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Abstract 

 

Invasive forest insects have significant direct impacts on forest ecosystems, and they are also 

generating new risks, uncertainties, and opportunities for forest landowners.  The growing 

prevalence and inexorable spread of invasive insects across the United States, combined with the 

fact that the majority of the nation’s forests are controlled by thousands of autonomous private 

landowners, raises an important question: To what extent will private landowners alter their 

harvest practices in response to insect invasions? Using a quasi-experimental design, we 

conducted a causal analysis to investigate the influence of the highly impactful emerald ash borer 

(EAB) on (1) annual probability of harvest; (2) intensity of harvest; and (3) diameter of 

harvested trees, for both ash and non-ash species on private land throughout the mid-western and 

mid-Atlantic regions of the United States. We found that EAB detection had a negative impact 

on annual harvest probability, and a positive impact on harvest intensity, resulting in a net 

increase in harvested biomass. Furthermore, our estimates suggest that EAB detection will 

influence private landowners to harvest greater quantities of ash, relative to non-ash species. We 

also found that harvested trees in EAB-infested areas had smaller diameters, on average, 

compared to those unaffected by EAB. These results can help policymakers, forest managers, 

and extension programs to anticipate and better advise landowners and managers about their 

options and the associated outcomes for forests. 

 

Keywords: forest management, harvest regimes, invasive insects, emerald ash borer, Fraxinus, 

causal inference, zero-inflated beta regression, covariate matching, coupled human and natural 

systems, disturbance ecology, Forest Inventory and Analysis 



  

1. Introduction 

 

Non-native plants, animals, and microorganisms are fundamentally altering the composition and 

function of ecosystems, particularly forests, whose slow growth and remoteness often hinder the 

timely detection of invasive species (Liebhold, Brockerhoff, & Nuñez, 2017). While most non-

native organisms have negligible impacts on their host environments, a selection of woodboring 

beetles have established themselves as a major source of disruption to forests. Over the past two 

centuries, woodboring beetles have been unintentionally moved between continents in wood and 

wood packaging material (Brockerhoff, Bain, Kimberley, & Kníñek, 2006), with dramatic 

consequences in their new habitats. For instance, tree-killing bark beetles can convert conifer-

dominated stands into broad-leaf forests, effectively replacing entire swaths of trees with other, 

often functionally different, plant species (Edburg et al., 2012). In addition to modifying forest 

structure and function, bark and woodboring insects in the United States cost hundreds of 

millions of dollars per year in lost timber revenue (Liebhold et al., 2017).  

 

Invasive insects and timber harvesting represent the primary disturbance agents in eastern North 

American forests, and through selective mortality they substantially alter the composition and 

structure of the forested landscape (Canham, Rogers, & Buchholz, 2013; Fei, Morin, Oswalt, & 

Liebhold, 2019; Liebhold et al., 2017). Synergies between invasive insects and timber harvesting 

pose risks and uncertainties for the future of forest management. Anticipating how landowners 

will respond to the presence or threat of insects is challenging and not well understood, though 

salvage cutting (or pre-emptive salvage cutting) has long been the default management choice 

when faced with an exogenous disturbance (Lindenmayer et al. 2010). Specific management 



  

decisions are strongly influenced by attributes of the insect (e.g., rate of spread, lethality, and 

host specificity), the landowner type, and the social context (Markowski-Lindsay et al., 2020). 

Past outbreaks in the region have been accompanied by accelerated harvesting, and there are 

distinct ecological legacies of the interactions between these two classes of biotic disturbance. 

From 1972 – 1986, for example, industrial timberland owners in Maine dramatically increased 

clear-cut salvage harvesting during an extensive spruce budworm (Choristoneura fumiferana) 

outbreak, resulting in the widespread conversion of spruce-fir forests to deciduous ones (Irland et 

al. 1988). Similarly, following reports that hemlock woolly adelgid (Adelges tsugae) had reached 

Connecticut in the 1980s and 1990s, many landowners harvested hemlock trees, despite their low 

commercial value (Orwig, Foster, & Mausel, 2002). In 2008, when Asian longhorned beetles 

(Anoplophora glabripennis) were discovered in Worcester, MA, the USDA responded by felling 

and chipping >35,000 trees along city streets and in urban woodlots (Dodds & Orwig, 2011).  

Understanding the connections and feedbacks among these drivers of change is critical for 

anticipating ecological impacts and developing sustainable policies. 

 

In recent years, the phloem-feeding buprestid beetle emerald ash borer (EAB; Agrilus 

planipennis) has become the most destructive and costly forest insect to ever invade North 

America (Aukema et al., 2011; Lovett et al., 2016; Morin, Liebhold, Pugh, & Crocker, 2017). 

The impact of EAB is so widespread and severe that American ash species (Fraxinus spp.) could 

be functionally extinct within decades (Herms & McCullough, 2014). Forest landowners and 

managers have been forced to adapt their decision-making to account for the presence and threat 

of EAB throughout range of ash in North America. 

 



  

EAB, native to Asia, was first identified in the US in 2002 near Detroit, Michigan, although it is 

now understood that the initial invasion occurred in the mid 1990s. Since its arrival in North 

America, the insect has spread to dozens of US states and has killed millions of ash trees. The 

lack of resistance in North American ash hosts (Anulewicz, Mccullough, Cappaert, & Poland, 

2008) results in rapid spread of EAB, threatening the persistence of North American species in 

the genus Fraxinus. EAB dispersal is primarily a function of time (i.e., the invasion spreads 

across the host range until saturation occurs), although other significant correlates of EAB 

dispersal include human population density (+) , ash and non-ash tree densities (+) , and 

temperature (-) (Ward, Fei, & Liebhold, 2020). Once EAB is established, ash species experience 

an increased mortality rate and corresponding decreases in volume until most live ash are killed 

(Klooster et al., 2018; Morin et al., 2017; Pugh, Liebhold, & Morin, 2011).  

 

As with forest insects, timber harvest regimes are critical drivers of meso-scale ecological 

dynamics (Thompson, Canham, Morreale, Kittredge, & Butler, 2017). Harvest regimes are 

driven by physical, social, and economic factors (Thompson et al., 2017). Aboveground tree 

biomass, species, and diameter are correlated with the probability and intensity of harvest 

(Canham et al., 2013; Silver, Leahy, Weiskittel, Noblet, & Kittredge, 2015). The demographic 

attributes population density and median household income are negatively correlated with 

harvest intensity (Kittredge, Thompson, Morreale, Short Gianotti, & Hutyra, 2017). Ownership 

type has also been shown to affect harvest regimes, with private woodland owners generally 

removing more trees than public entities (Thompson et al., 2017). Although timber market prices 

are intuitively tied to harvest patterns, Kittredge & Thompson (2016) found that fluctuations in 



  

stumpage are an unreliable predictor of aggregate harvest activity for non-industrial private 

landowners. 

 

An open question is the degree to which EAB detection influences harvest regimes, an 

interaction that could potentially compound and modify the disturbance impact on the forested 

ecosystem by either broadening its impact (e.g., accelerated harvesting, transportation of infested 

firewood) or by limiting its spread (e.g., removal of host trees). Of particular interest is the 

impact of EAB detection on logging by private landowners, who autonomously make decisions 

that collectively affect the majority of US forestland. A 2017 mail survey of private landowners 

in New England found that 84% of respondents (n = 688) intended to harvest, in some capacity, 

in response to a hypothetical tree insect invasion (Markowski-Lindsay et al., 2020). Empirical 

evidence of a synergy between EAB detection and harvesting regimes, however, is lacking. 

 

Here we determine whether EAB detection (henceforth, ‘EAB’) affects harvest regimes on 

privately owned forestland. Disturbances such as forest insect pests often prompt ‘salvage’ 

harvesting, which serves to recover monetary value in affected timber or meet certain 

silvicultural goals (Lindenmayer, Burton, & Franklin, 2008). While salvage harvests typically 

occur after a disturbance such as wind or fire, ‘sanitation’ harvests can also occur preemptively 

in an attempt to mitigate future damage or value loss, particularly in the case of forest insects 

(Waring & O’Hara, 2005). The effects of salvage and/or sanitation harvesting can extend beyond 

the host species alone; for example, the spruce budworm and the hemlock woolly adelgid 

prompted landowners to harvest a mix of host and non-host tree species (Irland, Dimon, Baum, 

Falk, & Stone, 1988; Kizlinski, Orwig, Cobb, & Foster Harvard, 2002). The removal of non-host 



  

tree species with the host species serves to increase the commercial value of the harvest and/or to 

promote a desired regeneration of species (MacLean et al., 2020). In our analysis, we examine 

the effects of EAB on both host (ash) and non-host (co-occurring with ash) tree species.  

 

Using publicly available datasets, our analysis addressed the following three research questions: 

(1) How is the annual probability and intensity of ash-species harvested impacted by EAB? (2) 

How is the annual probability and intensity of non-ash-species harvested influenced by EAB? (3) 

Does the presence of EAB impact the mean diameter of harvested trees?  

 

2. Materials and Methods 

 

2.1. Summary of Methodology 

 

Using data from the US Forest Service’s Forest Inventory and Analysis (FIA), the US 

Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS), and the 

American Community Survey (ACS), we quantified the influence of EAB on harvest frequency, 

harvest intensity, and mean diameter of removed trees. We analyzed these data using a quasi-

experimental statistical design to test for a causal relationship between the presence of EAB and 

altered harvest behavior sensu Larsen et al (2019). Borrowing language from randomized control 

trials, we use ‘treatment’ to denote EAB presence; ‘control’ refers to no EAB; and our ‘response’ 

is tree-harvesting. We first implemented a matching algorithm to ensure that ‘treatment’ (EAB) 

and ‘control’ (no EAB) observations had similar variable distributions with respect to the 

covariates shown by Ward et al. (2020) to impact EAB dispersal (e.g., human population density, 



  

tree density, temperature). Then, to quantify the effect of EAB on harvesting, we performed 

regression analysis using covariates shown by Thompson et al. (2017) to impact harvesting (e.g., 

volume of living trees, human population density, median household income). Finally, we 

compared the diameters of harvested trees on plots with and without EAB using a Student’s t-

test, with separate comparisons for ash and non-ash species.  

 

2.2. Data Description 

 

We obtained annual county-level EAB invasion status from the USDA APHIS for nine US 

states, including parts of the mid-west and mid-Atlantic regions (Figure 1). At the county level, 

measurable impacts on forests generally begin to appear about five years after establishment and 

are widespread at ten years (Morin et al., 2017). As a compromise between EAB tenure, which 

began in 2002 in the APHIS dataset, and number of treatment (EAB) observations, we conducted 

our analysis for the years 2007-2012, mirroring the second EAB “invasion cohort” described in 

Ward et al. (2021). Any plot in a county in which EAB was detected prior to 2007 was in the 

treatment group; all plots in counties that were infected after 2012 were in the control group 

(Figure 1). Response (harvest) data were extracted for the years 2007-2012. By omitting from 

our analysis counties that detected EAB between 2007-2012, we temporally separated the 

treatment effect from the response, which leads to a more straightforward matching routine 

(Section 2.3).  

 

Plot characteristics and tree data were extracted from the US Forest Service FIA program using 

the rFIA package (Stanke & Finley, 2020; Stanke, Finley, Weed, Walters, & Domke, 2020) for 



  

the statistical software R (Core Team, 2020). We used data from plots for which there were two 

censuses conducted using the contemporary plot design (1999 onwards) to allow determination 

of prior and subsequent plot characteristics (e.g., which trees were removed). Specifically, all 

prior observations were conducted between 1999 and 2006; all subsequent observations were 

conducted between 2007-2012. By comparing the initial and follow-up observations of each plot, 

we determined which trees were harvested as well as the species and diameter of each harvested 

tree. In accordance with FIA protocol, we considered harvested trees to be those that were “cut 

or removed by direct human activity related to harvesting, silviculture or land clearing” 

(Woudenberg et al., 2010). Trees with diameter < 12.7 cm (5 inches) were omitted from our 

analysis (including plot-level statistics) in order to be consistent with FIA demographic 

estimates.  

 

Plots that did not contain any ash trees were removed from the data since these plots were not 

subject to the treatment effect. In the context of this study, ‘ash species’ includes white ash 

(Fraxinus americana), green ash (Fraxinus pennsylvanica), and black ash (Fraxinus nigra). We 

considered privately-owned plots only (omitting federal and state plots) in order to contextualize 

our findings within the discussion of private landowner behavior (e.g., Holt et al., 2020; 

MacLean et al., 2020; Markowski-Lindsay et al., 2020).  

 

Socioeconomic variables shown to be correlated with the treatment and/or response were 

downloaded from the ACS using the tidycensus package (Walker, Herman, & Eberwein, 2020). 

We obtained human population density at the county level in order to match EAB and non-EAB 



  

counties (Ward et al., 2020). Human population density and median household income were also 

obtained at the census tract level to be incorporated into the finer-resolution harvest models. 

 

Meteorological variables known to be predictive of the treatment effect were downloaded from 

PRISM (PRISM, 2019). We obtained climate normals (three-decade averages) for precipitation 

(mm), minimum temperature (ºC) and maximum temperature (ºC) for the period 1981-2010 at a 

4 km x 4 km resolution raster. We then conducted a principal components analysis (PCA) and 

aggregated the rotated principal component scores to the county level by averaging values for all 

grid cells whose centroids occurred within a given county boundary. Minimum and maximum 

temperatures had high loadings on the first principal component (‘PC1’) whereas precipitation 

had high loadings on the second (‘PC2’). Ward et al. (2020) identified PC1 as being correlated 

with the treatment effect; as such, we included PC1 as a covariate in our matching routine. 

 

2.3. Covariate Matching 

 

When using observational data to consider a causal relationship, such as the effect of EAB on 

harvest regimes, one must address confoundedness, or the possibility that differences in the 

response variable between treatment and control groups are caused by factors that predict 

treatment rather than the treatment itself (Cochran & Rubin, 1973). As an example of 

confoundedness, ash tree density may be a causal mechanism for both EAB invasions and ash 

harvesting; in this scenario, it would be impossible to identify the relationship between EAB and 

ash harvesting without controlling for ash tree density. Therefore, before assessing the 

relationship between EAB and harvest regimes, we (1) identified variables known to be 



  

correlated with the treatment effect and (2) ensured that the joint distributions of these variables 

were similar between treatment and control groups.  

 

We matched covariates using the Genetic Matching algorithm (Diamond & Sekhon, 2013), 

which is a generalization of propensity score and Mahalanobis distance matching (Rosenbaum & 

Rubin, 1985). The algorithm is a multivariate matching method that uses an evolutionary search 

routine developed by Sekhon and Mebane (Sekhon & Mebane, 1998) to maximize the balance of 

observed covariates (i.e., the joint distribution) across treatment and control units. Human 

population density, ash tree density, non-ash tree density, and temperature are variables shown to 

be correlated with EAB invasion (Ward et al., 2020), and thus were used as covariates for the 

matching algorithm. EAB spread has also been shown to be spatially and temporally 

autocorrelated (e.g., EAB in a county is influenced by EAB in neighboring counties). We 

removed spatiotemporal interactions between the treatment and response by utilizing the 

following framework: All sites that first detected EAB from 2002-2006 were treatment units; 

sites that first detected EAB from 2013 onwards were control units; and we collected response 

data between 2007-2012, effectively separating the treatment effect from the response. The 

tradeoff of this approach is that we introduce variability in the time since EAB was detected; 

since EAB was first detected at treatment sites anywhere between 2002-2012, the duration 

human knowledge of EAB in the county varied from 1-10 years (Figure 1, histogram).  

 

The Genetic Matching algorithm assigns weights to control observations such that the weighted 

controls are similar to the unweighted treatment units. For matching numeric covariates, as in our 

case, the standardized difference in means can be used to diagnose balance. While there is no 



  

universally agreed upon threshold of the standardized difference in means, a difference that is 

near or below 0.1 has generally been taken to indicate a negligible difference in the mean 

covariate between treatment and control groups (Normand et al., 2001). We used the MatchIt 

package (Ho et al., 2020) to implement the Genetic Matching algorithm.   

 

2.4. Regression Modeling 

 

Using the matched data, our statistical model estimated two components of the harvest regime: 

(1) probability of being logged; and (2) percentage basal area removed if logged. Both 

components were modeled simultaneously, similar to Canham et al. (2013). We used a zero-

inflated beta distribution for the likelihood function, since the harvest data include many zeros 

(unlogged plots), and the distribution of percentage basal area removed (if logged) must fall 

between zero and one. The zero-inflation term was modeled as a logistic regression. Both the 

logistic and beta components of the model varied as a function of the same four harvest 

covariates: aboveground biomass (AGB) at the previous observation, human population density 

(popden), median household income (MHHI), and EAB.  

 

We followed a Bayesian model-fitting procedure to estimate our piecewise regression. The zero-

inflation term (harvest probability) is modeled as follows, where 𝑁𝑁 is the number of years 

between plot observations and 𝑤𝑤 is the probability of not harvesting. By raising the inverse of 

harvest probability to the power 𝑁𝑁, we return estimates for annualized harvest probability. The 

regression coefficients 𝛽𝛽 have uninformative priors 𝛽𝛽 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 102). 

 



  

𝜇𝜇𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝛽𝛽3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝛽𝛽4𝐸𝐸𝐴𝐴𝐴𝐴𝑖𝑖 (1) 

 

𝑝𝑝𝑖𝑖 = 𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(𝜇𝜇𝑖𝑖) (2) 

 

𝑤𝑤𝑖𝑖 = (1 − 𝑝𝑝𝑖𝑖)𝑁𝑁 (3) 

 

The beta-distributed component of the model (harvest intensity) is expressed as follows, where 𝛾𝛾 

is a regression coefficient drawn from an uninformative prior 𝛾𝛾 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0, 102); 𝑦𝑦 is the 

percent basal area harvested; and 𝑁𝑁 is the concentration parameter of the beta distribution, which 

we treat as a random variable with prior 𝑁𝑁 ~ 𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0.1, 0.1). For readability, we define the log 

of the beta distribution explicitly.  

 

𝜂𝜂𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛾𝛾2𝑝𝑝𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 + 𝛾𝛾3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝛾𝛾4𝐸𝐸𝐴𝐴𝐴𝐴𝑖𝑖 (4) 

 

𝑠𝑠𝑖𝑖 = 𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖(𝜂𝜂𝑖𝑖) (5) 

 

𝑁𝑁𝑁𝑁𝑖𝑖𝐴𝐴𝑝𝑝𝑖𝑖𝑁𝑁𝑖𝑖 = log(𝑏𝑏𝑝𝑝𝑖𝑖𝑁𝑁(𝑦𝑦𝑖𝑖, 𝑁𝑁𝑠𝑠𝑖𝑖 , 𝑁𝑁(1 − 𝑠𝑠𝑖𝑖)) (6) 

 

Next, we define an indicator variable 𝑧𝑧 to denote harvested and non-harvested observations: 

 

𝑧𝑧𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 𝑦𝑦 > 0
0 𝑖𝑖𝑖𝑖 𝑦𝑦 = 0 (7) 

 



  

Combining the zero-inflation and continuous model components, we arrive at the likelihood 

function. Observe that in the absence of harvest (𝑧𝑧 = 0), the logistic term dominates the 

likelihood, whereas both the logistic and beta terms are influential when harvest is non-zero.  

 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑝𝑝𝑁𝑁𝑖𝑖ℎ𝑁𝑁𝑁𝑁𝑝𝑝𝑖𝑖 =  (1 − 𝑧𝑧𝑖𝑖) ∗ log(𝑤𝑤𝑖𝑖) +  𝑧𝑧𝑖𝑖 ∗ (log(1 − 𝑤𝑤𝑖𝑖) + 𝑁𝑁𝑁𝑁𝑖𝑖𝐴𝐴𝑝𝑝𝑖𝑖𝑁𝑁𝑖𝑖) (8) 

 

The model was implemented using JAGS via the R2jags package (Su & Yajima, 2012). A total 

of three separate models were estimated in order to characterize the influence of EAB on ash and 

non-ash harvest regimes: Model 1 (ash species only); Model 2 (non-ash species); and Model 3 

(ash expressed as a fraction of total harvest). 

 

2.5 Harvest Diameter  

 

Using the matched dataset, we conducted a weighted Student’s t-test to compare the diameters of 

harvested trees (diameter ≥ 12.7 cm) in EAB and non-EAB counties. Ash and non-ash species 

were analyzed separately. 

 

3. Results 

 

3.1. Matching 

 

Before we matched the data, the treatment and control groups exhibited significant mean 

differences in covariates that are known to impact the probability of EAB invasion, thereby 



  

confounding causal interpretation of the results. Ash density and non-ash density both had 

standardized mean differences of 0.36. Population density was the most similar covariate 

between the two groups (0.15), whereas PC1 had the greatest contrast (0.90). The large 

difference in PC1, which represents temperature, can be explained by the fact that most treatment 

observations are located in the northern state of Michigan, whereas many of the control 

observations are in warmer areas of West Virginia, Indiana, and Illinois (Figure 1).  

 

The Genetic Matching algorithm achieved negligible mean differences between treatment and 

control groups in ash density (0.07), non-ash density (0.01), population density (0.002) and PC1 

(0.06) (Appendix S1). This balance was achieved by selecting 310 of the control observations 

most similar to the 691 treatment observations (2033 control observations were discarded). The 

310 control units were assigned weights such that all units sum to one.  

 

3.2. EAB impacts on harvest probability and intensity 

 

Ash and non-ash harvests were detected in 6% and 9% of the FIA plots, respectively. When ash 

was harvested, 63% of the plot’s basal area ash was removed, and ash species amounted to about 

half of the total harvest, on average. Non-ash removals averaged 32% of the plot’s basal area. 

The average time interval between subsequent measurements (N in Eq. 3) was 5.08 years (SD = 

0.65).   

 

Harvest probability was modelled in tandem with harvest intensity (Equation 8), wherein both 

the probability and intensity terms varied as functions of aboveground biomass (AGB), EAB 



  

presence, human population density, and median household income (MHHI). Each model 

converged after 2000 iterations with a burn-in period of 200. Based on the deviance information 

criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002), Model 1 (ash species only) 

had the best fit, followed by Models 3 (ash species expressed as a fraction of total harvest) and 2 

(non-ash species; Table 1).  

 

Tree biomass was the strongest predictor of harvest and was a significant variable in all three 

models. AGB had a statistically significant positive effect on harvest probability in Model 1 

(ash) and Model 2 (non-ash). AGB was also positively correlated with the intensity component 

of Model 3 (fraction of harvest composed of ash) (Table 1). On the contrary, AGB had a 

negative impact on non-ash harvest intensity.  

 

The two demographic variables, human population density and median household income, 

displayed limited effects in our models. MHHI was negatively correlated with the probability of 

non-ash harvest but had a positive influence on the intensity component of Model 3. Human 

population density was not estimated to be significant in any of the regressions.  

 

EAB, our main variable of interest, had a statistically significant and negative impact on non-ash 

harvest probability. Our model predicts that a plot with 50 Mg/ha of non-ash biomass will 

experience a 0.13 reduction in annual probability of harvest due to EAB (Figure 2A). Ash 

harvest probability, on the other hand, was not sensitive to the presence of EAB within the 95% 

credible interval.  

 



  

Harvest intensity was positively influenced by EAB, but this effect was statistically significant 

for ash species only (Model 1). Figure 2B illustrates the predicted effects of EAB on harvest 

intensity. The percentage of basal area removed decreases as a function of AGB, and, in the case 

of ash species, EAB induces approximately 25% more basal area removal (Figure 2B).  

 

Finally, EAB had a positive impact on the ash fraction of harvest (Model 3, intensity 

component), although this estimate is statistically significant only at the 90% credible interval. 

Figure 3 portrays the predicted probabilities of harvesting ash (Figure 3A) and, if ash is 

harvested, the fraction of the total harvest comprised of ash (Figure 3B), as a function of the ash 

fraction of available aboveground biomass. For an FIA plot with 50% aboveground ash biomass, 

EAB is estimated to increase the ash composition of harvest by about 15% (Figure 3B).  

 

3.3. Harvest Diameter 

 

A weighted Student’s t-test indicated that trees harvested in EAB counties were smaller than 

those in non-EAB counties, for both ash and non-ash species. The mean diameter of harvested 

ash trees in EAB counties was 25.1 cm, compared to 31.9 cm in counties without EAB (p = 

0.06). Harvested trees of non-ash species had a mean diameter of 27.2 cm in EAB counties, 

compared to 36.7 cm in non-EAB counties (p= 0.007) (Figure 4).  

 

4. Discussion 

 



  

The inevitable spread of EAB throughout much of the United States poses an interesting 

question: To what degree will EAB influence harvest regimes? And, if harvest regimes are 

altered by EAB, what is the significance of those shifts? Using publicly available data, we 

combined covariate matching and regression analysis to uncover causal relationships between 

EAB and several aspects of private forest owner harvest regimes. Our results demonstrate that 

EAB increased the amount of harvested biomass, and that EAB-induced harvests contained 

greater quantities of ash, relative to non-ash species. We also find that harvested trees in EAB-

infested areas had smaller diameters, on average, compared to those unaffected by EAB. 

 

The positive effects of EAB on (1) ash harvest intensity and (2) the fraction of the overall harvest 

composed of ash suggest that a wave of ash removals will follow the spread of EAB across the 

landscape. This synchronized harvest behavior by private woodland owners is in contrast with 

the general characterization of private landowners as exhibiting unpredictable harvest behavior. 

Kittredge (2004) presented a decision cycle for private woodland owners, whereby the individual 

does not engage in harvesting until an exogenous personal event (e.g., medical expenses, college 

tuition, etc.) occurs that incentivizes a timber sell-off. However, the detection (or impending 

detection) of EAB could serve to upend this variability and harmonize harvest patterns of private 

forest owners. This opportunistic harmonization of logging has the potential to alter forest 

development trajectories and change structural legacies, with consequences for ecosystem 

services and biodiversity (Leverkus et al., 2018). Species that co-occur with ash, and particularly 

those that are preferred species for harvest, are most likely to be removed and are most 

vulnerable to EAB-induced harvests (MacLean et al., 2020).  

 



  

The increased intensity of ash removals in response to EAB supports the survey results of 

Markowski-Lindsay et al. (2020), which found that that private landowners in the northeastern 

United States overwhelmingly intended to harvest in response to invasive insects (including 

EAB, hemlock woolly adelgid, and/or Asian longhorn beetle). In fact, ash removal was 

encouraged in the early years of EAB detection as a means to contain the invasion (McCullough 

& Siegert, 2007). Somewhat surprising, however, is the estimated negative effect of EAB on 

harvest probability – a reduction that was statistically significant for non-ash species but not for 

ash.  This negative effect could be due to sanitation logging that occurred prior to the timeframe 

of our analysis. In other words, while we estimated the effects of EAB within the first ten years 

of detection, it is likely that EAB-induced harvesting occurred prior to this time, either due to 

undocumented EAB cases or to the foresight of proactive landowners. Savvy forest owners in the 

control group might also have pre-emptively harvested trees prior to the official EAB detection 

date, which would weaken the observed effect of EAB on harvest probability. The lower annual 

probability of harvest on EAB plots could also be due to the fact that more of these plots are 

located in colder regions where trees experience slower growth rates, compared to non-EAB 

plots. It is important to note that, despite the negative effect of EAB on harvest probability, the 

positive effect of EAB on harvest intensity dominated our statistical model and yields a predicted 

net increase in harvested basal area.  

 

In addition to changes in the probability and intensity of tree removals due to EAB, we detected 

differences in the average plot harvest diameter for both ash (p = 0.06) and non-ash (p = 0.007) 

species when comparing treatment and control groups. On one hand, this is surprising since early 

efforts in Michigan originally focused on removing only the largest ash trees to reduce the 



  

available phloem for EAB development in order to slow its spread (McCullough & Siegert, 

2007). However, McCullough & Siegert (2007) also mention locations in MI and OH where all 

ash stems surrounding a focal tree in infested areas were removed. Our results are more 

indicative of the latter and suggest that EAB may reduce the choosiness of foresters, who, faced 

with either infected timber or the impending threat of EAB, decide to harvest more ash from a 

site, resulting in harvest smaller average trees than would normally be cut. Given that non-ash 

species also exhibited a difference in harvest diameter, this reduced choosiness appears to extend 

to the entire harvest. It is unclear from the data whether the increased removal of smaller non-ash 

trees due to EAB serves a silvicultural purpose, economic goal, or both.  

 

Regression analysis of the matched dataset supports previous estimates of the influence of 

aboveground biomass on harvest probability. Similar to Canham et al. (2013) and Thompson et 

al. (2017), we estimated AGB to have a positive effect on harvest probability for both ash and 

non-ash species (Figure 2). The relationship between AGB and harvest intensity has been found 

to vary greatly by state and forest type, but northern hardwood forests and the Great Lakes states 

are known to exhibit a negative trend (Canham et al., 2013; Thompson et al., 2017), which we 

also observed in our estimated effect of AGB in the non-ash model (Model 2). This may be 

because most harvests on land owned by private owners are frequent, low intensity harvests that 

remove less than 20% of overstory basal area (Thompson et al. 2017).     

 

Socioeconomic variables did not play a large role in our statistical models. We estimated no 

significant effect of human population density; moreover, median household income influenced 

only the probability of harvest for non-ash species and the intensity of ash composition of the 



  

harvest. The positive relationship between affluence and the ash composition of harvest could 

suggest that private landowners of lower affluence capitalize on the opportunity to harvest more 

tree species (in addition to ash) due to higher financial need. In general, lower-income forest 

owners are thought to harvest at greater intensities than their wealthier counterparts (Thompson 

et al., 2017). 

 

Causal interpretation of our regression analysis was enabled by a Genetic Matching algorithm 

that achieved covariate balance between treatment and control units. However, this balance came 

at the expense of statistical power; in order to achieve such balance, 1723 out of 2033 control 

observations were discarded. This ‘imbalance-n’ tradeoff typically observed in matching routines 

is analogous to the well-known ‘bias-variance’ tradeoff encountered in statistics and machine 

learning (Geman, Bienenstock, & Doursat, 1992). Furthermore, in matching the joint 

distributions between treatment and control groups, we assume that we have identified the key 

sources of confoundedness. Indeed, our four matching covariates (ash density, non-ash density, 

PC1, and human population density) are well-founded correlates of EAB invasion in the 

literature; however, other potential influences of EAB spread exist. For instance, urban forests, 

which are absent from the FIA dataset, are known to play an important role in the spread of EAB 

by serving as the first point of contact for the pest (Colunga-Garcia, Haack, Magarey, & 

Margosian, 2010; Paap, Burgess, & Wingfield, 2017). Urban trees often exist as single species 

plantings (Donaldson et al., 2014), and may be predisposed to infestation due to anthropogenic 

stress, increasing the likelihood of exotic forest pests becoming established and proliferating 

(Pautasso, Schlegel, & Holdenrieder, 2015). Nevertheless, spatiotemporal dynamics are the 

primary driver of EAB invasion (Ward et al., 2020) and, in our experimental design, we remove 



  

spatiotemporal pressure as a potential confounder by separating the treatment and response in 

time and space (Figure 1).  

 

Despite controlling for many potentially confounding influences, several potential sources of 

bias remain within our quasi-experimental design . As indicated previously, EAB detection 

methods were more refined for the control group compared to the treatment group. Similarly, the 

control group had higher levels of knowledge of, and familiarity with, EAB. These disparities 

could mean that (1) the treatment group experienced a wider range of damage due to EAB; and 

(2) the control group had a better opportunity to preemptively harvest healthy trees, both of 

which could dampen the observed effect of EAB on harvest regimes (i.e., our estimated effect 

may be underestimated). The evolving understanding of EAB, and the ever-changing protocols 

associated with its spread, make it difficult to generalize causal effects observed during any 

particular period of time. Another potential confounder is the implementation of quarantines 

(efforts to curb the transportation of infested wood), which were typically established at the 

county level once EAB was detected. Since quarantines roughly coincide with EAB arrival, the 

effect of quarantines on harvest activity is a potential source of noise. 

 

5. Conclusion 

 

Our study suggests that private forest owners alter their management decisions based on the 

presence of invasive forest insects. In the case of the EAB in the central U.S., we show that 

landowners harvested more intensely and across a wider range of tree sizes when the insect was 

present in the county. This finding is significant because the abundance and severity of wood-



  

boring insects in North America is projected to increase three-to-four-fold by 2050 as a result of 

climate change and global trade (Ayres & Lombardero, 2000; Leung, Springborn, Turner, & 

Brockerhoff, 2014). It is particularly valuable to understand private landowner dynamics vis-à-

vis wood-boring insects, as this owner group controls a large majority of forestland in the United 

States and its decision-making is largely uncoordinated. Our analysis suggests that these insects 

will influence timber harvest regimes in novel ways with potentially significant impacts on forest 

and the services they provide. By understanding the relationship between insects and harvest 

regimes, policymakers, forest managers, and extension programs will be better equipped to 

advise landowners and managers about their options and the associated outcomes for forests. 
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Table 1: Model estimates. Both the zero-inflation (harvest probability) and continuous (harvest 

intensity) components of each model vary as a function of aboveground biomass (AGB), EAB, 

human population density, and median household income (MHHI). Mean estimates with a non-

zero 95% credible interval are in bold. Deviance information criterion (DIC) is an estimate of 

model error. 

 

Model 
Harvest 
component AGB EAB pop. den. MHHI DIC 

  Mean 
Std. 
Dev. Mean 

Std. 
Dev. Mean 

Std. 
Dev. Mean 

Std. 
Dev.   

1: Ash species Probability 0.04 0.01 -0.27 0.27 -0.39 0.29 -0.24 0.17 
187137 

Intensity -0.01 0.01 0.91 0.35 -0.18 0.51 -0.14 0.22 
2: Non-ash 
species 

Probability 0.02 0 -0.54 0.22 -0.28 0.2 -0.33 0.14 
188703 

Intensity -0.01 0 0.25 0.25 0.49 0.27 -0.21 0.16 
3: Ash as a 
fraction of 
total harvest 

Probability 0.01 0.01 -0.28 0.28 -0.38 0.29 -0.22 0.17 
187212 

Intensity 0.02 0.01 0.55 0.33 0.24 0.47 0.75 0.22 
 

  



  

Figure Captions 

 

Figure 1: Study area. FIA plots in counties where EAB was detected before 2007 are in the 

treatment group; observations from counties where EAB was detected after 2012 are in the 

control group. Tree characteristics and harvest data were extracted from 2007-2012. Treatment 

observations (orange) had a range of EAB infestation from between 1-10 years. Negative values 

in the histogram indicate time-to-arrival for EAB. 

 

Figure 2: Model predictions for Model 1 (ash species) and Model 2 (non-ash species). Annual 

probability of harvest follows a logistic distribution (a); intensity of harvest (percent basal area 

removed) follows a beta distribution (b). Grey shading indicates the 95% credible interval for the 

estimated effect of EAB. 

 

Figure 3: Model predictions for the probability (a) and intensity (b) components of Model 3 (ash 

as a fraction of total harvest). The grey shading indicates the 95% credible interval for the effect 

of EAB on the probability of harvesting ash (a) and, if ash is harvested, the fraction of the total 

harvest comprised of ash (b).  

 

Figure 4: Boxplots comparing the mean plot diameters of harvested trees in counties with and 

without EAB. P-values of the weighted Student’s t-test are printed in the center of each panel. 
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