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Abstract.  Activity density (AD), the rate that an individual taxon or its biomass moves
through the environment, is used both to monitor communities and quantify the potential for
ecosystem work. The Abundance Velocity Hypothesis posited that AD increases with above-
ground net primary productivity (ANPP) and is a unimodal function of temperature. Here we
show that, at continental extents, increasing ANPP may have nonlinear effects on AD: increas-
ing abundance, but decreasing velocity as accumulating vegetation interferes with movement.
We use 5 yr of data from the NEON invertebrate pitfall trap arrays including 43 locations and
four habitat types for a total of 77 habitat-site combinations to evaluate continental drivers of
invertebrate AD. ANPP and temperature accounted for one-third to 92% of variation in AD.
As predicted, AD was a unimodal function of temperature in forests and grasslands but
increased linearly in open scrublands. ANPP yielded further nonlinear effects, generating uni-
modal AD curves in wetlands, and bimodal curves in forests. While all four habitats showed
no AD trends over 5 yr of sampling, these nonlinearities suggest that trends in AD, often used
to infer changes in insect abundance, will vary qualitatively across ecoregions.
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INTRODUCTION

Activity density (AD) is an often measured, if poorly
understood, variable in community ecology (Kaspari
and de Beurs 2019). Quantified by a variety of methods
(e.g., baits, pitfall and camera traps; Southwood 1978,
O’Connell and Nichols 2010, Gibb 2017), AD is the rate
that organisms, as individuals or biomass, intersect a
given point in space (e.g., the number of individuals cap-
tured by camera traps in a month, or the biomass of
insects from a week’s worth of bait or pitfall trapping
events). A deep understanding of AD is important for at
least two reasons. First, it approximates the rates of a
variety of interesting phenomena, including the rate that
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predators find their prey, herbivores find their host
plants, and mutualists find each other. Second, AD is
commonly used to monitor, and infer change or stasis
in, insect abundance (Hallmann 2017, Gibb et al. 2019,
Seibold 2019, Wagner et al. 2021).

In the Abundance-Velocity Hypothesis (Kaspari and
de Beurs 2019), AD is decomposed into the product of a
taxon’s abundance and movement velocity. Both abun-
dance and velocity have environmental drivers. As ani-
mals are made of carbon, the number/biomass of animals
should ultimately be constrained by an ecosystem’s plant
productivity (g C-m~2-yr~!, Oksanen et al. 1981, Wright
1983). Aboveground net primary productivity (ANPP)
predicts gradients of abundance in animals from ants
(Kaspari and Alonso 2000) to ungulates (Pettorelli et al.
2009). Next, for a given abundance of animals, the more
they move, they more likely they are to be captured in a
trap. One axiom from Thermal Performance Theory is
that velocity, like other metabolically constrained
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Fic. 1. Annual activity density (AD, mL-trap—'-yr~") reflects the biomass of individuals and their rate of movement through
the ecosystem, but its drivers vary systematically with ecosystem type. Increasing aboveground net primary productivity (ANPP,
white line) increases the ability for an ecosystem to build invertebrate biomass, but also increases shade and litter, thus decreasing
two factors promoting velocity: surface temperature and permeability (black line).

behavior, is a unimodal function of temperature (Bennett
1990, Hurlbert and Ballantyne 2008, Angilletta 2009,
Kaspari et al. 2016, Sinclair 2016, Prather et al. 2018). In
the first geographic test of the Abundance-Velocity
Hypothesis, ANPP accounted for 40% of the 19-fold vari-
ation in AD from the boreal to the tropics (Kaspari and
de Beurs 2019). In an Australian desert, where ANPP is
likely constrained by precipitation (Rosenzweig 1968),
both precipitation and temperature contributed to the
AD of ants (Gibb et al. 2019).

However, the ANPP prediction of the Abundance-
Velocity Hypothesis may be complicated when tested
across the variety of habitats present across a continental
ecotone (Fig. 1). Despite increasing abundance, rising
ANPP may decrease velocity given the decreased perme-
ability of high ANPP habitats. For example, an ant
crawling through a low-ANPP scrub or patchy short-
grass prairie can move more easily than one scrambling
through the thick thatch of a tallgrass prairie or a litter-
strewn forest floor (Kaspari and Weiser 1999). Thus, the
positive effect of ANPP on AD predicted by the
Abundance-Velocity Hypothesis is likely further modi-
fied, and made nonlinear, by the opposing effects of
increasing NPP on abundance and velocity.

Toward achieving a deeper understanding of the dri-
vers of AD, we analyze invertebrate pitfall trap arrays at
a continental scale from terrestrial sites of the National
Ecological Observatory Network (NEON, Levan 2020).
We evaluate the Abundance-Velocity Hypothesis across
four primary habitat categories, measuring the move-
ment of invertebrate biomass across the soil surface.

METHODS

We measured average annual activity density (AD,
[mL of invertebrates]-trap~'-yr~') from 43 terrestrial

sites of NEON (Appendix S1: Fig. S1). At each site,
NEON runs 10 arrays of pitfall traps (four traps per
array from 2015 to 2017, three henceforth; Levan 2020).
A site’s arrays were assigned one of 10 habitat types that
we collapsed into four (forest, grassland, scrub, wetland,
Appendix S1: Section S1), and measured AD for two of
each of 77 site-habitats for each available year.

Pitfall traps as samples of activity density

NEON collects and stores pitfall trap samples in 95%
EtOH at 14-d intervals across each site’s growing season
(protocols summarized in Levan [2020], and Appendix S1:
Methods S1). Growing season begin and end dates corre-
spond to that interval when average minimum tempera-
tures exceeded 4°C for 10 d. A single 14-d event’s AD was
read as the invertebrate volume (mL) in a storage tube
(Appendix Sl1: Fig. S2); such measures were highly repeat-
able (* = 0.99, Appendix S1: Fig. $3). We measure annual
AD of a site-habitat as the average of the summed annual
catches for the two arrays, divided by the number of traps
per array (four traps per array were sampled from 2015 to
2017, three traps henceforth, mL-trap~'.yr ).

Measuring bioclimatic drivers

We estimated each site-habitat’s average growing sea-
son temperature using the mean temperature of every
two-week sampling period from the PRISM Climate
Group (data available online).® These data summarize
10,000 minimum and maximum daily temperatures from
weather stations in the contiguous 48 states as spatial
grids at 4-km spatial resolution (Daly et al. 2008). We
selected the mean temperature from Prism’s 4 x 4 km
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grid value coinciding with each NEON trap array. Tem-
peratures from sites in Alaska and Puerto Rico, not cov-
ered by PRISM, were estimated from local weather
stations.

We estimated annual aboveground net primary pro-
ductivity (ANPP, g C-m 2-yr~!) by first summing the
site-habitat’s actual evapotranspiration (AET, mm)
across the growing season using the MODIS/Terra Net
Evapotranspiration product MOD16A2 V6 providing
the sum of ET for every 8-d period at 500-m spatial reso-
lution. This MODIS product is based on the logic of the
Penman-Monteith equation and combines both daily
meteorological measures plus sensed observations (Run-
ning and Mu 2017). We then used a modified version of
Rosenzweig’s (1968) regression to convert annual AET
into measures of aboveground productivity (Kaspari
2000).

Using imaging to examine how invertebrate size and
number determine volume

For a subset of the data from 2016, we decomposed
AD into number of individuals and their median size.
We used three trap catches, from the first, middle, and
last of a site’s 2016 growing season from 49 site-habitats
yielding a total of 179 samples (some samples could not
be processed when the lab was shut due to COVID-19
restrictions). Invertebrates in each sample were dis-
tributed evenly by forceps on a white ceramic plate and
photographed at a resolution of 729 pixels/mm>. We
used the Analyze Particles command in the Fiji imple-
mentation of ImageJ (Schneider and Rasband 2012), to
count the number of individuals and the median area of
each individual (mm?) per sample. To get a rough com-
parison of the composition of each of the four habitats,
we classified each image into one of 30 taxonomic cate-
gories (see Appendix S1: Section S1 for further detail).

Statistics

To better characterize the structure and dynamics of
AD, we first explored how our metric (i.e., mL) arises
from the number of individuals and their median size.
For that, we used simple OLS regression via the Im func-
tion in R v.3.5.3 (R Core Team 2020). Similarly, for each
site-habitat, we tested for 5-yr trends in AD 2015-2019.
Finally, we contrasted the composition of the four habi-
tats by collapsing variation in AD among the eight most
common taxa with a Principal Component Analysis,
then contrasting the loadings of PC1 and PC2 across the
four focal habitat categories.

Next, we analysed how a site-habitat’s average annual
AD covaries with its average annual ANPP and temper-
ature as predicted by the Abundance-Velocity hypothe-
sis. We log;o-transformed ANPP and AD as they varied
1,000- and 100-fold, respectively. For both ANPP and
growing season temperature, we used linear and cubic
regressions to test for nonlinearity in AD response. We
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used the MuMIn package (Bartoni 2018) in R to identify
all possible models with a AAIC, < 2 (difference between
a given model and the best model of the Akaike infor-
mation criterion corrected for sample size, Burnham and
Anderson 2002).

REsULTS

Activity density (AD) of individual trapping events
(mL-trap~"-14 d ") increased with both the number and
size of individuals in a trap array sample (Appendix S1:
Fig. S4). Both varied 100-fold (19-2,855 individuals,
0.30-69 mm? respectively, n = 179). The number of indi-
viduals in the trap accounted for 43% of the variation in
AD (AD = 0.63 x abundance™®?, P < 0.001). Median
size when added to the first linear model accounted for
an additional 7% of the variation (AD = 16.4 x size’ !,
P < 0.001). Therefore, about one-half of the variation in
AD could be accounted for by positive decelerating
functions of both invertebrate number and size, which
among themselves had a weak negative correlation (indi-
viduals = 29 x size ®'%, * = 0.02, P =0.049,
Appendix S1: Fig. S4).

The taxonomic composition of pitfall arrays varied with
habitat type (Appendix S1: Fig. S5). Hymenoptera out-
numbered all other taxa in pitfalls from grasslands and
scrub, with the number of the other six dominant taxa
more evenly distributed in forests and wetlands. Using
Principal Components analysis, PC1 (Hymenoptera load-
ing = 0.998) reflected this difference (Wilcoxon x241,3
= 11.5, P = 0.0092), while PC2 and PC3 did not differ.

Using all data from 2015-2019 (for what will ulti-
mately be a 30-yr data set, Levan 2020) an OLS regres-
sion revealed no 5-yr trends in AD for any of the four
habitats (Appendix S1: Fig. S6, all four regressions had
P >0.16 and r* < 0.05).

Using abundance velocity to explore the continental
geography of activity density

Mean annual AD varied 43-fold across the site-
habitats (from 3.7 mL-trap~'-yr~! in an Alaskan Taiga
to 160.0 mL-trap '-yr ! in Arizona scrub). Using AIC,
informed least squares regression, each habitat yielded a
different best model from the Abundance-Velocity
Hypothesis (Fig. 2, Appendix S1: Table S1). For forests,
four models accounted for about one-third of observed
variation in AD. All shared a U-shaped relationship
with ANPP (i.e., a negative ANPP and positive ANPP?
term), and three added positive/negative effects of tem-
perature. Grasslands yielded one best model: a positive
decelerating relationship with temperature accounting
for 71% of variation in AD. Scrublands yielded two
models describing an increasing function of temperature
accounting for about one-half of the variation in AD.
Wetlands yielded one best model describing a unimodal
relationship with ANPP that accounted for 92% of vari-
ation in AD.




Article e03542; page 4

25
20
1.5
1.0
0.5

0.0
25

2.0
15
1.0

0.5

0.0
25

20

log(annual activity density)

1.5

1.0

0.5

0.0
25

20

1.5

1.0

0.5

0.0
0 1 2 3

log(ANPP)

0 4 8 12 16 20 24 28

Growing season
temperature (°C)

Fic. 2. The average annual activity density of four habitat
types as a function of two drivers from the Abundance Velocity
Hypothesis. Activity density (mL-trap~! yr™!) responds to ANPP
(g Cm~? yr~') and environmental temperature in different ways
depending on habitat. Values are means. Yellow lines show best
fit regression; blue lines show 95% confidence intervals.

DiscussioN

Networks of traps that measure activity density are
key parts of a strategy to quantify ecosystem responses
to global heating, habitat conversion, and CO, fertiliza-
tion (Cardoso 2020). Here we use an important new data
set, the NEON continental pitfall network, to test pre-
dictions from the Abundance-Velocity Hypothesis. The
model works well in revealing the role of temperature on
AD from the Arctic to the subtropics: three of four habi-
tat categories yielded the predicted positive or unimodal
change in AD with temperature. Activity density, an
ecosystem phenomenon, recapitulates the unimodal
curves axiomatic for individuals in  Thermal
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Performance Theory (Angilletta 2009, Huey and King-
solver 2019). However, AD did not increase monotoni-
cally with ANPP as predicted by Kaspari and de Beurs
(2019), but was either insensitive to ANPP or was a uni-
modal or a concave-upward function of ecosystem pro-
ductivity. These habitat-specific nonlinearities in AD are
of particular interest given its widespread use, from
malaise traps (Hallmann et al. 2017, 2020), windowpane
traps (Seibold et al. 2019), camera traps (Steenweg
2017), and pitfall traps (Gibb et al. 2019), in searching
for temporal trends in Anthropocene insect populations.
For example, given each habitat’s unique temperature—
AD curve, a 4°C increase from a current mean of 20°C is
predicted to generate decreases, no change, or increases
in AD in North American forests, grasslands, and scrub-
lands, respectively.

Temperature was a strong predictor of continental-
scale variation in annual AD. The AD of scrub and
grassland habitats both reveal monotonic limitation by
temperature, with a clear diminishing effect in the warm-
est grasslands. That a single driver like temperature can
account for one-half to three-quarters of the variation in
a basic ecosystem property like AD is an important clue
for understanding how ecosystem services driven by
invertebrates may change with temperature. However,
temperature effects were weaker in wetlands and forests.
One reason for this discrepancy may be the buffered
microclimates experienced in both of these major habitat
types: for the same solar energy, invertebrates in the still,
shaded air of the forest floor, for example, live in a cooler
environment with fewer temperature extremes (Kaspari
et al. 2015, De Frenne et al. 2019).

Another, perhaps complimentary, hypothesis is that
Hymenoptera, mainly ants, dominate AD in grasslands
and scrublands compared to the more equitable distribu-
tion of invertebrates in forest and wetlands
(Appendix S1: Fig. S5). Most ants, compared to many
other invertebrates like fruit flies (Rosenberg and Blad
1983) are notoriously thermophilic, with thermal max-
ima well above 40°C (Kaspari et al. 2015, Stark et al.
2017, Bujan et al. 2020). In ant-dominated communities,
higher temperatures may drive still higher AD’s even in
the warmest ecosystems. The exception that tests the rule
comes from ant genera with relatively low thermal toler-
ances, and that live in the detritus of the forest floor,
which are declining in abundance relative to those with
higher tolerances (Roeder et al. 2021). This suggests that
many current ambiguities in interpreting bulk-based
measures of AD (Hallmann et al. 2017, 2020, Seibold
et al. 2019) will be clarified when the challenges of
automating taxonomic identification are solved (e.g.,
Blair et al. 2020).

The variety of AD-ANPP curves across the four habi-
tats (Fig. 2) also points to the importance of the plants
and their architecture in predicting the future of AD
from scrublands to forests. Invertebrate communities
decrease AD as ANPP increases from the sparse desert
pine forests of Moab Utah but increase again beyond
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ANPP of 100 g C-m~2yr'. Such values of ~100 also
generate AD minima in the three other habitats as well.
We posit that the lack of a monotonic increasing
ANPP-AD curve does not reflect the failure of ANPP
in regulating a site’s invertebrate abundance. Quadrat
methods that count individuals and remove movement
effects show a strong effect of ANPP in promoting the
abundance of ants (Kaspari et al. 2000).

Instead, our working hypothesis on the dual role of
ANPP lies in its opposing roles in (1) generating animal
biomass and (2) decreasing the permeability of the habi-
tat and thus impeding invertebrate velocity (Fig. 1).
Moving up the North American ANPP gradient accu-
mulates plant and litter debris along the way. This in
turn increasingly hinders invertebrate movement until
further increases in ANPP, and the commensurate
boost in invertebrate abundance and biomass, counters
this effect. In our earlier test of the Abundance Velocity
Hypothesis, AD was always measured, from boreal to
rainforest, on branches. There was no confounding
effect of trap substrate on velocity (Kaspari and de
Beurs 2019) as we find when traps are on the soil sur-
face. In that 2019 study, ANPP accounted for 40% of
global variation in AD. Future analyses of AD may
thus benefit from an explicit consideration of how the
physical structure of the environment interacts with the
trap method. We predict, for example, that methods
that quantify the AD of flying insects like malaise traps
(Welti et al. 2021) and radar (Stepanian et al. 2020) will
generate more uniform responses to temperature and
ANPP across the variety of habitats and biomes of a
continental study. As ecologists work to detect and
diagnose large scales changes in invertebrate abun-
dance, such details matter (Welti et al. 2021).
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