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Warm springs alter timing but not total 
growth of temperate deciduous trees

Cameron Dow1,2, Albert Y. Kim1,3, Loïc D’Orangeville4,5, Erika B. Gonzalez-Akre1, 
Ryan Helcoski1, Valentine Herrmann1, Grant L. Harley6, Justin T. Maxwell7, Ian R. McGregor1,8, 
William J. McShea1, Sean M. McMahon9,10, Neil Pederson4, Alan J. Tepley1,11,12 &  
Kristina J. Anderson-Teixeira1,10 ✉

As the climate changes, warmer spring temperatures are causing earlier leaf-out1–3 
and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a 
tendency towards increased growing season length3 and annual CO2 uptake1,3–7. 
However, less is known about how spring temperatures affect tree stem growth8,9, 
which sequesters carbon in wood that has a long residence time in the ecosystem10,11. 
Here we show that warmer spring temperatures shifted stem diameter growth of 
deciduous trees earlier but had no consistent effect on peak growing season length, 
maximum growth rates, or annual growth, using dendrometer band measurements 
from 440 trees across two forests. The latter finding was confirmed on the centennial 
scale by 207 tree-ring chronologies from 108 forests across eastern North America, 
where annual ring width was far more sensitive to temperatures during the peak 
growing season than in the spring. These findings imply that any extra CO2 uptake in 
years with warmer spring temperatures4,5 does not significantly contribute to 
increased sequestration in long-lived woody stem biomass. Rather, contradicting 
projections from global carbon cycle models1,12, our empirical results imply that 
warming spring temperatures are unlikely to increase woody productivity enough to 
strengthen the long-term CO2 sink of temperate deciduous forests.

In recent decades, tree growth in Earth’s forests has more than off-
set losses from deforestation and other disturbances, such that a net  
forest CO2 sink of approximately 1.6 Gt carbon per year offsets approxi-
mately 20% of anthropogenic emissions13, dramatically slowing the 
pace of atmospheric CO2 accumulation and climate change. Of this 
important carbon sink, approximately 47% occurs in temperate 
 forests13, with temperate deciduous forests sequestering more than 
0.3 Gt carbon per year14. The future behaviour of this carbon sink will 
have an important yet uncertain role in influencing atmospheric CO2 
and climate change15–17.

In temperate deciduous forests, spring warming generally lengthens 
the period over which trees have photosynthetically active leaves1,3,18 and 
that over which the ecosystem is a net CO2 sink1,18. On the basis of these 
observations, current terrestrial ecosystem models represent warm 
spring temperatures and longer growing seasons as contributing posi-
tively to annual gross primary productivity (GPP) and net CO2 uptake 
(that is, net ecosystem exchange (NEE))2,12,15. However, the long-term 
persistence of this extra carbon in the ecosystem, and the associated 
negative feedback to climate change1, will depend on the extent to 
which it is allocated to woody growth and therefore resides in the eco-
system for decades to centuries10,11, as opposed to being rapidly released 

back to the atmosphere through respiration19,20. Model representation 
of carbon allocation to stem growth—or woody aboveground net pri-
mary productivity (ANPPwoody) on the ecosystem level—does not capture 
known decoupling of stem growth from photosynthate production9,17,21.  
As a result, the consequences of rising spring temperatures on stem 
growth may not be accurately represented in models9,17. Understand-
ing the sensitivity of ANPPwoody to spring temperatures is central 
to predicting the future of the temperate deciduous forest carbon  
sink.

Most studies on tree stem growth responses to warmer spring 
temperatures have focused on boreal or temperate conifers, which 
tend to respond to warmer spring temperatures with an earlier start 
to growth22,23 and increased annual growth in mesic climates24,25.  
By contrast, little evidence exists as to how stem growth and ANPPwoody  
respond to warmer spring temperatures in deciduous forests8,9.  
Close coordination of budburst and initiation of xylogenesis9 sug-
gest that warm spring temperatures should shift the onset of growth 
earlier alongside observed advances in leaf phenology1–3. However, 
earlier initiation of growth would not necessarily translate to ear-
lier, faster or greater stem growth; rather, stem growth is dependent 
on environmental conditions on hourly to daily timescales26,27, and 
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annual growth is more closely linked to conditions within the growing 
season than to growing season length28, GPP21 or NEE21. Furthermore, 
growth of broadleaf deciduous trees may be sink-saturated17,29, such 
that longer growing seasons with more carbon fixation do not nec-
essarily augment growth21,30,31. Tree-ring records, which can be used 
to examine annual growth but not growth seasonality, reveal that 
growth of temperate deciduous trees tends to be most sensitive to 
temperature or potential evapotranspiration between late spring 
and early summer32,33, with some evidence that warmer spring tem-
peratures may have a modest positive effect on growth25,33. These 
observations do not necessarily align with the finding that warming 
spring temperatures increase annual forest CO2 uptake in temperate 
deciduous forests1,18. Characterizing responses of stem growth to 
warming spring temperatures is critical to bridging this conceptual 
disconnect and understanding how forest biomass growth is likely 
to change as the climate warms.

Here, we evaluate how spring temperatures affect the timing, rates 
and annual increments of stem diameter growth of temperate decidu-
ous trees across eastern North America. To test whether warmer spring 
temperatures advance the timing and extend the duration of stem 
diameter growth, we used dendrometer band measurements on 440 
trees across two mid-latitude forests. To test whether warm spring 
temperatures consistently increased annual radial increments, we 
analysed 207 tree-ring chronologies from 108 forests.

Dendrometer band analysis
Using dendrometer band measurements taken throughout multiple 
growing seasons at the Smithsonian Conservation Biology Institute 
(SCBI; VA, USA; n = 119 trees from 2011 to 2020) and Harvard Forest 
(MA, USA; n = 321 trees from 1998 to 2003), we fit a logistic growth 
model34 to determine the days of year (DOYs) when 25%, 50% and 75% 
annual diameter growth were achieved (DOY25, DOY50 and DOY75), 
the peak growing season length (Lpgs = DOY75 − DOY25), the maximum 
growth rate (gmax) and the total annual increment in diameter at breast 
height (∆DBH; Fig. 1). This analysis was performed separately for 
ring-porous and diffuse-porous species (Extended Data Table 1), which 
differ in the seasonal timing of growth27,35 (Extended Data Table 2 and 
Extended Data Fig. 1). These milestones in stem growth were com-
pared with canopy foliage phenology (measured at the ecosystem 
level via remote sensing).

Both canopy foliage phenology and the timing of stem growth 
shifted earlier as spring temperatures increased (Fig. 2). We found a 
consistent effect of temperature (Tmax or Tmin) throughout the spring, 
but the strongest effects on the timing of stem growth were found 
using Tmax during a critical temperature window (CTW). The CTW was 
identified by assessing the correlation between weekly Tmax and DOY25 
for all combinations of consecutive weeks from 1 January to mean 
DOY25 for each xylem architecture–site combination (Extended Data 
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Fig. 1 | Summary of temperate deciduous tree growth responses to  
warmer spring temperatures. a, Schematic illustrating parameters of  
interest and summarizing predominant responses of each to warmer maximum 
temperatures during a critical temperature window (CTW), defined as the 
period with the strongest temperature control over DOY25. b, Variable 
definitions and summary of responses to warmer spring temperatures at two 

temperate forests—SCBI and Harvard Forest—and for two groups of broadleaf 
deciduous species. The up and down arrows indicate increases and decreases, 
respectively, that are significant both statistically (P < 0.05) and biologically 
(effect size > 3% per °C); ‘−’ indicates no significant correlation; and ‘mixed’ 
indicates a mix of significant and non-significant correlations, often in 
different directions. DP, diffuse porous; RP, ring porous.
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Fig. 2). The CTW was defined as the weeks for which this correlation 
was strongest, and mean Tmax during this period (CTW Tmax) was used 
as our independent variable.

For ring-porous and diffuse-porous species at both sites, warmer 
CTW Tmax resulted in earlier achievement of seasonal milestones.  
Consistent with findings from previous studies, leaf phenological 
milestones advanced at both sites (Fig. 2a,b and Extended Data 
Table 2), with greenup (DOY when the enhanced vegetation index 
(EVI2) first crossed 15% of the segment EVI2 amplitude) advancing  
3.5 days per °C at SCBI (P = 0.016) and 2.4 days per °C at Harvard Forest 
(P = 0.1). Similarly, with the exception of ring-porous DOY75 at SCBI, the 
stem growth milestones DOY25, DOY50 and DOY75 decreased with CTW 
Tmax (Figs. 1 and 2c,d and Extended Data Figs. 3 and 4). Specifically, 
DOY25, DOY50 and DOY75 advanced 0–1.7 days per °C for ring-porous 
species and 2.8–2.9 days per °C for diffuse-porous species at SCBI, 
and 10.3–12.3 days per °C for ring-porous species and 0.9–4.2 days 
per °C for diffuse-porous species at Harvard Forest (Extended Data  
Table 2).

Whereas the length of time between canopy greenup and senes-
cence (that is, the day when greenness dropped below 90% of its peak) 
increased with the CTW Tmax of the porosity group containing the domi-
nant canopy species at each site (diffuse porous at SCBI and ring porous 
at Harvard Forest; Fig. 2a,b), there was no consistent lengthening of 
Lpgs (Fig. 1 and Extended Data Figs. 3 and 4).

In contrast to the pronounced effects of CTW Tmax on the timing of 
growth, its effects on gmax and ∆DBH were inconsistent and usually 
weak (Fig. 1 and Extended Data Figs. 3 and 4). Specifically, gmax, which 
occurred on average within 5 days of DOY50, displayed extremely 

small negative changes (Harvard Forest) or changes in opposite 
directions (SCBI) in relationship to CTW Tmax for ring-porous and 
diffuse-porous species. ∆DBH displayed a weak positive relationship  
(+0.003–0.008 cm per °C) with CTW Tmax at SCBI and a weak negative 
relationship (−0.02 to 0.003 cm per °C) at Harvard Forest (Extended 
Data Fig. 3).

Tree-ring analysis
To understand how annual radial stem growth increments have 
responded to spring temperatures at the centennial scale, we ana-
lysed tree-ring chronologies of 12 species at SCBI33 and four species at 
Harvard Forest (Extended Data Table 1), plus an additional 191 chronolo-
gies from 106 sites (Fig. 3, Extended Data Table 3 and Extended Data 
Fig. 5). In total, our analysis included 207 chronologies representing 
24 broadleaf species at 108 sites distributed from Alabama (34.35° N 
latitude) to Michigan (45.56° N latitude) and spanning a 15 °C range 
in April Tmax. Across all chronologies, the standardized ring-width 
index (RWI) was significantly (95% confidence interval did not include 
0) positively correlated with April Tmax for only 2% of chronologies:  
1 of 142 ring-porous and 4 of 66 diffuse-porous species–site combi-
nations (Extended Data Table 3). There were even fewer significant 
positive correlations with March and May Tmax: 0% and 1%, respectively 
(Extended Data Table 3). By contrast, RWI was frequently negatively 
correlated with Tmax during peak growing season months (May–August), 
with significant correlations for 52% (45 of 141 (May), 107 of 141 ( June), 
91 of 141 ( July) and 53 of 141 (August)) and 46% (10 of 66 (May), 52 of 66 
( June), 36 of 66 ( July) and 23 of 66 (August)) of species–site–month 
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Fig. 2 | Responses of foliage phenology and stem growth timing to spring 
temperatures at SCBI and Harvard Forest. a,b, Ecosystem-level canopy foliage 
phenology from 2001 to 2018 at SCBI (a) and Harvard Forest (b), obtained from 
the MODIS Global Vegetation Phenology product (MCD12Q2.006) for a single 
pixel at the centre of each ForestGEO plot. G, greenup; M, mid-greenup; P, peak; 
S, senescence (that is, beginning of greendown). c,d, Dates at which stem growth 
milestones were achieved, on average, for sampled populations of ring-porous 
and diffuse-porous trees at SCBI (2011–2020; c) and Harvard Forest (1999–2003; d). 

Mean DOY25, DOY50 and DOY75 were estimated using the Bayesian model 
visualized, with confidence intervals, in Extended Data Fig. 3. Mean Tmax was 
calculated for each xylem architecture–site combination over the respective 
CTW, then turned into a ratio and assigned a colour on a gradient in which the 
coldest year in the sample is blue and the warmest is red. Leaf phenology years 
are coloured according to the CTW Tmax of the porosity group containing the 
dominant canopy species at each site (diffuse porous at SCBI and ring porous at 
Harvard Forest).
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combinations for ring-porous and diffuse-porous species, respectively. 
Tmin generally exhibited weaker relationships to annual growth than 
Tmax, with few significant correlations between spring Tmin and RWI 
(Extended Data Fig. 6).

To test whether warm spring temperatures might result in storage of 
non-structural carbohydrates that would augment growth the following 
year36, we extended the analysis to examine correlations between RWI 
and Tmax in the previous year (Extended Data Fig. 7). This revealed little 
effect of previous spring temperatures on annual growth, with significant 
positive correlations of RWI to previous March or April Tmax for 5 of 142 
ring-porous chronologies and to previous April or May Tmax for 7 of 66 
diffuse-porous chronologies.

To test whether there may be an enhancement of growth by warmer 
spring temperatures that was offset by the negative effect of high 

summer temperatures, we tested for the joint effects of April and June–
July Tmax on RWI. Results were qualitatively similar to the univariate cor-
relations (Fig. 3), with significant (P ≤ 0.05) positive correlations to April 
Tmax for only 4% of chronologies and significant negative correlations 
with June–July Tmax for 77% of chronologies (Extended Data Table 3).

Discussion
Together, our results demonstrate that warmer spring temperatures 
in the temperate deciduous forests of eastern North America advance 
the timing of stem diameter growth but have little effect on annual 
increments (Figs. 1–3). The observed advance in stem growth under 
warmer spring temperatures parallels advances observed for canopy 
foliage phenology1,3 (Fig. 2a,b) and NEE1,3. However, inconsistent with 
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Fig. 3 | Sensitivity of annual growth, as derived from tree rings, to monthly 
mean Tmax, for 207 chronologies from 108 sites across eastern North 
America. Colours indicate the bootstrapped correlation between monthly  
Tmax and a dimensionless RWI derived from the multiple trees that form each 
chronology and emphasizing interannual variability associated with climate. 
Chronologies are grouped by xylem porosity and ordered by mean April Tmax. 

Plots are annotated to highlight records from our two focal sites: SCBI and 
Harvard Forest (HF; Extended Data Table 1). Sites included are mapped in 
Extended Data Fig. 5, species analysed and numbers of significant correlations 
to Tmax are summarized in Extended Data Table 3, and chronology details are 
provided in Supplementary Table 1.
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the concept that an earlier start to growth would increase ANPPwoody, 
we demonstrate that warmer spring temperatures either hasten the 
deceleration of stem expansion or otherwise fail to translate extended 
growing seasons into biologically significant increases in stem growth 
(Fig. 1), and thereby have negligible effect on total annual growth for 
most species and locations (Fig. 3). Our observations suggest that the 
deceleration of stem expansion, which occurs in mid-summer near the 
time of peak canopy greenness3,28 (Extended Data Fig. 1), is driven by 
cues other than photosynthate limitation, such as water stress21,26,28, 
nutrient limitation37, day length28 or sink saturation21,29. This adds to a 
growing body of evidence for a sink limitation of stem growth17,21,31, in 
which global change factors known to enhance photosynthesis, such 
as longer growing seasons or elevated levels of CO2, do not cause a 
corresponding increase in stem growth19,28.

Combined with widespread observations that warming spring tem-
peratures tend to lengthen the season of CO2 uptake3,18 and increase net 
annual CO2 uptake1,3–7, our findings imply a lengthening of the period 
from peak stem growth to the cessation of CO2 uptake by the ecosys-
tem and an increase in carbon allocated to functions other than stem 
expansion in the current or following year. It remains theoretically 
possible that warm spring temperatures could augment ANPPwoody, 
which, although routinely calculated based on stem growth, can be par-
tially decoupled from it through differences in wood density or carbon 
content21. Extra carbon fixed in years with warm spring temperatures 
could potentially be allocated to the formation of more carbon-dense 
wood, either through enhanced cell wall thickening (a process that lags 
behind stem expansion38) or to a higher ratio of high-density latewood 
to lower-density earlywood. However, existing evidence indicates that 
vessel features are most strongly controlled by summer drought stress 
in the previous (earlywood) or current (latewood) year, whereas warm 
spring temperatures have a neutral or negative effect on the width of 
latewood39–41. Thus, it is unlikely that warm spring temperatures have 
a positive effect on total carbon content of annual rings or ANPPwoody.

The fate of any additional carbon fixed during years with warm spring 
temperatures remains unresolved, but possible destinations—including 
respiration, non-structural carbohydrate storage and production of 
foliage, reproductive structures, roots30 or root exudates—generally 
have shorter residence times than woody growth. Indeed, when GPP 
of a mature forest was increased through experimental enrichment of 
CO2, ANPPwoody remained unchanged, whereas additional carbon was 
released back to the atmosphere on relatively short timescales through 
enhanced respiration19. Consistent with this, it has been observed that 
carbon gains from an earlier spring can be offset through autumn or 
winter respiration20, although even the carbon in shorter-lived pools 
would often be carried over into the following year42. Thus, observed 
augmentation of NEE by warm spring temperatures1,6,7 is likely to be 
compensated by increased respiration in subsequent years.

It is possible that as spring warming continues, forests will adjust to 
directional changes in growing season length with an enhancement of 
ANPPwoody. Across latitudinal gradients, warmer spring temperatures are 
associated with earlier leaf-out43 and longer growing seasons, which in 
turn are correlated with greater tree growth44, ANPPwoody(ref. 45) and NEE46. 
Thus, warming spring temperatures are likely to increase the biophysical 
potential for annual tree growth. If extra photosynthate made available 
through a growing difference between GPP and ANPPwoody is allocated 
to functions that relieve limitations on woody growth—for example, by 
enhancing nutrient and water acquisition through enhanced allocation 
to roots30,47—it is possible that warming spring temperatures could ulti-
mately increase ANPPwoody through indirect mechanisms. Understanding 
how warming spring temperatures are influencing carbon allocation 
within ecosystems remains a key outstanding question.

Regardless of the influence of spring temperatures on carbon 
cycling within the ecosystem, our results clearly demonstrate that 
the dominant effects of temperature on deciduous tree growth occur 
not in the spring, but during the peak growing season of the current 

or sometimes previous year (Fig. 3 and Extended Data Fig. 7), when 
increased atmospheric demand associated with high temperatures 
can limit both leaf-level gas exchange and stem growth21,26,28,48. Indeed, 
the timing of peak growth in June and July (Extended Data Table 2 and 
Extended Data Fig. 1) coincides with the timing of the greatest sensi-
tivity of annual growth to Tmax (Fig. 3 and Extended Data Table 3). This 
finding is consistent with numerous tree-ring studies demonstrating 
strong sensitivity of growth to drought stress or high temperatures 
during the peak growing season24,32,33,44. Warm spring temperatures 
may also amplify summer drought stress in some times and places, 
effectively cancelling out any positive effects of an extended growing 
period2,49,50. Although such an interaction was unlikely to have had 
a major role within the scope of our dendrometer band study, given 
relatively mesic conditions and lack of significant correlation between 
spring temperatures and summer drought stress (see Methods), our 
tree-ring analysis does reveal a higher frequency of negative than posi-
tive correlations of annual growth to spring temperatures, particularly 
for ring-porous species in cooler climates (Fig. 3 and Extended Data 
Table 3). Thus, warm spring temperatures can have a net negative effect 
on growth, particularly when water is limiting25.

As spring temperatures become increasingly warmer, growing sea-
sons will start earlier. However, barring rapid acclimation of temperate 
deciduous forests to the warming conditions, advancement in the tim-
ing of stem growth (Fig. 1) is unlikely to provide a sustained augmenta-
tion of carbon sequestration in woody biomass and ensuant negative 
climate change feedback that is anticipated in most climate forecasting 
models1,2,12,31. Rather, the dominant effect of rising temperatures on 
temperate deciduous forest woody productivity will be a negative effect 
of high summer temperatures15 (Fig. 3), which constitutes a positive 
feedback to climate change.
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Methods

Dendrometer band analysis
Dendrometer band measurements were collected at SCBI51 and Harvard 
Forest3,35, both part of the Forest Global Earth Observatory (ForestGEO)52,53.  
SCBI (38.8935° N, 78.1454° W; elevation 273–338 metres above sea 
level (m.a.s.l.)) is located in the Blue Ridge Mountains at the northern  
end of Shenandoah National Park, 5 km south of Front Royal, VA, 
USA. The forest is secondary and mixed age, having established in the 
mid-nineteenth century after conversion from agricultural fields51. 
Dominant canopy species within the 25.6 ha ForestGEO plot include 
tulip poplar (Liriodendron tulipifera L.), oaks (Quercus spp.) and hicko-
ries (Carya spp.)33. The climate is humid temperate, with the 1950–2019 
mean annual precipitation of 1,018 mm and temperatures averaging 
1 °C in January and 24 °C in July44. Within the study period for the den-
drometer band analysis (2011–2019), spring temperatures (March and 
April Tmax; source: CRU v.4.04 (ref. 54)) and the summer standardized 
precipitation evapotranspiration index (SPEI)55 values (4-month value 
of August) were similar to the average climate before the study period 
(1970–2010). Specifically, average spring Tmax was 16.9 ± 1.4 °C (mean 
± 1 s.d.) before the study period (range: 14.1–19.9) and 17.6 ± 1.7 °C 
(range: 15.6–20) during the study period, whereas the summer SPEI 
was −0.06 ± 1.02 (range: −1.7 to 2.4) before the study period and 0.5 ± 0.8 
(range: −0.8 to 1.6) during.

Harvard Forest (42.5388° N, 72.1755° W; elevation 340–368 m.a.s.l.) is 
located near the central Massachusetts town of Petersham. The forest is 
secondary and mixed age, having re-established around the beginning 
of the twentieth century following agricultural use and significant hur-
ricane damage in 1938. Dominant species within the 35 ha ForestGEO 
plot are hemlock (Tsuga canadensis (L.) Carrière), oak (Quercus spp.) 
and red maple (Acer rubrum L.). The climate is temperate continental, 
with the 1950–2019 mean annual precipitation of 1,104 mm and tem-
peratures averaging −5 °C in January and 22 °C in July44. Within the 
study period for the dendrometer band analysis (1999–2003), spring 
temperatures (March and April Tmax; source: CRU v.4.04 (ref. 54)) and 
summer SPEI values (4-month value of August) were similar to the aver-
age climate before the study period (1970–1998). Specifically, average 
spring Tmax was 10.9 ± 1.5 °C before the study period (range: 8.0–13.2) 
and 11.2 ± 1.0 °C (range: 10.1–12.2) during the study period, whereas the 
summer SPEI was 0.1 ± 0.9 (range: −1.8 to 1.7) before the study period 
and 0.2 ± 0.9 (range: −1.0 to 1.1) during. The driest summer during the 
study period (1999) had the fifth lowest SPEI value (−1.0) in the period 
1970–2003, with precipitation of 52 mm per month in June–August 
compared to average monthly precipitation of 100 mm or more35.

Metal dendrometer bands were installed on 941 trees within the SCBI 
and Harvard Forest ForestGEO plots. Bands were placed on dominant 
species, including two diffuse and two ring-porous species at SCBI and 
eight diffuse and three ring-porous species at Harvard Forest (Extended 
Data Table 1). Although we do not estimate the ages of the trees in our 
sample, bands at both sites were placed on individuals of differing sizes 
in an attempt to measure trees across a range of ages. Bands were meas-
ured with a digital calliper approximately every 1–2 weeks within the 
growing season from 2011 to 2020 at SCBI and 1998 to 2003 at Harvard 
Forest. The number of bands measured at each site fluctuated slightly 
as trees were added or dropped from the census (for example, because 
of tree mortality). Across years, the number of bands sampled averaged 
129 (range: 91–138) at SCBI and 717 (range: 700–755) at Harvard Forest.

Measurements were timed to begin before the beginning of spring 
growth and to continue through the cessation of growth in the fall. 
At SCBI, the median start date was 14 April, which was adjusted for-
ward when early leaf-out of understory vegetation was observed, with 
the earliest start date being 30 March (in 2020). Measurements were 
continued through to fall leaf senescence, with the median end date 
being 17 October and the latest end date being 26 November (in 2012).  
At Harvard Forest, all measurements from 1998 were dropped because 

of a late start date (26 May). Among the remaining years, the median 
start date was 21 April and the median end date of 27 October. 1999 
was an anomalous year in which initial measurements were taken on 
5 January, but were not taken again until 15 April. The latest end date 
was 11 November 2002. In our analysis, each band year was treated 
independently, with no data overlap from one year to the next.

The raw dendrometer band data were screened to remove records 
or entire tree-years that were inappropriate for our analysis because 
of reduced reliability of predicted growth in the modelled curves.  
Specifically, we removed tree-years with small or negligible total growth 
(∆DBH ≤ 0.005 cm; SCBI = 26, Harvard Forest = 253) and tree-years 
in which the first intra-annual measurement was later than the first 
spring survey (trees that were missed in the initial census; SCBI = 22, 
Harvard Forest = 8). In total, this process removed 309 of the 2,701 
available tree-year records for 2011–2020 at SCBI and 1999–2003 at 
Harvard Forest.

We fit a five-parameter logistic growth model34 to dendrometer band 
data from each tree-year to define stem growth milestones and growth 
rates (Fig. 1). In particular, we modelled the observed DBH on a given 
DOY (that is, Julian days) as:

L
K L

θ r θ
DBH = +

−
1 + 1/ ⋅ exp[ − (DOY − DOY )/ ]θ

ip

Here, L and K are lower and upper asymptotes of the model. DOYip is 
the DOY during which the inflection point in growth rate occurs, r 
shapes the slope of the curve at the inflection point, and θ is a tuning 
parameter controlling the slope of the curve towards the upper asymp-
tote. This allows an asymmetric fit to the data, in which the onset of 
growth can be estimated independent of the cessation of growth. When 
θ = 1, gmax occurs on DOYip. The model outputs two additional variables, 
a and b, which represent the beginning and end DBH in each model 
year and are constrained by the first and last dendrometer band meas-
urements. The model was fit in R v4.0 using the functions developed 
in the Rdendrom package34. These functions take the time series of 
manual dendrometer band measurements and return maximum- 
likelihood-optimized values of the above five parameters that best 
predict DBH for each DOY. An advantage of this approach is that 
short-term shrinkage and swelling associated with rain events34,56 and 
measurement errors show up as residual variation and do not unduly 
influence the parameters of interest. Having fit the model for each 
band year of data, we then modelled DBH using these optimal param-
eter values in our logistic growth model and extracted the intra-annual 
growth variables of interest (Fig. 1).

After fitting the growth model, we removed tree-years with poor fits.  
Models were judged to be poorly fit if modelled growth parameters 
were outliers, which were commonly indicative of unrealistic fits (for 
example, growth occurring outside the growing season or over a very 
short period) and underlain by very slow tree growth or poor data 
records that passed the initial screening (described above). Modelled 
fits for tree-years were removed under two conditions: (1) gmax was 2.5 
or more standard deviations away from the mean for each site–xylem 
architecture group combination (SCBI = 3, Harvard Forest = 11), and (2) 
timing variables (DOYip, DOY25, DOY50 and DOY75) were 2.5 or more stand-
ard deviations away from the means for their site, xylem architecture 
group and year (SCBI = 74, Harvard Forest = 101). In total, this process 
removed 189 of the 2,392 tree-year records deemed appropriate for 
analysis, leaving a total of 2,203 tree-years included in the final analysis 
(Extended Data Table 1). At both sites, the tree-years removed through 
this method were proportional to the original sample size, indicating 
that no species or size class was disproportionately removed compared 
with others. This process was repeated using 2 and 3 standard deviations 
as the cut-off for defining outliers, yielding qualitatively similar results.

Canopy foliage phenology data for the years 2001–2018 were 
extracted for SCBI and Harvard Forest from the MCD12Q2 V6 Land 



Cover Dynamics product (that is, MODIS Global Vegetation Phenol-
ogy product)57 via Google Earth Engine. For each year at each site, we 
extracted data from the pixel (500-m resolution) containing the centre 
of each forest plot. Using the daily MODIS 2-band EVI2 data, the product 
yields the timing of phenometrics (vegetation phenology) over each 
year, including timing of greenup, mid-greenup, peak and senescence, 
as used in this study. Data points were included in the analysis if they 
were flagged as ‘good’ or ‘best’ quality.

For the dendrometer band and leaf phenology analyses, climate 
data corresponding to the measurement periods were obtained from 
local weather stations at each focal site. For SCBI, weather data were 
obtained from a meteorological tower adjacent to the ForestGEO plot, 
via the ForestGEO Climate Data Portal v1.0 (https://forestgeo.github.io/
Climate/)58. The R package climpact (see www.climpact-sci.org)59 was 
used to plot temperatures for visual inspection and to identify readings 
that were more than 3 standard deviations away from yearly means, 
which were labelled as outliers and removed from the dataset. Gaps 
in the SCBI meteorological tower data were subsequently filled using 
temperature readings obtained from a National Center for Environ-
mental Information (NCEI) weather station located in Front Royal, VA, 
USA (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/
GHCND:USC00443229/detail). Daily temperature records for Harvard 
Forest, which had already been gap-filled on the basis of other local 
records, were obtained from the Harvard Forest weather station60,61. 
For each site, we used records of daily maximum (Tmax) and minimum 
(Tmin) temperatures. SPEI55 values were obtained from the ForestGEO 
Climate Data Portal v1.0 (https://forestgeo.github.io/Climate/)55,58,62.

The CTW (Fig. 1), defined as the period over which Tmax was most 
strongly correlated with DOY25, was determined using the R package 
climwin63. This package tests the correlation between one or more 
predictor climate variable and a biological outcome variable over all 
consecutive time windows within a specified timeframe. It does so by 
reporting the correlation and ∆AICc, the difference in Akaike informa-
tion criterion corrected for small sample size relative to a null model 
for each window. Here, we tested for correlation between temperature 
predictor variables (Tmax and Tmin) and biological outcome variable 
DOY25 over the timeframe from 1 January to the mean DOY25 for the 
species group (by xylem porosity) and site (Extended Data Table 2). 
The time period yielding the lowest ∆AICc was selected as the CTW. 
To avoid spurious correlations that could occur using temperature 
data at the daily resolution, we ran this analysis with weekly resolution, 
using temperatures averaged over weekly time periods. Because Tmax 
proved to have a generally stronger influence over DOY25 and other 
growth parameters, we focused on this variable in our ultimate model, 
as opposed to Tmin. We defined CTW for DOY25, as opposed to other 
parameters describing the timing of growth, because spring tempera-
tures should have the most direct influence on this variable.

To ensure that patterns were robust under an alternative definition 
of CTW, and to parallel the monthly time windows used in our tree-ring 
analysis (detailed below; Fig. 3 and Extended Data Figs. 6 and 7), we 
also ran analyses in which we fixed the CTW identified by climwin to 
be the month with the most days in the CTW (Extended Data Table 2) 
for each critical window. The months identified were March and April 
for ring-porous and diffuse-porous species at SCBI, respectively, and 
April and May for ring-porous and diffuse-porous species at Harvard 
Forest, respectively.

Correlation between the dendrometer band-derived growth param-
eters (DOY25, DOY50, DOY75, Lpgs, gmax and ∆DBH; Fig. 1) and CTW Tmax (at 
weekly or monthly resolution, as described above) were assessed using 
a linear mixed model in a hierarchical Bayesian framework. Analyses 
were run for both Tmax and Tmin, with qualitatively similar results, but we 
present only results for Tmax, which had an overall stronger correlation 
with growth parameters. Mixed-effect models were used to test the 
response of growth parameters to fixed effects of xylem porosity and 
mean Tmax (or Tmin) during the CTW, along with random effects of species 

and of individual tree. We ran separate models for each site, and for the 
response of all growth parameters to Tmax (or Tmin). This mixed-effect 
model was run within a hierarchical Bayesian framework and fit using 
the rstanarm version 2.21.3 R interface to the Stan programming lan-
guage64,65. In all cases, unless otherwise specified, all prior distributions 
were set to be the weakly informative defaults.

To rule out the possibility that observed patterns were strongly influ-
enced by summer drought, we examined the relationship between 
spring temperatures and summer SPEI indices. Linear models were 
run with 4-month, 6-month and 12-month SPEI values of June, July and 
August versus April Tmax to determine whether warm spring tempera-
tures were associated with greater summer drought stress in our data-
set. No significant correlations were found (all P > 0.05).

Tree-ring analysis
We analysed tree-ring records for 108 sites, including our focal sites. All 
cores had been previously collected, cross-dated and measured using 
standard collection and processing methodologies66,67.

Dominant tree species were cored at both SCBI33,51 and Harvard  
Forest3,68,69 following sampling designs that covered a broad range of 
DBH. We analysed records for the ring-porous and diffuse-porous spe-
cies at each site (Extended Data Table 1), but excluded semi-ring-porous 
species (for example, Juglans nigra L. at SCBI) and conifers (for example, 
Tsuga canadensis at Harvard Forest). We studied a total of 976 cores, 
which included 12 species at SCBI and four species at Harvard Forest 
(Extended Data Table 1).

The tree-ring records from our focal sites were complemented 
with a much larger collection spanning 106 deciduous and mixed for-
est sites in eastern North America32,70,71. For the majority of sampled 
populations (that is, site–species combinations), sampling focused 
on canopy trees (typically more than 20 trees per population)32,70,71, 
whereas approximately 15% of the total 207 chronologies came from 
plot-level collections in which trees above a certain diameter (typically 
10-cm DBH) were censused and cored33,69. Again, analyses were limited 
to broadleaf deciduous species with clearly defined xylem porosity 
(that is, excluding semi-ring porous).

For each species–site combination, we converted tree-ring records 
into the dimensionless RWI to emphasize interannual variability asso-
ciated with climate72. A two-thirds n spline was applied to each core 
using ARSTAN V49_1b to produce standardized ring-width series; n is 
the number of years in each series72,73. An adaptive power transforma-
tion, a process that also stabilizes the variance over time74, was used to 
minimize the influence of outliers in all series. Low series replication, 
often in the earliest portions of a chronology collection, can also inflate 
the variance of tree-ring records75. The one-thirds spline method was 
chosen when replication in the inner portion of each chronology (the 
earliest approximately 30–50 years of each record depending on the 
full chronology length) was less than three trees. When replication was 
greater than n = 3 trees, we used the average correlation between raw 
ring-width series (rbar) method. The robust biweight mean chronol-
ogy (RWI) for each species–site combination was calculated from the 
ring-width indices following variance stabilization73. We defined chro-
nology start year (Extended Data Table 1) as the year in which subsample 
signal strength passed a threshold of subsample signal strength = 0.8, 
or where 80% or more of the population signal was captured in the 
chronology.

For the analysis of correlation between RWI and climate variables, 
we obtained monthly Tmax and Tmin data for 1901–2019 from CRU v.4.04 
(ref. 54). Correlations between monthly climate and RWI were assessed 
in R v 4.0 (ref. 76) using the packages dplR77 and bootRes78. Reported 
correlations and significance were determined using bootstrapped 
confidence intervals. Summary figures were created using the package 
dplR77 (Fig. 3 and Extended Data Figs. 6 and 7).

Our analysis focused on assessing correlations of RWI to months 
spanning January to September of the current year (presented in Fig. 3 
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and Extended Data Fig. 6). To test for potential lag effects of spring 
temperatures on growth the following year, we also ran a version of 
the analysis extending back to include climate of every month of 
the previous year (Extended Data Fig. 7). Correlations and signifi-
cance levels for months March–August are given in Supplementary  
Table 1.

We used a multivariate model to test for joint effects of April and sum-
mer Tmax on RWI. We focused on April to represent spring temperatures 
because it was the month with the greatest overall alignment with the 
CTWs identified in the dendrometer band analysis and had the high-
est rate of positive correlations with RWI (Extended Data Table 3). We 
began by testing univariate correlations of Tmax over three summer 
windows: June, June–July and May–August. Having determined that, 
among these, June–July explained the most variation, we then ana-
lysed the joint effects of April Tmax and June–July Tmax on RWI for each 
chronology independently using the base lm() function in R. Slopes 
and P values for each chronology are given in Supplementary Table 1. 
Although some models may have benefitted from data transformations, 
we determined that assumptions of normality and homoscedasticity 
were sufficiently met for the purposes of this analysis.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during the current study are avail-
able via GitHub in the growth_phenology repository of the ForestGEO 
Ecosystems & Climate Lab at SCBI (https://github.com/EcoClimLab/
growth_phenology) and archived in Zenodo (https://doi.org/10.5281/
zenodo.6632090). Master versions of the dendrometer band data 
are available for SCBI via GitHub in the Dendrobands repository 
of the SCBI ForestGEO plot (https://github.com/SCBI-ForestGEO/ 
Dendrobands), which is archived in Zenodo (https://doi.org/10.5281/
zenodo.5551143), and for Harvard Forest via the Harvard Forest Data 
Archive (https://harvardforest1.fas.harvard.edu/exist/apps/datasets/
showData.html?id=HF149). Weather data for SCBI were obtained from 
the ForestGEO Climate Data Portal v1.0 (https://github.com/forestgeo/ 
Climate/tree/master/Climate_Data/Met_Stations/SCBI), which is archi
ved in Zenodo (https://doi.org/10.5281/zenodo.3958215), and the NCEI 
weather station located in Front Royal, VA, USA (https://www.ncdc.noaa. 
gov/cdo-web/datasets/GHCND/stations/GHCND:USC00443229/detail).  
Weather data for Harvard Forest are available through the Harvard For-
est Data Archive (https://harvardforest1.fas.harvard.edu/exist/apps/ 
datasets/showData.html?id=HF001 and https://harvardforest1.fas. 
harvard.edu/exist/apps/datasets/showData.html?id=HF000). Climate 
data were obtained from CRU v.4.04 via the ForestGEO Climate Data 
Portal v1.0 (https://github.com/forestgeo/Climate/tree/master/ 
Climate_Data/CRU), which is archived in Zenodo (https://doi.org/ 
10.5281/zenodo.3958215). The SPEI was obtained from the ForestGEO 
Climate Data Portal v1.0 (https://github.com/forestgeo/Climate/tree/ 
master/Climate_Data/SPEI), which is archived in Zenodo (https://doi.org/ 
10.5281/zenodo.3958215). Canopy foliage phenology data were 
extracted from the MCD12Q2 V6 Land Cover Dynamics product (that 
is, MODIS Global Vegetation Phenology product) via Google Earth 
Engine (https://developers.google.com/earth-engine/datasets/
catalog/MODIS_006_MCD12Q2#description). In addition to being 
archived in the repository for this project, many tree-ring datasets 
are archived in the International Tree-Ring Data Bank (https://www.
ncei.noaa.gov/products/paleoclimatology/tree-ring), the Dendro-
Ecological Network (https://www.uvm.edu/femc/dendro/) and/or the 
Harvard Forest Data Archive (https://harvardforest.fas.harvard.edu/
harvard-forest-data-archive), as detailed in Supplementary Table 1. 
Original tree cores are archived at the institutions of various members of 

the author team (Harvard Forest, SCBI, Indiana University and University  
of Idaho) and will be made available on reasonable request.

Code availability
Data were analysed in the open source statistical software R (version 4.0).  
We used the packages climwin v.1.2.3 (https://cran.r-project.org/web/
packages/climwin/index.html), dplR v.1.0.2, bootRes v1.2.4, rstanarm 
v.2.21.1 and functions from Rdendrom v.0.1.0 (https://github.com/
seanmcm/RDendrom/). We used climpact software v.1.2.8 (see www.
climpact-sci.org). Mixed-effect models were run within a hierarchical 
Bayesian framework and fit using the rstanarm version 2.21.3 R interface to 
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Extended Data Fig. 1 | Seasonal patterns of forest canopy greenness  
(top row) and stem growth of ring- and diffuse-porous trees, represented 
as both relative and cumulative fractions of total annual growth (middle 
and bottom rows, respectively), at the Smithsonian Conservation Biology 
Institute (SCBI) and Harvard Forest. In the top row, canopy greenness is 
characterized using the two band Enhanced Vegetation Index (EVI2), with each 

line representing a year between 2000 and 2018. For stem growth, each line 
represents the average growth over one year, as modeled based on a 
five-parameter logistic growth model to dendrometer band data. Dashed lines 
represent modeled DBH change which fell outside of the median DOY where 
predicted starting and ending DBHs were reached. Solid lines represent DBH 
change attributable to stem growth.



Extended Data Fig. 2 | Landscapes of relationships between the day of year 
on which 25% of annual growth is achieved (DOY25) and temperature in prior 
weeks for ring- and diffuse-porous trees at the Smithsonian Conservation 
Biology Institute (SCBI) and Harvard Forest. Shown are matrices of  
β coefficients from first-order linear regressions between mean maximum 
temperature (Tmax) and DOY25. Window Open and Window Close indicate 
number of weeks prior to DOY25 (listed in Extended Data Table 2). Yellow 

shading indicates neutral relationships, while orange or red shading indicates 
that DOY25 advances with increased Tmax over the given time window (negative β). 
Black circles indicate the critical temperature window selected based on 
minimization of ∆AICc, the difference in Akaike Information Criterion 
corrected for small sample size relative to a null model. Critical temperature 
windows are listed in Extended Data Table 2.
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Extended Data Fig. 3 | Response of stem growth timing and rates to mean 
maximum temperatures (Tmax) during the spring critial temperature 
window (CTW) for ring- and diffuse-porous species at the Smithsonian 
Conservation Biology Institute (SCBI) and Harvard Forest. CTW was defined 
as the period over which Tmax was most strongly correlated with the day of year 
on which 25% of annual growth was achieved (DOY25; Extended Data Table 2, 
Extended Data Fig. 2). Shown are relationships between mean Tmax over the  
CTW and days of the year on which 25%, 50%, and 75% total stem growth were 
achieved (DOY25, DOY50, DOY75, respectively; first row); the length of the peak 

growing season (Lpgs; second row); maximum growth rate (gmax; third row); and 
total seasonal radial stem growth (∆DBH; fourth row). Posterior predictions of 
each variable that did not include zero are represented with solid lines, while 
those that do include zero use dotted lines. The 95% credible intervals are 
represented by bands centered on the posterior mean for each year. For both 
species groups at both sites, DOY25, DOY50, and DOY75 all declined significantly 
with mean Tmax during their respective CTW. Dots represent growth parameter 
values for individual tree-year combinations, which were derived by fitting a 
five-parameter logistic growth model to dendrometer band data.



Extended Data Fig. 4 | Response of stem growth timing and rates to mean 
maximum temperatures (Tmax) for the month most closely corresponding 
to the spring critial temperature window (CTW) for ring- and diffuse- 
porous species at the Smithsonian Conservation Biology Institute (SCBI) 
and Harvard Forest. CTW was defined as the period over which Tmax was most 
strongly correlated with the day of year on which 25% of annual growth was 
achieved (DOY25; Extended Data Table 2, Extended Data Fig. 2), and the most 
closely corresponding month was determined as that with the greatest number 
of days within the CTW. Shown are relationships between monthly Tmax and days 
of the year on which 25%, 50%, and 75% total stem growth were achieved  

(DOY25, DOY50, DOY75, respectively; first row); the length of the peak growing 
season (Lpgs; second row); maximum growth rate (gmax; third row); and total 
seasonal radial stem growth (∆DBH; fourth row). Posterior predictions of each 
variable that did not include zero are represented with solid lines, while those 
that do include zero use dotted lines. The 95% credible intervals are represented 
by bands centered on the posterior mean for each year. For both species groups 
at both sites, DOY25, DOY50, and DOY75 declined significantly with April Tmax, with 
the exception of DOY25 for ring-porous species at SCBI. Dots represent growth 
parameter values for individual tree-year combinations, which were derived by 
fitting a five-parameter logistic growth model to dendrometer band data.
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Extended Data Fig. 5 | Map of sampling locations of tree-ring chronologies analyzed in this study. Sites are colored by the xylem porosity type of species 
sampled: ring poroous (RP), diffuse porous (DP), or both. Sampling details are provided in Supplementary Table 1. Base map source is ggplot2.



Extended Data Fig. 6 | Sensitivity of annual growth, as derived from tree- 
rings, to monthly mean minimum temperatures (Tmin), for 207 chronologies 
from 108 sites across eastern North America (Extended Data Fig. 5).  
Colors indicate the bootstrapped correlation between monthly Tmin and a 
dimensionless ring width index (RWI) derived from the multiple trees that form 
each chronology and emphasizing interannual variability associated with 

climate. Chronologies are grouped by xylem porosity and ordered by mean 
April Tmin. Plots are annotated to highlight records from our two focal sites,  
the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest  
(HF) (Extended Data Table 1). Species analyzed and numbers of significant 
correlations to Tmin are summarized in Extended Data Table 3, and chronology 
details are given in Supplementary Table 1.
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Extended Data Fig. 7 | Sensitivity of annual growth, as derived from tree- 
rings, to monthly mean maximum temperatures (Tmax) of the current  
and past year, for 207 chronologies from 108 sites across eastern North 
America (Extended Data Fig. 5). Colors indicate the bootstrapped correlation 
between monthly Tmax and a dimensionless ring width index (RWI) derived from 
the multiple trees that form each chronology and emphasizing interannual 
variability associated with climate. Chronologies are grouped by xylem 

porosity and ordered by mean April Tmax. Plots are annotated to highlight 
records from our two focal sites, the Smithsonian Conservation Biology 
Institute (SCBI) and Harvard Forest (HF) (Extended Data Table 1). Figure 
presents the same results as Fig. 3 but extends back to include the previous year. 
Species analyzed and numbers of significant correlations to Tmax are 
summarized in Extended Data Table 3, and chronology details are given in 
Supplementary Table 1.



Extended Data Table 1 | Dominant broadleaf deciduous species at the Smithsonian Conservation Biology Institute (SCBI) and 
Harvard Forest, along with sample sizes included in our final analysis
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Extended Data Table 2 | Summary of parameters describing the seasonality and temperature sensitivity of broadleaf deciduous 
tree woody growth and canopy phenology at the Smithsonian Conservation Biology Institute (SCBI) and Harvard Forest

Temperature sensitivity refers to the sensitivity of a parameter to the mean maximum temperature (Tmax) during the critical temperature window (CTW, Fig. 1). Because leaf phenology measure-
ments were derived from satellite imagery and included both ring- and diffuse-porous trees, the selection of a critical window was less straightforward. We used the CTW of the porosity group 
containing the dominant canopy species at each site: Liriodendron tulipifera (diffuse porous) at SCBI and Quercus rubra (ring porous) at Harvard Forest.



Extended Data Table 3 | Summary of tree-ring chronologies analyzed and number of significant (at significance level = 0.05) 
positive or negative correlations of ring width index to monthly Tmax in univariate and multivariate analyses
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