

We then examined the relationship between growing season 
photosynthesis and flux-estimated EOS across different ecosys-
tems in the eddy-covariance flux network (Figure 1). We found a 
significant and positive relationship between growing season pho-
tosynthesis and EOS in evergreen needleleaf forest sites (ENF) 
(slope  =  0.24, p  =  .02). In other ecosystems, however, we did not 
find significant relationships between them. In DBF, GRA, and MF 
sites, we found a positive yet non-significant growing season GPP–
EOS relationship. When all sites were pooled together, we found a 
significant and positive, though weak, relationship between growing 
season photosynthesis and flux-estimated EOS (slope = 0.1, p = .01).

We also tested the relationships between growing season photo-
synthesis and MODIS EOS in different sites and ecosystems. Except 
for MF sites, where we found a negative yet non-significant relation-
ship between growing season photosynthesis and remotely sensed 
EOS (slope close to 0, p = .97), the growing season photosynthesis–
EOS relationship tends to be positive yet non-significant. Overall, 
we found no significant relationship between growing season photo-
synthesis and remotely sensed EOS (slope = 0.03, p = .27).

3.2  |  Control of environmental factors over EOS in 
different ecosystems

We examined the multi-variable relationships between environ-
mental factors and EOS metrics in different ecosystems. First, we 
performed a partial correlation analysis between different environ-
mental variables and EOS estimates at Harvard Forest (Figure 2). For 
ground observations of Red Oak, we found a positive partial cor-
relation between growing season photosynthesis and leaf senes-
cence metrics, while we found weaker positive relationships with 
MODIS remotely sensed metrics. We also found contrasting effects 
of global radiation (Rg), air temperature, and VPD in the spring and 
in the autumn. Both datasets indicated that higher summer Rg, lower 

(4)
CDD (d) =

(

Tb−T (d)
)

×
P (d)

Pstart
, if Tb>T (d)

CDD (d) =0, if Tb≤T (d) .

(5)Ymod = d, if aCDD > Ycrit.

(6)Ycrit = a + b ∗ Sa

(7)Ycrit = a + b ∗ GPP.
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    |  3087LU and KEENAN

summer temperature, and lower summer VPD were associated with 
a later EOS; while more autumn Rg, higher autumn air temperature 
and higher autumn VPD led to an earlier EOS.

At the cross-site scale, we found more complicated relationships 
between flux-estimated EOS and different environmental variables 
(Figure 3). First, we did not find growing season photosynthesis to 
be the most important factor when it came to predicting EOS in any 
of the ecosystems. In all ecosystems, we found a positive contribu-
tion (partial correlation) between growing season photosynthesis 
and EOS (r = 0.12, 0.11, 0.03, and 0.32 for DBF, ENF, MF, and GRA 
sites, respectively). Overall, we found a positive partial correlation 
between growing season photosynthesis and EOS (r  =  0.12). The 
controls of environmental factors were different in different eco-
systems; and the same environmental factors exhibited different 
impacts in different seasons. For global radiation, for example, the 
autumn Rg contributed most positively to the variation of EOS ex-
pect for GRA; while the summer Rg effects were mixed in different 
ecosystems (marginal effects found in ENF, while positive effects 
were found in DBF sites and negative effects in GRA and MF sites). 
For air temperature, interestingly, we found that summer Tair con-
tributed mostly negatively to EOS (although sometimes marginally) 
except for GRA sites; while the autumn Tair contributions were mixed 
in different ecosystems we tested. Finally, for VPD, we also found 
that summer VPD effects were mostly positive except for GRA sites, 
while the autumn VPD effects were all negative. Overall, when all 
sites were used, we found a marginal contribution of summer Rg; 
positive contributions of autumn Rg, autumn Tair, and summer VPD; 
negative contributions of summer Tair and autumn VPD.

3.3  |  The introduction of growing season 
photosynthesis did not improve EOS predictions

Using a structural equation model analysis, we found that the in-
troduction of growing season photosynthesis did not improve the 
overall model performance when using all DBF sites (Figure 4). We 
tested three different structural equation models. In the first model, 
we used a simple multiple linear regression model to predict EOS 
using only meteorological variables (R = 0.43). In the second model, 
we used summer environmental factors to predict growing season 
photosynthesis, and then used the growing season photosynthesis 
and autumn environmental factors to predict EOS (R = 0.34). Finally, 
we used flux-estimated photosynthesis along with autumn environ-
mental factors to predict EOS (R = 0.39). We found positive coeffi-
cients of photosynthesis in the latter two models (β = 0.06 for model 
b and β = 0.06 for model c).

At Harvard Forest, we also tested the performance of three dif-
ferent end of growing season models to predict the leaf senescence 
dates (Table 1). In the resulting comparison, it is important to note 
that the number of free parameters is different in different models: 
the CDD model requires three free parameters while the SIAM and 
PIA models require four free parameters. The results showed that 
the performance of the three models was generally comparable. 
Overall, however, we found that the PIM model, which introduced 
the growing season photosynthesis predictor, underperformed the 
CDD and the SIAM model. For Red Oak, the most dominant species 

F I G U R E  1  The relationship between growing season gross 
primary productivity (GPP) and phenological end of season 
(EOS) metrics from eddy-covariance (EC) observations or MODIS 
observations at deciduous broadleaf forest (DBF), evergreen 
needleleaf forest (ENF), mixed forest (MF), grassland (GRA), and 
all sites (ALL). All the time series have been detrended and the 
differences introduced by different sites were set as random 
effects
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3088  |    LU and KEENAN

in the forest, all three models did a relatively worse job when pre-
dicting the leaf senescence date, though within a comparable 
range to previous studies for other species at the forest (Keenan & 
Richardson, 2015).

While the three models (CDD, SIAM, and PIA) showed similar 
performance for estimating the autumn senescence date, their pre-
dictions of future autumn senescence delays diverged (Figure 5). 
Using the parameterized models, we found a similar response of au-
tumn senescence delays in both the CDD and PIA models. This was 
mainly due to the fact that the coefficient relating growing season 
photosynthesis and the threshold of autumn senescence was esti-
mated to be small in the PIA model. In both species, we also found 
that the SIAM model tended to predict a smaller delay in autumn 
senescence dates, especially for Red Maple where the SIAM model 
performed the best. The divergent predictions by different models 
despite similar performance for long-term observations of natural 
variability points to the need for future studies, especially controlled 
experiments, to fully tease apart the controls of autumn senescence 
to rising temperature.

4  |  DISCUSSION

4.1  |  The carry-over effects of “growing season 
photosynthesis” on EOS

In the present study, our primary objective was to use flux tower 
observations from 40 sites across the temperate and boreal eco-
systems in the Northern Hemisphere to test the carry-over effect 
hypothesis, which proposed significant negative effects of growing 
season photosynthesis on the date of leaf senescence and the end of 
the growing season (Zani et al., 2020).

We did not find significant carry-over effects in the ground and 
remote sensing observations for Harvard Forest, nor in most of the 
eddy-covariance ecosystems examined. For instance, we found 
positive but insignificant relationships in all three ground-observed 
phenological records at Harvard Forest. On the contrary, we found 
that in most sites, a more productive growing season either led to a 
delayed EOS or contributed little to the changes of EOS.

In addition, we also tested the possible improvement of model 
performance by introducing the use of growing season photosyn-
thesis. We found that the growing season photosynthesis influenced 
models did not outperform the previous empirical models (structural 
equation model) or process-based models (CDD and SIAM models). 
And with future warming, our results show that model choice can 
lead to considerable differences in the future phenological shifts. 
This is true even in the absence of considering a CO2 effect on pho-
tosynthesis, which would likely lead to more divergent predictions 
between the CDD and PIA models. That said, our results indicate 
small, and in most cases positive, coefficients between growing sea-
son GPP and Ycrit, which suggests that incorporating a CO2 effect on 
photosynthesis is unlikely to greatly influence PIA model projections 
for our studied sites.

Our findings contrast with recent results from Zani et al. (2020), 
which report a strong influence of growing season photosynthesis 
on autumn senescence. The differences may result from several 
factors, including differences in the methods used, ecosystems 
focused on, and geographic and environmental patterns. First, the 
methods used in the two studies have notable differences. In Zani 
et al. (2020), the results were based on a model of growing season 
photosynthesis; in the present study, however, we used flux tower 
estimated GPP based on direct eddy-covariance observations. Also, 
Zani et al. (2020) used phenology records from central Europe, while 
we use phenology estimates across a broad geographic range of 

F I G U R E  2  Partial correlations between 
environmental variables and end of 
growing season (EOS) in Harvard forest 
using ground phenological records (a) 
and the MCD12Q2 product (b). The 
environmental variables included here 
were growing season photosynthesis 
(Photosynthesis), summer global radiation 
(Rg), autumn Rg, summer air temperature 
(Tair), autumn Tair, summer vapor pressure 
deficit (VPD), and autumn VPD. All the 
time series have been detrended. Here, 
summer is defined as June, July, and 
August while fall is defined as September, 
October, and November
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boreal and temperate North America and Europe, made from mul-
tiple approaches (the flux-estimated, remotely sensed and ground 
observations at Harvard Forest).

In addition, the ecosystems of interest are different. In the 
present study, we focused on eight different types of biomes 
across North America and Europe, while the Zani et al. (2020) 
study mostly focused on central Europe deciduous forests. The 
carry-over effects, especially the effects as predicted from the 
sink limitation hypothesis proposed as an explanation of their ob-
servations by Zani et al. (2020), are most likely to happen in eco-
systems in which nutrients, water, and/or sink capacity are more 

likely to be limiting factors (Fatichi et al., 2014). We did find, how-
ever, that growing season photosynthesis contributed marginally 
negatively to remotely sensed EOS in evergreen needleleaf forests 
when using the nighttime partitioning method (most of the ENF 
sites are in the boreal ecosystems where there might be sink lim-
itations, see Figure S2).

Finally, the geographic and environmental patterns for the 
sites tested in the two studies are also different. For instance, the 
soil nutrient availability of the Central Europe forests may be very 
different than that of the other sites we tested (Ackerman et al., 
2019).

4.2  |  The environmental controls over EOS in 
different ecosystems

We examined how the environmental variables in the autumn and in 
the previous seasons contributed to the changes of EOS in different 
ecosystems. Air temperatures in summer and in autumn were one 
of the most important factors that determined the EOS in differ-
ent ecosystems (Figure 3). This indicated that air temperature was 
contributing largely to the EOS in different ecosystems, similar to 
results found in Zhang et al. (2020). Also, we found that autumn 
VPD contributed negatively to the EOS timing, while the effects of 
summer VPD were mostly positive in different ecosystems. These 
results indicated that the water limitation possibly contributed to 
an earlier EOS.

At the same time, we found that the environmental controls 
over EOS could be different in different sites. For instance, in most 
ecosystems, the results indicated that the summer air temperature 
was negatively correlated with EOS in most ecosystems while we 
found a positive correlation in GRA sites. One possible explanation 
can be that the two GRA sites used in the present study (CA-Let, 
annual mean air temperature at 5.4°C and IT-Mbo, annual mean air 
temperature at 5.1°C) are both in cold regions and the warmer air 
temperature was usually associate with productive and lengthier 
growing season. To sum up, the environmental controls of EOS can 
be complex and different at different sites and in different ecosys-
tems. Overall, we failed to find a negative carry-over effect of grow-
ing season photosynthesis on EOS.

Due to the complex controls on EOS in different ecosystems, 
future studies based on controlled experiments would be exception-
ally beneficial. For instance, Zani et al. (2020) tested the hypothesis 
of sink limitation with three groups with different treatments and 
found that growing season photosynthesis had a negative relation-
ship with the leaf senescence date. However, Norby (2021) pointed 
out that in most FACE experiments, some of which also have a 
warming component, the leaf senescence dates in most experiments 
were either delayed or unchanged. Networks of phenological mea-
surements such as PhenoCam (Richardson et al., 2018a) combined 
with flux measurement and or other experiments could also be of 
significance, especially for testing the sink limitation hypothesis 
(Richardson et al., 2018b).

F I G U R E  3  Partial correlations between detrended 
environmental variables and flux-derived EOS in different 
ecosystems. The environmental variables tested include growing 
season photosynthesis, summer global radiation (Rg), autumn Rg, 
summer air temperature (Tair), autumn Tair, summer vapor pressure 
deficit (VPD), and autumn VPD. All the time series have been 
detrended. The overall linear regression model performance 
(correlation) using all predictors was labeled
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4.3  |  Matches and mismatches between flux 
estimated and remotely sensed phenological metrics

Remote sensing of terrestrial ecosystem phenology is challeng-
ing, especially in ecosystems with low seasonality (e.g., ENF) or 
with significant snow presence (e.g., arctic tundra ecosystems). 
For instance, White et al. (2009) found that even when using the 

same input datasets, the derived remotely sensed phenological 
metrics are largely method dependent in Northern America. Also, 
Wu et al. (2017) found that the NDVI-estimated phenological 
metrics matched poorly with flux-tower estimated photosynthesis 
phenology metrics. Recently, Lu et al. (2018) found that satellite-
observed SIF outperformed conventional VIs when estimating 
phenological metrics even with much coarser spatial resolutions 
at relatively homogeneous sites (~50  km). In the present study, 
we used the MODIS land dynamics product (MCD12Q2) as it is 
one of the few publicly available datasets that have phenological 
metrics from satellite observations globally, and previous studies 
have shown that it effectively captures phenological dynamics 
(D’Odorico et al., 2015).

It is also worth noting that methods such as the double logistic 
curve fitting method to determine EOS used in this study assume 
that there is an inflection point within the time series of GPP. In the 
autumn, however, the senescence of photosynthesis can be more 
subtle, and the inflection points can be more difficult to detect. 
For instance, we found that the MODIS phenological metrics per-
formed better in DBF sites where the inflection points were more 
significant. Overall, when comparing all sites, we found a significant 

F I G U R E  4  Analysis of the flux-
inferred end of growing season in 
deciduous broadleaf forest (DBF) sites 
with three different structural equation 
models (see the method section). The β 
coefficients determined for each predictor 
in the structural equation models are 
denoted, with significant coefficients 
(p < .05) denoted with a *. The end of 
growing season (EOS) and predictors 
at each site have been detrended. (a) 
predicts EOS using the direct influence 
of environmental variables; (b) predicts 
EOS using the direct influence of 
environmental variables along with the 
indirect influence through predicted 
photosynthesis, and (c) predicts EOS using 
the direct influence of both environmental 
variables and eddy-covariance 
inferred estimates of growing season 
photosynthesis

TA B L E  1  The model performance in predicting leaf senescence 
date at Harvard Forest. Here, the CDD, SIAM, and PIA models 
represent the cold degree days model, spring phenology impacted 
autumn phenology model, and the photosynthesis impacted 
phenology model, respectively; and the RMSE denotes the root 
mean square error of each model

Model

Red Oak Red Maple

Correlation RMSE Correlation RMSE

CDD 0.48 4.87 0.65 2.63

SIAM 0.48 4.87 0.70 2.48

PIA 0.44 4.93 0.63 2.67
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relationship between flux-estimated and remotely sensed phenolog-
ical metrics (Figure S3).

We also compared the predictability of the two EOS metrics 
using a linear regression model that used all predictors (Table 2). 
The results indicated that overall, in DBF, MF, and GRA sites, the 
flux tower inferred EOS are more predictable than the MODIS phe-
nology products; while in ENF, the remotely sensed metrics from 
MODIS are easier to predict. This may result from the subtle and 
slow changes of GPP in the fall in ENF sites. In summary, we argue 
that flux estimated and remotely sensed phenological metrics both 
contain meaningful information despite the mismatches in some 
cases.

5  |  CONCLUSION

We tested the relationships between growing season photo-
synthesis and estimates of leaf senescence and EOS in different 
ecosystems. We did not find negative carry-over effects of grow-
ing season photosynthesis on leaf senescence and EOS in most 
sites and most ecosystems, in contrast to recent reports. We 

also found that the controls of EOS in different ecosystems were 
different and, in most cases, a more productive growing season 
was related to a later, not earlier, leaf senescence. Our results 
challenge the notion that EOS is negatively affected by grow-
ing season photosynthesis, and highlight the need for controlled 
experiments to distinguish competing controls on the timing of 
fall senescence.
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F I G U R E  5  Projections of future 
delays in autumn senescence dates with 
increasing air temperature, as estimated 
by three different models. The error bars 
indicate the standard deviations of the 
predictions within the 95th percentile 
of model performance from the MCMC 
process

TA B L E  2  Comparison of predictability (R) of flux tower inferred 
and remotely sensed end of growing season EOS in deciduous 
broadleaf forest (DBF), evergreen needleleaf forest (ENF), mixed 
forest (MF), grassland (GRA), and ALL sites. Here, we used the 
International Geosphere-Biosphere Program (IGBP) scheme to 
identify the biome types of different sites, and the values in the 
table indicate the correlation between a multiple linear model 
prediction and observations in both models

IGBP DBF ENF MF GRA ALL

Tower EOS 0.47 0.27 0.49 0.82 0.21

MCD12Q2 0.49 0.33 0.25 0.81 0.18
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