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Abstract  Nitrogen (N) is a critical element in many 
ecological and biogeochemical processes in forest 
ecosystems. Cycling of N is sensitive to changes in 
climate, atmospheric carbon dioxide (CO2) concen-
trations, and air pollution. Streamwater nitrate drain-
ing a forested ecosystem can indicate how an ecosys-
tem is responding to these changes. We observed a 
pulse in streamwater nitrate concentration and export 

at a long-term forest research site in eastern North 
America that resulted in a 10-fold increase in nitrate 
export compared to observations over the prior dec-
ade. The pulse in streamwater nitrate occurred in a 
reference catchment in the 2013 water year, but was 
not associated with a distinct disturbance event. We 
analyzed a suite of environmental variables to explore 
possible causes. The correlation between each envi-
ronmental variable and streamwater nitrate concen-
tration was consistently higher when we accounted 
for the antecedent conditions of the variable prior to 
a given streamwater observation. In most cases, the 
optimal antecedent period exceeded two years. We 
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assessed the most important variables for predict-
ing streamwater nitrate concentration by training a 
machine learning model to predict streamwater nitrate 
concentration in the years preceding and during the 
streamwater nitrate pulse. The results of the correla-
tion and machine learning analyses suggest that the 
pulsed increase in streamwater nitrate resulted from 
both (1) decreased plant uptake due to lower ter-
restrial gross primary production, possibly due to 
increased soil frost or reduced solar radiation or both; 
and (2) increased net N mineralization and nitrifica-
tion due to warm temperatures from 2010 to 2013. 
Additionally, variables associated with hydrological 
transport of nitrate, such as maximum stream dis-
charge, emerged as important, suggesting that hydrol-
ogy played a role in the pulse. Overall, our analyses 
indicate that the streamwater nitrate pulse was caused 
by a combination of factors that occurred in the years 
prior to the pulse, not a single disturbance event.

Keywords  Nitrogen · Temperate forest · Long-term 
research · Streamwater nitrate

Introduction

Nitrogen (N) plays a critical role in plant, microbial, 
and animal nutrition (Vitousek and Howarth 1991), 
and is typically a limiting nutrient in temperate for-
est ecosystems. As a result, N is typically tightly 
retained by forest ecosystems. Thus, monitoring N 
inputs and outputs in small catchments can be a pow-
erful tool for tracking how the catchment N cycle 
responds to disturbance and changes over time (Aber 
et al. 2002). Streamwater nitrate is responsive to dis-
turbance (Goodale et al. 2000; Ohte et al. 2003) and 
thus nitrate patterns can provide an integrated view 
of N biogeochemical processes occurring within a 
catchment.

This study focuses on the variability of stream-
water nitrate concentrations at the Hubbard Brook 
Experimental Forest (HBEF) in New Hampshire, 
USA; a site where streamwater nitrate patterns have 
helped produce fundamental understanding of for-
est N dynamics (Likens 2013). Prior disturbances 
in the reference watershed, such as drought, defo-
liation events, soil frost, an ice storm, and high 
atmospheric deposition of N, have led to periods 
of elevated streamwater nitrate concentration and 

export (Bernhardt et  al. 2003; Bernal et  al. 2012). 
Over the past 20 years at the HBEF, and across the 
region, streamwater nitrate concentration and export 
have declined. This decline has been attributed to 
decreases in atmospheric N deposition, warming air 
temperatures, increasing atmospheric carbon diox-
ide (Groffman et  al. 2018; Mason et  al. 2022), and 
increased N immobilization in coarse woody debris 
(Lajtha 2020). Within this long-term period of low 
streamwater nitrate export, a pulse in streamwater 
nitrate occurred in 2013-14 with sustained increases 
in nitrate concentrations and export during the winter 
months (Fig. 1). This pulse is unusual because, unlike 
past pulses of streamwater nitrate, there was no obvi-
ous disturbance to the forest that would cause nitrate 
to leach from the ecosystem.

The N cycle in forested catchments is too complex 
to explain with direct measurements and monitoring 
alone, so modeling, either simulation or empirical, 
is necessary. Simulation modeling has improved our 
understanding of how the N cycle may have changed 
in the past or will change in the future (Aber et  al. 
2002; Hong et al. 2005). In addition, simulation mod-
eling allows the upscaling of processes documented 
at smaller scales to river basin scales (Mineau et  al. 
2015; Robertson and Saad 2021). However, often the 
full suite of data on environmental processes and how 
they interact with each other—and the N cycle—are 
limited, reducing the ability of the models to pre-
dict outcomes accurately. Empirical models such as 
machine learning models are increasingly applied to 
process and interpret correlated independent variables 
and non-linear processes, so that accurate predictive 
models can be constructed and used to identify the 
most important variables for predictions (Abbasian 
et al. 2022; Cai et al. 2023). Utilizing empirical mod-
els with comprehensive, long-term data sets can lead 
to new insights into multiple concurrent, interactive, 
and lagged factors that together contribute to changes 
in the N cycle.

In this study we attempt to explain the drivers of 
the almost 10-fold increase in streamwater nitrate 
export in water year 2013 compared to the decade 
prior to the pulse. We hypothesized that the nitrate 
pulse was due to one or more drivers, including: (1) 
elevated atmospheric N inputs, (2) increased N pro-
duction within the catchment, (3) reduced biotic 
uptake or microbial immobilization, and/or (4) 
enhanced hydrologic transport of N (Fig. 2).
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Methods

Reference watershed at the Hubbard Brook 
Experimental Forest (HBEF)

Watershed 6 (W6), a reference watershed at HBEF, 
is located within the White Mountains of central 
New Hampshire, USA (Fig.  3, 43°56′N, 71°45′W). 
The forest within W6 is mostly mixed hardwood 

Fig. 1   Long-term annual streamwater nitrate export from a 
reference watershed at the Hubbard Brook Experimental For-
est, Watershed 6, was high in the early record, likely due to 
high rates of atmospheric N deposition, and was followed by 
a decline in the 1980s that has persisted except for a few epi-
sodes. The streamwater nitrate export peak in water year 1989 

was attributed to a soil frost event (Mitchell et  al. 1996) and 
the peak in water year 1998 was attributed to canopy damage 
from an ice storm (Houlton et  al. 2003). The peak in water 
year 2013 is the focus of our investigation. The water year runs 
from June 1 to May 31

Fig. 2   Conceptual relationships between external drivers, responsive environmental variables, the four hypothesized reasons for the 
pulse in streamwater nitrate concentration and pulse
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species—sugar maple (Acer saccharum), American 
beech (Fagus grandifolia), and yellow birch (Betula 
alleghaniensis)—with some softwoods (balsam fir 
(Abies balsamea) and red spruce (Picea rubens) and 
white birch (Betula papyrifera) near the ridge top 
(Johnson et al. 2000). The climate is cool and moist 
with a seasonal snowpack (Likens 2013). Soils at 
HBEF are Spodosols, developed by soil water perco-
lation or lateral flow resulting in distinct spatial vari-
ation along hillslopes (Bailey et  al. 2014). Soils are 
underlain by glacial till and metamorphosed granitic 
bedrock.

Data

For this study, we used data from the HBEF for the 
period January 1, 2003 to May 30, 2018 (Table  1). 
This period was chosen to isolate several years of 
data around the period of high streamwater nitrate 
concentrations in 2013–2014. Streamwater nitrate at 
HBEF has experienced multiple systematic changes 
over its long-term record, due to long-term reduc-
tions in atmospheric deposition, increases in atmos-
pheric CO2, climate change, forest maturation, and 
disturbances (Bernal et  al. 2012; Yanai et  al. 2013). 
2003 was chosen as the starting year for the analysis 
because 3 year lags were considered in relationships 
between variables, and the forest recovered from 
a 1998 ice storm around 2000 (Rhoads et  al. 2002; 

Bernhardt et  al. 2003). Thus, 2003 to 2018 repre-
sents a period when obvious forest disturbances were 
minimal.

Streamwater nitrate and other streamwater sol-
utes are measured in samples collected at the out-
flow from W6 on a weekly basis, with periodic high 
frequency sampling during storm events (Hubbard 
Brook Watershed Ecosystem Record, 2022). The 
samples are stored in cool conditions until measure-
ment in the laboratory. Major anion concentrations—
NO3

−, SO4
2−, Cl−—are measured on an ion chroma-

tograph. Major cation concentrations—Ca2+, Mg2+, 
K+, Na+—are measured on an ICP-OES. Stream dis-
charge is measured using a V-notch weir and a San 
Dimas flume for high flows (See et  al. 2020). Run-
off was calculated as the area-normalized discharge, 
summed over a specified period. Bulk atmospheric 
deposition is measured using the same lab analyti-
cal techniques as streamwater on cumulative weekly 
precipitation samples (Buso et al. 2000). Precipitation 
volume is measured with a series of precipitation col-
lectors and is area-weighted to the catchment (Green 
et al. 2018).

We used other hydrometeorological measurements 
as independent variables for our analysis. Mean, 
minimum, and maximum daily air temperature is 
measured at a long-running meteorological station 
near W6 (Station 1), using recording temperature 
sensors (Bailey et  al. 2003). Snow water equivalent 

Fig. 3   Monitoring sites within the Hubbard Brook Experimental Forest where data used in this analysis were collected
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is measured weekly during the winter months using 
a Federal Snow Tube at Station 1 (Campbell et  al. 
2010). We linearly interpolated those weekly values 
to daily values. Soil frost is measured adjacent to 
the snow measurements by excavating a soil pit and 
determining the depth of the frost line by visual and 
tactile estimation (Campbell et al. 2010). Daily total 
solar radiation is measured at the nearby Hubbard 
Brook headquarters building, 3 km from W6 (Station 
22), using a pyranometer (Bailey et  al. 2003). Daily 
wind speed is measured at the same location using a 
digital anemometer (Bailey et al. 2003).

Soil water is collected monthly with zero-ten-
sion lysimeters at three elevations adjacent to W6 
(LoRusso et al. 2021). We used nitrate, pH, and dis-
solved organic carbon (DOC) data from the lysime-
ters for this study. Nitrate concentration is measured 
with ion chromatography, pH is measured with a 

glass electrode, and DOC concentration is measured 
with a total organic carbon analyzer.

For estimates of GPP, we used NASA’s MODIS 
gross primary productivity (GPP) data product 
(MOD17A2H version 6; Hasenauer et al. 2012). The 
data for the pixels within the HBEF valley were aver-
aged on a monthly basis using Google Earth Engine.

Data analysis

To evaluate our four hypotheses, we conducted 
a univariate correlation analysis and constructed 
machine learning models, which were used to 
determine the independent variables that most 
impacted predictions of streamwater nitrate con-
centration. The dependent variable in all cases was 
nitrate concentration in W6 streamwater. Independ-
ent variables were those that were available from 

Table 1   Independent variables included in the analysis, their associated hypothesis, and data source. The mean, sum, maximum, 
minimum, or coefficient of variation was applied to the variable during the antecedent period prior to a streamwater sample

Some variables were relevant to multiple hypotheses
The hypotheses are numbered 1 to 4 to represent (1) increased N inputs, (2) increased N production within the catchment, (3) 
reduced biotic uptake/consumption, or (4) enhanced N transport

Variable Description (units) Hypothesis Data source

DIN Dep Sum of bulk deposition of dissolved inorganic N (g N/ha/
month)

1 HBWatER (2022)

H+ Dep Sum of bulk deposition of H+ (g/ha/month) 2 3 HBWatER (2022)
Tcv Coefficient of variation of mean daily air T (°C/°C) 3 USDA Forest Service (2021a)
GPPmean Mean of the monthly modeled gross primary productivity (kg 

C/m2/month)
3 Running et al. (2015)

Tmean Mean of the mean daily air T (°C) 2 USDA Forest Service (2021a)
RO Sum of stream runoff (mm of water) 4 USDA Forest Service (2020)
P Sum of precipitation (mm of water) 2 4 USDA Forest Service (2021b)
qcv Coefficient of variation for specific discharge 4 USDA Forest Service (2020)
RO:P Runoff ratio (mm:mm) 4 USDA Forest Service (2020, 2021b)
Tmin Minimum air T (°C) 2 3 USDA Forest Service (2021a)
Tmax Maximum air T (°C) 2 USDA Forest Service (2021a)
SWEmean Mean snow water equivalent (mm of water) 2 3 4 USDA Forest Service (2021c)
Frostmax Maximum frost depth (cm) 3 USDA Forest Service (2021c)
qmax Maximum specific discharge (mm/hour) 4 USDA Forest Service (2020)
qmin Minimum specific discharge (mm/hour) 4 USDA Forest Service (2020)
Radmean Mean incident solar radiation (MJ/m2/day) 3 USDA Forest Service (2019)
Simean Mean streamwater Si concentration (mg/L) 4 HBWatER (2022)
Windmean Mean wind speed (m/s) 3 USDA Forest Service (2022)
Windmax Maximum wind speed (m/s) 3 USDA Forest Service (2022)
DOClys Mean dissolved organic C in soil water (mg/L) 2 3 Driscoll (2022)
pHlys Mean pH in soil water 2 3 Driscoll (2022)
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long-term monitoring that would allow us to assess 
the four hypotheses (Fig. 2 and Table 1).

Univariate correlation

The correlation between each independent vari-
able and streamwater nitrate concentration in W6 
was assessed using Spearman’s rank correlation 
(ρ). To account for the time it takes for catchment 
biogeochemical and hydrological processes to pro-
duce nitrate and transport it to the catchment out-
let, we calculated the antecedent conditions for 
each independent variable prior to a streamwater 
nitrate observation. The period prior to an observa-
tion was defined as the antecedent window, within 
which a summary metric was calculated, such as 
the mean, minimum, maximum, or coefficient of 
variation of daily values (Table  1). The optimum 
window was the period with the highest correlation 
(ρ) between streamwater nitrate concentration and 
the transformed independent variable. We tested 
antecedent windows from 7 to 1097 days (i.e., one 
week to 3 years), incremented by 10 days. The ρ 
often varied incrementally with antecedent window 
length, but was highly variable in some instances, 
so we smoothed the relationship using Lowess 
with the span parameter set to 0.75 (Cleveland 
1979). The antecedent window length associated 
with the largest absolute value of ρ was accepted 
as the optimum window for that independent vari-
able. We also report the ρ associated with a 157 
day antecedent window because the median water 
residence time for the nearby HBEF hydrologic ref-
erence catchment (W3) is approximately 150 days 
(Benettin et al. 2015). The algorithm for this analy-
sis is described in more detail in the Supplemental 
Methods.

Two multivariate data sets were produced from 
the univariate analysis, which were used in the 
multivariate analyses. The first included each 
independent variable transformed using its opti-
mal antecedent window. The second included each 
independent variable transformed with a 157-d 
antecedent window. In both data sets, the maxi-
mum discharge using a 7-d antecedent window was 
included to account for nitrate flushing (e.g., Pardo 
et al. 2022).

Machine learning models

We built multivariate models to predict streamwater 
nitrate concentration with the Random Forest algo-
rithm as implemented in R (Breiman 2001; Liaw and 
Wiener 2002). Four models were built using inde-
pendent variables transformed with different anteced-
ent windows: (1) the optimal antecedent window, (2) 
a 157-day antecedent window, (3) a 2-day antecedent 
window, and (4) all three of these antecedent win-
dows together (three times the number of independ-
ent variables as the other models; referred to as the 
comprehensive model). The model goodness-of-fit 
was assessed using the Nash–Sutcliffe efficiency (NS; 
Nash and Sutcliffe 1970). The optimal set of inde-
pendent variables for each model was determined as 
the variables chosen after the prediction step in the 
VSURF algorithm, as implemented in R (Genuer 
et al. 2010). The chosen set of variables is considered 
the most parsimonious set that captures redundant 
information in the full data set and effectively pre-
dicts the dependent variable. Once the optimal set of 
independent variables was chosen, the Random For-
est model was run and the NS was calculated and the 
partial dependence of those independent variables 
with streamwater nitrate concentration were visual-
ized using PDP library in R (Greenwell 2017). 

Results

Documenting the nitrate pulse and concurrent 
environmental variation

Weekly streamwater nitrate concentrations increased 
starting from a low in 2010 and peaking during snow-
melt of 2014 (Fig. 4a). Nitrate export followed a simi-
lar temporal pattern, with more distinct high peaks 
during large export events (Fig.  4b). High stream-
water nitrate concentrations during this period were 
apparent across all watersheds at Hubbard Brook 
(Figure S1). The peak export occurred on April 14, 
2014 and the peak concentration occurred on January 
13, 2014. The January peak concentration occurred 
during a rain-on-snow event (43 mm of rain on a day 
with a maximum air temperature of 8 °C) and the 
April peak was associated with a warm rain during 
the seasonal spring snowmelt (40 mm of rain on a day 
with a maximum air temperature of 20 °C; Fig.  5). 
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Nitrate was the primary form of N that changed in 
streamwater during this period; ammonium and dis-
solved organic N did not peak with nitrate (Figure 
S2). Other streamwater solutes did not show major 
concentration peaks during the same period (Fig. 6). 
However, there were a few distinct patterns in 

temporal variability during this period. Calcium and 
magnesium concentrations were somewhat elevated 
during the nitrate pulse, and there was a notable con-
current spike in potassium and decrease in dissolved 
silica during an event in November 2013 (Fig.  6). 
Streamwater pH was lower during nitrate peaks than 
other periods. Similarly, streamwater DOC concentra-
tion storm peaks were lower during the period of ele-
vated nitrate compared to other observations. Lysim-
eters adjacent to W6 show that the 2013–14 pulse was 
most apparent in the soil waters draining the Bs hori-
zons in the low hardwood stands (Figures S3, S4, and 
S5). Soil water DOC concentration was relatively low 
and pH was higher prior to and during the stream-
water nitrate concentration pulse. The environmental 
and ecological variables that we hypothesized would 
control streamwater nitrate (Table  1) did not show 
visibly different temporal patterns during this period 
of high nitrate concentrations and export (Figure S6).  

Correlation results

Streamwater nitrate concentrations were most posi-
tively correlated with maximum discharge, maximum 
soil frost, and mean streamwater dissolved Si concen-
tration and most negatively correlated with minimum 

Fig. 4   Time series of 
weekly streamwater nitrate 
concentration and export 
in W6. The shaded area 
highlights the water year 
2013 (June 1, 2013 to May 
31, 2014). This shaded area 
is included for reference in 
subsequent figures

Fig. 5   Stream specific discharge (black line) and precipita-
tion (blue bars) during the period of elevated nitrate concen-
trations. The red dashed lines show the date of the peaks in 
nitrate concentration and export. The shaded area highlights 
the water year 2013 (June 1, 2013 to May 31, 2014). (Color 
figure online)
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discharge, mean wind speed, and mean solar radia-
tion. The optimal antecedent window was 1097 days 

for all variables except mean solar radiation (1037 
days) and mean wind speed (737 days; Table  2). 
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When a 157  day window was used across all vari-
ables, only stream dissolved silica concentration and 
H+ deposition had Spearman ⍴ values greater than 
0.2 or less than − 0.2.

Soil water nitrate concentrations were not con-
sistently correlated with streamwater nitrate concen-
trations (Table  S1). Three sites had positive Spear-
man ⍴ values greater than 0.2: the Bh horizon in 
the spruce/fir/birch area, the Bs horizon in the low 
elevation hardwood area, and the Oa horizon in the 
low elevation hardwood area. The optimum anteced-
ent windows were 457, 1097, and 707 days, respec-
tively. Two sites had negative ⍴ values less than 
− 0.2: the Bh and Bs horizons in the high elevation 
hardwood area. The optimum antecedent windows 
were 967 and 1097 days, respectively. The soil water 

nitrate concentration was consistently negatively cor-
related with DOC and positively correlated with pH 
(Table 3).

Machine learning results

The machine learning models effectively predicted 
the streamwater nitrate concentration during the 
period prior to and during the pulse, although they 
generally underestimated the peaks, including the 
2014 nitrate concentration pulse (Fig. 7). The model 
using an optimum antecedent window for each inde-
pendent variable had a NS = 0.56, and the most 
important variables—from most important to least 
important—were mean air T, mean stream dissolved 
Si concentration, sum of DIN deposition, sum of H+ 
deposition, mean snow water equivalent, maximum 
T, and mean GPP in the antecedent window prior 
to a stream sample. The model using independent 
variables with a 157-day antecedent window had a 
NS = 0.53, and the most important variables were 
minimum air T, maximum air T, solar radiation, CV 
of air T, mean GPP, and mean air T. The model using 
a 2 day antecedent window had a NS of 0.28, and the 
most important variables were minimum discharge, 
the sum of runoff, the runoff ratio, the sum of H+ 

Fig. 6   Streamwater solute concentrations, pH, and specific 
conductivity (SpCond) in Watershed 6 during the period of 
this study. The gray shaded region highlights the 2013 water 
year. One sample during very low flow conditions was not 
shown for Ca2+, Mg2+, K+, and SpCond  because concen-
trations were elevated and obscured temporal patterns. The 
units for each of the solute concentrations is mg/L, except for 
SpCond. The SpCond units are µS/cm at 25 °C. (Color figure 
online)

◂

Table 2   Correlations 
between environmental 
drivers and streamwater 
nitrate concentration, listed 
in order of the absolute 
value of their Spearman ⍴ 
for the optimum antecedent 
window length

The Spearman ⍴ for the 
157 day window (the 
approximate median water 
residence time in a nearby 
catchment) is included to 
illustrate how correlations 
compare with a similar 
duration antecedent window

Variable ρ (optimum win-
dow)

Optimum window 
length (d)

ρ (157 d window)

Max discharge 0.46 967 0.11
Max frost 0.38 987 0.00
Min discharge − 0.34 1097 − 0.08
Mean solar radiation − 0.32 1097 − 0.16
Mean wind speed − 0.31 707 − 0.13
Mean stream [Si] 0.31 1097 0.26
Max wind speed − 0.29 1097 − 0.09
Max air T − 0.29 337 − 0.14
Mean air T 0.28 1097 0.00
Sum H+ deposition − 0.26 487 − 0.21
Mean SWE − 0.26 1097 − 0.09
Sum DIN deposition − 0.22 827 − 0.15
Mean runoff ratio − 0.22 377 − 0.15
Sum runoff − 0.21 457 − 0.16
Sum precip − 0.19 657 − 0.13
Mean GPP − 0.16 1097 −0.08
Min air T − 0.12 317 − 0.09
CV of air T 0.11 1097 0.06
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deposition, mean snow water equivalent, the sum of 
DIN deposition, and mean GPP. The comprehensive 
model where each independent variable was summa-
rized (e.g., mean, max, sum) within a 2 day, 157 day, 
and optimum antecedent window produced a NS of 
0.67 (Fig. 7). When this model was analyzed for the 
most important variables, the following variables 
emerged: mean wind speed (optimum window), mean 

air T (optimum window), maximum air T (157  day 
window), maximum air T (optimum window), sum 
of runoff (2 day window), maximum discharge (2 day 
window), maximum discharge (157 day window), and 
GPP (optimum window) (Fig. 8). The partial depend-
ence of these variables with streamwater nitrate con-
centration were generally non-linear. Streamwater 
nitrate concentration was highest at the extreme low-
est wind speeds, highest mean air temperatures, low-
est maximum air temperatures, highest runoff, high-
est 2 day and 157 day maximum discharge rates, and 
highest GPP (Fig. 9). 

Discussion

Our analysis suggests that the 2013–14 streamwater 
nitrate pulse was not caused by one dominant fac-
tor, but rather multiple factors and their interactions, 
operating at multiple time scales. Our overall assess-
ment is that the streamwater nitrate pulse resulted 
from the accumulation of nitrate in the subsurface 
due to increased N production (net mineralization 
and nitrification) and reduced microbial and/or plant 
uptake of N, combined with the subsequent enhanced 
hydrologic transport of the accumulated nitrate from 

Table 3   Correlation 
between streamwater nitrate 
concentration and soil 
water solution dissolved 
organic carbon (DOC) 
concentration and pH

The vegetation zone 
abbreviations are: HH 
high hardwood, LH low 
hardwood, SFB spruce/fir/
birch

Soil horizon Vegetation zone Independent 
variable

Optimum window 
length (d)

ρ (optimum 
window)

Bs HH DOC 1097 − 0.42
Bh HH DOC 1097 − 0.35
Bh HH pH 877 0.33
Bs LH pH 447 0.33
Bh LH pH 427 0.32
Oa HH DOC 387 − 0.3
Bh SFB pH 447 0.3
Bh LH DOC 427 − 0.3
Oa HH pH 437 0.29
Oa SFB pH 1097 0.29
Bs HH pH 437 0.28
Bs SFB DOC 557 − 0.2
Oa SFB DOC 467 − 0.19
Bs LH DOC 7 0.16
Bh SFB DOC 7 0.14
Bs SFB pH 517 0.13
Oa LH pH 7 − 0.12
Oa LH DOC 1097 0.07

Fig. 7   Time series of the deseasonalized streamwater nitrate 
concentration observations (black) and the predicted concen-
tration from the random forest model that used all three ante-
cedent windows (red). The Nash-Sutcliffe efficiency of this 
model was 0.67. (Color figure online)
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2010 to 2013. We hypothesize that the pulse arose 
from particular, coincidental timing of these factors. 
Here we synthesize the evidence from the univariate 
correlation and multivariate analyses to assess the 
evidence for our four general hypotheses (Fig.  2): a 
pulse of N inputs; increased N production within the 

catchment; reduced biotic uptake/consumption; or 
enhanced N hydrologic transport.

It is not surprising that our analysis did not find 
evidence of N deposition being an important driver 
of this pulse event, as atmospheric N deposition 
only emerges as a dominant direct control on stream 

Fig. 8   Time series of the transformed independent variables 
that emerged as most important for the Random Forest model 
using all variables with multiple antecedent window transfor-
mations (2  day, 157  day, and optimum-day antecedent win-
dows listed in Table 2). The panels are organized top to bottom 

by their relative importance to the Random Forest model. The 
abbreviations for the axis labels are: WS is wind speed, RO is 
runoff, q is specific discharge, and GPP is gross primary pro-
ductivity. The grey shaded region is the period of the stream-
water nitrate pulse
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N export at very high deposition rates (Templer 
et al. 2022). Additionally, N deposition has declined 
significantly across the region in recent years which 
is one cause of lower N export from river basins 
in the Northeastern U.S. (Eshleman et  al. 2013). 
In our analysis, N deposition is weakly correlated 
with streamwater nitrate concentration and is not 
an important variable in the Random Forest model 
with the best predictive power. Previous analyses 
of ecosystem net N retention have highlighted other 
factors like soil temperature (Bernal et  al. 2012) 
or tree CO2 fertilization response (Groffman et  al. 
2018) are likely controlling long-term N export 
in more recent decades. If our analysis included 
the full long-term record at Hubbard Brook, the 
impact of declining N deposition might emerge as 
an important driver of N export during the last 60 
years. However, we intentionally limited our analy-
ses to only include the period from 2003 to 2018 
since we aimed to isolate the cause of the recent 
pulse in nitrate.

Soil nitrate production was likely enhanced by 
warmer soil temperatures and soil recovery from acid-
ification in the years leading up to 2013–14. Soil net 
N mineralization and nitrification rates are strongly 
regulated by soil temperature (Johnsson et al. 1987), 
which is influenced by air T, and thus we interpret that 
these linkages may be why mean air T emerged as an 
important independent variable across most of our 
models. The partial dependence in the comprehensive 
Random Forest model showed a positive relationship, 
with a step increase in predicted streamwater nitrate 
concentration when the mean air T over the anteced-
ent 3 years was 0.5 °C warmer than typical (Fig. 9). 
The higher pH in the Bh and Bs horizon soil waters 
leading up to and during the streamwater nitrate pulse 
may indicate that the soil environment was condu-
cive to more nitrification (Figures S4 and S5; DeFor-
est and Otuya 2020). Additionally, the lower DOC 
concentrations in soil water leading up to the higher 
streamwater nitrate concentration might suggest that 
a lack of labile organic carbon availability limited 

microbial immobilization of nitrate (Figures  S3, S4, 
and S5; Goodale et al. 2005). Lysimeters from some, 
but not all soil horizons and vegetation zones also 
showed a pulse in nitrate concentration during the 
period of interest.

The analysis suggests that diminished N uptake 
by soil microbes and/or trees played a role in the 
streamwater nitrate pulse. The univariate correlation 
was high between streamwater nitrate concentration 
and soil frost, which has a known negative effect on 
microbial biomass and activity, and tree N uptake 
(Fig. 10). There were year-over-year increases in the 
maximum soil frost from 2009 to 2013 that may have 
caused reduced N uptake (Figure S6). Soil frost can 
reduce soil microbial biomass during the subsequent 
spring (Sorensen et  al. 2018) and damage tree roots 
(Cleavitt et al. 2008; Comerford et al. 2013; Campbell 
et al. 2014) decreasing microbial and plant N uptake 
(Campbell et al. 2014), which has been suggested as 
a cause of a previous streamwater nitrate pulse in the 
northeastern U.S. around 1990 (Fig. 1; Mitchell et al. 
1996). While the disturbance to the microbial com-
munity by soil frost reduces N uptake in the spring, 
the microbial biomass can recover by the summer 
(Sorensen et  al. 2018). Solar radiation emerged as 
an important variable for predicting streamwater 
nitrate concentration. We hypothesize that this vari-
able is related to its impact on soil temperature and 
thus increasing soil frost, and possibly decreasing 
GPP (e.g., Chen et  al. 2021). The role of GPP was 
not clear in our analysis—it was an important vari-
able in the Random Forest models, but the partial 
dependence suggested a weak relationship with 
streamwater nitrate. We expect GPP to be positively 
related to soil N uptake, reducing the availability of 
N to be transported to streams, and thus lower solar 
radiation would result in lower N uptake. Changes in 
algal N uptake in Hubbard Brook streams can cause 
changes in streamwater nitrate concentrations when 
reduced canopy cover increases the incident light in a 
stream (Bernhardt et al. 2003). However, the 2013–14 
streamwater nitrate pulse did not coincide with a 
punctuated reduction in light to the stream or a visible 
reduction in the stream algae biomass.

Finally, we hypothesize that catchment hydrol-
ogy influenced streamwater nitrate concentration 
through event-scale flushing of soil N to the stream 
and by vertical percolation of nitrate into ground-
water (Fig. 11). Streamflow generation of high flows 

Fig. 9   Partial dependence plots of the relationship between 
deseasonalized streamwater nitrate concentration and the inde-
pendent variables from the comprehensive Random Forest 
model. The independent variables are transformed (first desea-
sonalized and then the antecedent value was calculated), and 
thus represent a deviation from their expected value

◂
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activates the full range of flow paths from perched 
water table-generated shallow paths to piston flow 
generated by vertical percolation (Gazis and Feng 
2004; Zhao et al. 2013). Shallow flow paths would 
rapidly flush some shallow soil nitrate to the catch-
ment outlet (e.g., Creed et  al. 1996, Pardo et  al. 
2022), while some of the nitrate from the same 

source could be transported to shallow groundwa-
ter with percolating water generated during the 
event. We propose that this is the likely reason that 
maximum discharge at two time scales emerged as 
important in our analysis. The correlation analy-
sis produced the strongest relationship (positive) 
with maximum discharge over the almost three 

Fig. 10   Time series of the five independent variables that 
emerged as important for the univariate correlation analysis 
but did not emerge as important for the Random Forest mod-
els. These variables are transformed with their optimum ante-

cedent window length, which is noted in the axis label. The 
abbreviations for the axis labels are: q is specific discharge, SR 
is solar radiation, and [Si] is dissolved silica concentration
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years prior to when a water sample was collected. 
The high correlation between streamwater nitrate 
concentration and minimum discharge and stream-
water dissolved Si concentration also suggests that 
nitrate concentration increased as flows decreased 
and deeper flow paths were a greater contributor to 
stream flows. Streamwater dissolved Si is mostly 
derived from bedrock weathering, and thus concen-
trations are higher in deep flow paths, resulting in a 
strong negative concentration-discharge relationship 
(Hooper and Shoemaker 1986; Benettin et al. 2015; 
Aulenbach et  al. 2016). Inspection of the nitrate 
concentration time series (Fig.  4) shows increas-
ing peak concentrations during snowmelt in 2011, 
2012, and 2013, and measurable pulses of nitrate in 
the summers of 2011 and 2012. The summer peaks 
are unusual, since biotic demand for N is highest 
during summer, so high summer nitrate concentra-
tion in the years prior to the major nitrate pulse sug-
gests that there was an increase in the soil N pool. 
We hypothesize that the smaller snowmelt and sum-
mer pulses in 2009 and 2010 indicate that enhanced 
soil nitrate production started increasing in 2011 
and transported N vertically into shallow groundwa-
ter during snowmelt and large storm events (tropical 
storms in August 2011 and October 2012). We sug-
gest that the multiple years of vertical transport of 
nitrate from shallow soils where mineralization and 
nitrification are most active, to shallow groundwa-
ter, the main source of water to streams at Hubbard 

Brook, caused nitrate to accumulate in groundwa-
ter. This groundwater most visibly contributed to 
streamwater during water year 2013 but continued 
into water year 2014 (Fig. 4).

Some independent variables in the analysis 
emerged as important for predicting streamwater 
nitrate concentration but are challenging to explain. 
The negative correlation of maximum temperature 
and streamwater nitrate concentration was unex-
pected. Rates of net nitrification can be reduced at 
high soil temperatures (Gubry-Rangin et  al. 2017) 
and GPP is often operating at suboptimal air T in 
mixed forests (Huang et al. 2019). Thus, low ante-
cedent maximum air temperature during the stream-
water nitrate pulse (Fig. 8) could have caused there 
to be higher rates of nitrification and lower rates 
of GPP and associated N uptake, however, these 
responses to lower air temperatures are highly 
uncertain. The relatively strong negative correlation 
of streamwater nitrate concentrations and H+ depo-
sition was also unexpected. This may be related to 
pH sensitivity of soil N production (Curtin et  al. 
1998; DeForest and Otuya 2020). The Bs soil hori-
zon in the low hardwood zone showed the nitrate 
pulse the clearest, experienced some coincident 
spikes in pH during the nitrate pulse and increased 
in pH after the nitrate pulse, hinting that pH may 
be associated with a change in the soil N transfor-
mation processes (Fig. S5). The most unexpectedly 
important independent variable was mean wind 

Fig. 11   Conceptual model 
nitrate accumulation 
and transport pathways 
to streamwater. Nitrate 
accumulates in the soil 
from either mineralization/
nitrification or low plant 
and microbial uptake or 
both, and is then available 
for transport to the stream 
during episodes that pro-
duce lateral flow (short flow 
paths) or to the groundwater 
during percolation events. 
The groundwater nitrate 
then constitutes a greater 
fraction of the streamflow 
during non-storm peri-
ods and thus streamwater 
is more likely to reflect 
groundwater nitrate
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speed which was negatively correlated to stream-
water nitrate concentration. We included wind in 
the analysis because of the possible influence of 
wind-associated forest damage on reduced forest 
N uptake which would lead to a positive relation-
ship between wind speed and streamwater nitrate. 
In particular, a microburst windstorm in June 2013 
caused severe, localized canopy damage in forest 
stands west of W6 (Battles et al. 2017), but no sub-
sequent decrease in leaf biomass in the monitored 
catchment was observed (Fahey et al. 2022). Mean 
wind speed may, instead, be a proxy for synoptic 
meteorological conditions. It is possible that there 
were unusual regional weather patterns, which are 
known to impact stream chemistry (Siegert et  al. 
2021) and hydrologic conditions (Kingston et  al. 
2007; Suriano et  al. 2018). Climate teleconnec-
tions such as the North Atlantic Oscillation and 
the Pacific Decadal Oscillation have been related 
to streamflow and a suite of ecological processes in 
eastern North America (Detenbeck 2018), and thus 
could be related to the observed nitrate pulse. Fur-
ther research is needed to explore these connections 
and the mechanisms behind these unexpected inde-
pendent variables influencing streamwater nitrate 
concentrations and watershed nitrate export.

Our analysis highlights that the 2013–14 nitrate 
pulse was associated with multiple factors operating 
over multiple years prior to the appearance of high 
streamwater nitrate concentrations. Water residence 
time in catchments is often months to years (Benet-
tin et  al. 2015) and thus it is not surprising that the 
ecosystem has inherent time lags due to transport of 
water and solutes in the catchment. Beyond hydro-
logical time lags, sequences of biogeochemical pro-
cesses also produce time lags in nitrate accumula-
tion. For example, soil frost impacts microbial and/
or plant N uptake in the following growing season, 
creating a multiple month time lag for soil N to accu-
mulate (Campbell et al. 2014). Deterministic models 
of catchment N biogeochemistry and hydrology can 
simulate time lags as N moves between pools due to 
transformation, storage, and transport (e.g., Nguyen 
et al. 2021). Our empirical analysis required a way to 
include time lags and antecedent conditions so that 
the variables could be compared reasonably. Previ-
ous studies have used antecedent flow variables when 
analyzing stream solute export (Davis et  al. 2014). 
Another example, where a particular sequence of 

events and antecedent conditions produced a large 
streamwater nitrate export event, was from the upper 
Mississippi River basin where soil water nitrate accu-
mulated under drought conditions and then was rap-
idly flushed during major flooding after the drought 
(Loecke et  al. 2017). Similarly, the particular sea-
sonal timing of storm events or compounding effect 
of back-to-back events can have a disproportionate 
impact on solute export (Paerl et al. 2001; Lutz et al. 
2012). In our case, we did not have a clear, major 
deviation of environmental conditions from the long-
term norm that caused this nitrate pulse, however, the 
inclusion of antecedent variables helped identify the 
most likely causal set of conditions.

Our analysis was made possible by long-term, 
comprehensive research and monitoring at the 
HBEF which provided sufficient data to train a Ran-
dom Forest model. There are likely opportunities to 
conduct similar analyses at other long-term research 
catchments to gain new insights into unexplained 
streamwater biogeochemical events and shed light 
on the role of multiple interacting variables driving 
catchment biogeochemical dynamics. Such infor-
mation improves our understanding of ecosystem N 
budgets and how they are responding to global envi-
ronmental changes. A more comprehensive under-
standing of unusually high N loss periods and its 
causes will help researchers use ecosystem N budg-
ets to interpret changes in forest productivity and 
nutrition.
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