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Increasing forest carbon sinks in cold and arid northeastern Tibetan Plateau 
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• 104-plot of forest inventories at three- 
phase were carried out at cold-arid 
regions. 

• Spruce carbon density increased by 
17.34 % from 2006 to 2016 in the Qilian 
Mountains. 

• Warming and increasing precipitation 
contributed to the increase of carbon 
density. 

• Carbon density increased while seques-
tration rate decreased with forest age.  
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A B S T R A C T   

Arid forest lands account for 6 % of the world’s forest area, but their carbon density and carbon storage capacity 
have rarely been assessed. Forest inventories provide estimates of forest stock and biomass carbon density, 
improve our understanding of the carbon cycle, and help us develop sustainable forest management policies in 
the face of climate change. Here, we carried out three forest inventories at five-year intervals from 2006 to 2016 
in 104 permanent sample plots covering the Qinghai spruce (Picea crassifolia) distribution in the north slope of 
Qilian Mountains, northeastern Tibetan Plateau. Results shows that mean biomasses for Qinghai spruce were 
133.80, 144.89, and 157.01 Mg ha− 1 while biomass carbon densities were 65.52, 70.92, and 76.88 Mg C ha− 1, in 
2006, 2011, and 2016, respectively. This shows an increase in the Qinghai spruce carbon density of 17.34 % from 
2006 to 2016. Both the precipitation and temperature play crucial roles on the increase of aboveground carbon 
density. The average carbon densities were different among forests with different ages and were higher for older 
forests. Our results show that the carbon sequestration rate for Qinghai spruce in the Qilian Mountains is 
significantly higher than the average rates of national forest parks in China, suggesting that this spruce forest has 
the potential to sequester a significant amount of carbon despite the general harsh growing conditions of cold 
and arid ecoregions. Our findings provide important insights that are helpful for the assessment of forest carbon 
for cold and arid lands.  
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1. Introduction 

As one of the most important carbon pools in the world (Gibbs et al., 
2007; FAO, 2020), forests account for 50–60 % of terrestrial ecosystems 
and absorb about 18 % of global CO2 emissions (Pan et al., 2011; 
Friedlingstein et al., 2020). The dynamics of these systems can have a 
substantial impact on atmospheric CO2 concentrations (O’Sullivan et al., 
2019; Smith et al., 2014). Arid and semiarid regions are among the 
world’s most fragile areas and occupy nearly 30 % of the world’s land 
surface (Abdelhak, 2022; Wang et al., 2014). Arid forest land accounts 
for 6 % of the world’s forest area and is important for arid zone eco-
systems because it helps to maintain conditions that are suitable for 
agriculture, rangeland management and other human activities 
(Malagnoux, 2007). The social, economic, and environmental role of 
forests in arid lands is significant, despite their limited extent, and trees 
have often been used for sand dune fixation programs, windbreaks, 
erosion control, microclimate mitigation, and soil fertility restoration 
(Malagnoux, 2007). Arid forest land is an important part of the global 
and regional land carbon pool (Houghton, 2005; Fang et al., 2014; Le 
Noë et al., 2020; Zhao et al., 2021). Given the ongoing and projected 
warming and changes to drought regimes, further assessment into the 
carbon sequestration and storage capacity of forests in arid regions is 
needed to inform forest management and ecosystem services. 

Biomass inventories, micrometeorological observations, and remote 
sensing simulations are the main methods used to study carbon storage 
and balance for forest ecosystems (Fang et al., 2018; Lu et al., 2018; Liu 
et al., 2019; Houghton, 2020; Zhang et al., 2022). Remote sensing, 
vorticity, and other modern technologies are often used to study spatial 
patterns of forest biomass (Gil et al., 2011; Xu et al., 2014), however 
these methods rely on site-measurements of biomass or carbon storage 
data and a sufficient amount of data to provide background parameters. 
Field surveys therefore remain one of the more reliable and widely used 
means of studying biomass and carbon density because they provide 
continuous and systematic data over large region (Fang et al., 1998; 
Nabuurs et al., 2003; Piao et al., 2005; Woodbury et al., 2007; Kinder-
mann et al., 2008; Piao et al., 2009; Zhang et al., 2013; Fang et al., 2014; 
Zhang et al., 2015; Zhao et al., 2019; Gómez-García, 2020). 

China is the world’s largest energy consumer and carbon emitter 
(Zhou et al., 2014; Liu et al., 2016), but has been working at global 
climate governance. China is aiming to address climate change by 
increasing forest stock and has announced intentions to increase its to 
global climate-change mitigation through policies and measures such 
that peak carbon emissions is reached by 2030. The long-term goal is to 
achieve carbon neutrality by 2060. Accurate assessment of arid forest 
carbon sinks, which account for more than one third of China’s land 
area, is an important part in understanding the contribution of forest 
carbon sinks to China’s carbon goals. 

The Qilian Mountains, a representative mountainous region in a 
continental climatic zone on the northeastern Tibetan Plateau (Wagner 
et al., 2015), are considered broadly cold and arid region. Accordingly, 
there is a variety of forest vegetation types and performs a range of 
ecological functions, such as soil and water conservation, carbon fixa-
tion, oxygen release, and species protection (Yang et al., 2022). Qinghai 
spruce (Picea crassifolia Kom., hereafter spruce) is the dominant tree 
species and is widely distributed throughout the coniferous forests of the 
region. Research has shown that the vegetation in the Qilian Mountains 
is highly sensitive to climate change (Xia et al., 2017; Chang et al., 
2014). Some few studies have focused on spruce carbon density and 
storage there, but only at a single site (Wagner et al., 2015; Zhao et al., 
2020). As far as we know, there are no reported studies of biomass and 
carbon storage over a large area like the climatically and ecologically 
dynamic Qilian Mountains region. 

We carried out a three-phase forest inventory of above- and below- 
ground biomass at five-year intervals from 2006 to 2016 covering the 
range of spruce areas in the Qilian Mountains to analyze spruce carbon 
density and storage. We hypothesize that spruce carbon density and 

storage is likely to be very low compared with the mean levels of na-
tional forest parks in China and other regions due to the cold and arid 
environmental conditions. We expect that the increase of the above-
ground carbon density will be strongly related to increasing temperature 
and precipitation in this cold and arid region. Our study will be helpful 
for understanding changes in forest productivity. We hope to provide a 
theoretical basis for rational forest management policies in cold and arid 
regions. 

2. Materials and methods 

2.1. Study region 

The hydrothermal conditions and complex topography in the Qilian 
Mountains result in different vegetation types that are distributed in 
distinct vertical zones (Fu et al., 2020; Qian et al., 2020; J.Z. Zhang et al., 
2020). Most forests are on the east and middle elevations of the Qilian 
Mountains. The forest types are relatively simple in the Qilian Moun-
tains, with pure forest of spruce on south-facing slopes and Qilian Ju-
niper (Juniperus przewalskill Kom.) on north-facing slopes, and spruce 
accounted for >80 % of the forest area. Spruce is the endemic and 
dominant tree species and is widely distributed on shady or semi-shady 
slopes between 2600 and 3800 m above sea level (asl) in the eastern and 
central of the Qilian Mountains. 

2.2. Forest inventories 

Forest inventories were systematically conducted on 104 permanent 
plots in spruce forests on northern slopes across the central and eastern 
Qilian Mountains (Fig. 1). Plot location and measurements followed the 
technical recommendations for forest resource investigations described 
in Du et al. (2014). The plots were covered most of the spruce distri-
bution on the north-facing slopes of the Qilian Mountains. Each plot was 
set 3 km along a transect from one other, but only if spruce forest was 
present and reachable. All plots were square with 28.28 m per side 
producing a sampled area of 0.08 ha. Plot location, number of trees, 
individual tree ages in five classes (young, middle, premature, mature, 
and old), mean tree diameter at breast height (i.e., 1.3 m; DBH), height 
(for trees with DBH > 5 cm), and tree density were recorded for each 
plot. According to the Technical Specifications on National Continuous 
Forest Inventory (Y.X. Zhang et al., 2020), the maximum allowable 
measurement error (tolerance) for DBH was 3 mm (for trees with a DBH 
lower than 20 cm) or 1.5 % (for trees with a DBH exceeding 20 cm). And 
tree height was measured using a traditional clinometer or an ultrasonic 
hypsometer, the tolerance for tree height measurement was 3 % (for 
trees <10 m) or 5 % (for trees over 10 m) (Zeng et al., 2015). Tree ages 
were classified according to the categories in Table S1. 

2.3. Climate data 

Annual mean precipitation (MAP) and annual mean temperature 
(MAT) from Climatic Research Unit gridded Time Series (CRU TS) 4.06 
on 0.5◦ × 0.5◦ grids during 1981–2016 were used to analysis the rela-
tionship between spruce carbon density and climate factors (Harris 
et al., 2020). According to the climatic records, both MAP and MAT 
decrease from southeast to northwest of the Qilian Mountains (Fig. 2a, 
b), resulting in relatively wet conditions in southeast and relatively dry 
conditions in northwest. Specifically, MAP in the central Qilian Moun-
tains was 250–350 mm, which was lower than in the eastern Qilian 
Mountains, where the precipitation reached 350–400 mm. Similarly, the 
MAT in the central Qilian Mountains ranged from − 5 to − 2 ◦C, which 
was colder than in the eastern Qilian Mountains, where the temperature 
ranged from 0 to 6 ◦C. Both the temperature and precipitation were 
increased during 1981–2016 (Fig. 2c, d), with the temperature increased 
0.8 ◦C and the precipitation increased 35.7 mm during this period. 
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2.4. Data analysis and statistics 

Biomass is the total dry weight of the organic matter of standing 
trees, including aboveground biomass and belowground biomass. 
Aboveground biomass includes the trunk (peeled), bark, branches 
(including fruits), and leaves (including flowers). Belowground biomass 
includes rhizomes, coarse roots (diameter > 10 mm), and fine roots (2 
mm ≤ diameter ≤ 10 mm). Fibrous roots <2 mm in diameter are not 
counted as root biomass. Instead, they are included as a portion of soil 
organic matter. We estimated the aboveground biomass (MA) and 
belowground biomass (MB) for the spruce according to the standard of 
Tree Biomass Models and Related Parameters to Carbon Accounting for 
Picea (LY/T 2655-2016) released from the China Forestry Administra-
tion (Zeng et al., 2016): 

MA = 0.12890 DBH2.09828 H0.25663(DBH ≥ 5 cm)

MB = 0.056183 DBH2.54672 H− 0.34753(DBH ≥ 5 cm)

Biomass and carbon densities of the trunks, bark, branches, and 
leaves of the trees were calculated according to the Biomass Models and 
Related Parameters to Carbon Accounting for Picea (Zeng et al., 2016). 
Carbon density was calculated as the product of biomass and the pro-
vided carbon-content coefficients according to the standard (Table S2). 
Here, carbon storage is the product of the carbon density and the spruce 
forest area. We estimated the mean biomass and carbon density for the 
different spruce age groups using all data sets from each of the three 
phases of the inventory. To analyze the spatial distribution of spruce 
biomass and carbon density, we further divided the study area into two 
regions according to mean annual precipitation: (i) the central Qilian 
Mountains (including the Heihe River basin) and (ii) the eastern Qilian 
Mountains (including Shiyang and Datong river basins) (Fig. 1). Biomass 
and carbon densities for each region were calculated following the same 
approach described above. Analysis of variance (ANOVA) and LSD’s 
tests were used to test the statistical significance of differences in mean 
biomass and carbon density among age groups and regional groups. 

To analyze the effects of topography, soil, understory vegetation, and 
stand characteristics on the carbon density of spruce, we calculated the 
Pearson correlation coefficients between the spruce carbon density and 
spatial topography characteristics (slope gradient), soil factors (soil 
depth and humus thickness), undergrowth properties (mean shrub 

coverage and mean herb coverage), and age group. We also calculated 
the Pearson correlation between the mean value of carbon density of the 
three periods in each plot and corresponding MAT and MAP during 
1981–2016 to evaluate the relationship between carbon density and 
climatic factors. The carbon density changes between 2006 and 2016 in 
each plot and related to climate factors during 2007–2016 were also 
calculated. To investigate the individual contribution of each environ-
mental factor on mean carbon density and to changes in carbon density, 
we built linear mixed-effects models taking carbon density and changes 
carbon density as a function of climatic (MAT and MAP), stand age, soil 
(soil depth and humus thickness), and undergrowth factors (mean shrub 
coverage and mean herb coverage); carbon density and changes carbon 
density were the response variables in this analysis. Topography (slope 
direction and gradient) and subregion were included as random terms in 
the model. We avoided including interaction between fixed factors due 
to potentially high collinearity. Using variance inflation factors (VIFs) 
analyses as a guide, only VIFs <5 was retained in the final model. For 
each model, marginal and conditional R2 values were calculated. The 
contribution of each independent variable was also calculated using a 
variance partitioning approach (Nakagawa and Schielzeth, 2013). 
Linear mixed-effects models were fitted using the R-package “lme4” 
(Bates et al., 2015). 

3. Results 

3.1. Biomass and carbon density 

Most Qinghai spruce were middle-aged and in premature forest 
(Table S1), and most were distributed on north-facing slopes at 
2600–3200 m asl (Fig. S1). Importantly, we found that both biomass and 
carbon density increased for spruce from 2006 to 2016. The mean bio-
masses were 133.80, 144.89, and 157.01 Mg ha− 1 in 2006, 2011, and 
2016, respectively (Fig. 3a). Similarly, the mean biomass carbon den-
sities were 65.52, 70.92, and 76.88 Mg C ha− 1 in 2006, 2011, and 2016, 
respectively (Fig. 3b). Over the decade of the survey period, mean 
biomass increased by 23.21 Mg ha− 1 (Fig. 4a), and the mean carbon 
density increased by 11.36 Mg C ha− 1 (Fig. 4b), corresponding to a 
17.34 % increase from 2006 to 2016. 

Aboveground, belowground, trunk, bark, branch, and leaf biomass 
increased by 17.09, 6.11, 8.70, 1.31, 4.75, and 2.34 Mg ha− 1 from 2006 

Fig. 1. Locations of the 104 study plots. The plots cover all distributions of spruce on the north-slope of the Qilian Mountains.  
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to 2016, respectively (Fig. 4a), while carbon densities increased by 8.38, 
2.98, 4.22, 0.64, 2.35, and 1.17 Mg C ha− 1 from 2006 to 2016 for each 
portion of the ecosystem respectively (Fig. 4b). Mean carbon densities of 
young, middle, premature, mature, and old spruce forest were 10.03, 
69.54, 72.18, 75.93, and 84.25 Mg C ha− 1, respectively. Carbon density 
of the young group was found to be significantly lower than that of the 

middle, premature, mature, and old groups (p < 0.05). Carbon density of 
the middle group was found to be significantly lower than that of the old 
groups (p < 0.05). There was no significant difference in the changes of 
carbon density among premature, mature, and old groups (p > 0.05) 
(Fig. 5). 

Fig. 2. Spatial distribution of the mean annual temperature (MAT) (a) and mean annual precipitation (MAP) (b), and interannual variation of MAT (c) and MAP (d) 
from CRU TS 4.06 during 1981–2016 of the Qilian Mountains. Symbols in (a) and (b) represent the sampling sites. 
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3.2. Total biomass and carbon storage 

Total biomass for spruce in 2006, 2011, and 2016 were 1.90 × 107, 
2.06 × 107, and 2.23 × 107 Mg, respectively, for a total increase of 0.33 
× 107 Mg in biomass over the inventory period (Table 1). Similarly, the 
amount of carbon stored in spruce in 2006, 2011, and 2016 were 0.93 ×
107, 1.01 × 107, and 1.09 × 107 Mg C, respectively (Table 1) and results 
in an increase of carbon storage by 0.16 × 107 Mg C. 

3.3. Environmental forcing of carbon density 

We found that age group was significantly correlated with carbon 
density both aboveground and belowground for spruce (Fig. S2). How-
ever, there was a significant negative correlation between the changes in 
carbon density and the stand age. There were significant negative cor-
relations between carbon density and understory shrub and herb 
coverage due to competition between trees and understory vegetation. 

However, no significant relationship was found between understory 
vegetation and changes in the carbon density for spruce. Soil factors 
significantly affected the distribution of carbon density for spruce, and 
the changes of carbon density were also negatively correlated with slope 
gradient. 

We found that total carbon density of trunk and bark was signifi-
cantly positively correlated with MAT during 1981–2016 (Fig. 6a), and 
that changes in carbon density were significantly positively correlated 
both with MAP and MAT during 2007–2016 (Fig. 6b). However, no 
significant relationships were found between these climate factors and 
the belowground carbon density and their changes, indicating that 
climate factors mainly affected the growth of aboveground parts of the 
spruce, such as the trunk and bark. Linear mixed-effects modeling esti-
mates suggests that both mean annual temperature and mean annual 
precipitation had significant effects on aboveground biomass carbon 
density (Table S3), contributing 21.8 % and 15.6 % to the variation in 
trunk carbon density, and 17.5 % and 11.7 % to the variation in bark 
density (Fig. 7a), respectively. Tree age and mean shrub coverage also 
had significant effects on carbon density (Table S3). Although fixed 
factors explained less variation in the changes in carbon density 
(Fig. 7b), mean annual temperature, age, and mean shrub coverage still 
had significant effects on changes in aboveground carbon density 
(Table S4). 

3.4. Carbon density for different regions of the Qilian Mountains 

To explore spatial patterns of spruce carbon density, we calculated 
carbon density of populations in the central and eastern portions of the 
Qilian Mountains, respectively, in the years 2006, 2011, and 2016. No 
significant differences in tree carbon density were found between the 
central and eastern populations in any of the studied years (p > 0.05) 
(Fig. 8a). We found carbon densities increased in both regions to 8.41 
and 14.43 Mg C ha− 1, respectively, between 2006 and 2016. Carbon 
density increased by 21.5 % in the eastern and 13.2 % in the central 
Qilian Mountains during the study period, although no significant dif-
ference was found between the two regions (p = 0.054) (Fig. 8b). 

4. Discussion 

4.1. Increasing forest carbon sinks in the Qilian Mountains 

In this study, we found that the carbon density of the spruce forest 
increased by 11.36 Mg C ha− 1, corresponding an increase of 17.34 % and 

Fig. 3. (a) Biomass and (b) carbon density for different tree components in the three inventory years on the north-slope of the Qilian Mountains. The error bars 
indicate mean ± one standard deviation (SD). Values bearing the same letters above bars are not significantly different at the 0.05 probability level (LSD test). 

Fig. 4. Biomass and carbon density changes for different parts of spruce from 
2006 to 2016. The rectangle in the middle of each density curve shows the ends 
of the first and third quartiles, and central red dot represents the median. 
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1.14 Mg C ha− 1 yr− 1 from 2006 to 2016 over the cold and arid Qilian 
Mountains. We found comparatively lower values reported in the liter-
ature in cold and arid areas relatively close to our region. Chen et al. 
(2018) reported carbon sequestration rates in spruce forest of 0.34 Mg C 
ha − 1 yr− 1 in trees in the Qinghai Province. In Tibetan Plateau broad- 
leaved forests, the average carbon sequestration rate was reported as 
0.19 Mg C ha − 1 yr− 1 (Wang et al., 2016). Both sets of rates are lower 
than what we found in Spruce forests in the Qilian Mountains. Mean-
while, the carbon sequestration in subtropical and temperate forests of 
the central Himalaya varied from 3.99 to 4.83 Mg C ha− 1 yr− 1, indi-
cating that the rate of carbon sequestration for spruce in this study was 
lower than subtropical and temperate forests in the central Himalaya 
(Joshi et al., 2021). However, the rate of aboveground carbon 

Fig. 5. Carbon densities for different ages of spruce. The aboveground carbon density is the sum of the carbon densities of the trunk, bark, branches, and leaves. The 
error bars indicate the mean ± one standard deviation (SD) of the total carbon density. Values bearing the same letters above bars are not significantly different at the 
0.05 probability level (LSD test). 

Table 1 
Total biomass, carbon storage, and carbon sequestration of spruce from 2006 to 
2016 in the Qilian Mountains. Different lowercase letters within the same col-
umn indicate significant difference at the 0.05 level.   

Total biomass 
(× 107 Mg) 

Carbon storage 
(× 107 Mg C) 

Sequestration 
(Mg C ha− 1 yr− 1) 

2006 1.90 ± 0.88b 0.93 ± 0.43b – 
2011 2.06 ± 1.06ab 1.01 ± 0.52ab 1.08 ± 0.32a 
2016 2.23 ± 1.13a 1.09 ± 0.55a 1.19 ± 0.33a  

Fig. 6. Relationships between climate factors and (a) carbon density and (b) changes in carbon density from 2006 to 2016. For (a), annual mean precipitation (MAP), 
mean temperature (MAT) are the average values from 1981 to 2016; For (b), MAP and MAT are the average values from 2007 to 2016. 

Z. Cao et al.                                                                                                                                                                                                                                      



Science of the Total Environment 905 (2023) 167168

7

sequestration in the Qilian Mountains (0.84 Mg C ha− 1 yr− 1) was higher 
than the spruce forest in Tibetan of China (below 0.5 Mg C ha− 1 yr− 1) 
(Sun et al., 2016). Additionally, the rate of forest carbon sequestration in 
China was 0.41–1.19 Mg C ha− 1 yr− 1 (Chen et al., 2019) and the average 
carbon sequestration rate of national forest parks in China reached 0.45 
Mg C ha− 1 yr− 1 (Li et al., 2021). At the same period, the global forest 
biomass carbon sequestration capacity was − 0.18–0.13 Mg C ha− 1 yr− 1 

(Pan et al., 2011; FAO, 2020). Therefore, the results seem to reject our 
hypothesis that spruce carbon density and storage is much lower 
compared with the mean levels of national forest parks in China and 

other regions. On the contrary, we found an increasing forest carbon 
sink for the cold and arid Qilian Mountains, rising at a higher rate than 
expected, despite the relative harsh growth in which these populations 
grow. 

Due to the change in the total forested area of the Qilian Mountain 
was very small during the study period, the increase in the spruce carbon 
sink was mainly caused by the increase in the forest biomass carbon 
density. In this study, we calculated that the total spruce biomass carbon 
storage in the Qilian Mountains was 10.93 Tg C (1 Tg = 10 × 1012 g). For 
the same period, the mean biomass carbon that was stored in Gansu 

Fig. 7. Variance partition of the studied variables for (a) carbon density and (b) changes in carbon density from 2006 to 2016. Fixed variables include MAP, MAT, 
age group, soil depth, humus thickness, mean shrub and herb coverage. Random variables include slope direction, slope gradient, and subregions. 
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province and China was 98.84 and 8048 Tg C, respectively (Lin and Ge, 
2019; FAO, 2020), suggesting that the spruce biomass carbon storage in 
the Qilian Mountains accounts for 11.06 % and 0.14 % of the total forest 
carbon storage in Gansu Province and China, respectively. Both carbon 
density and carbon storage for spruce have increased significantly in the 
Qilian Mountains, making an important contribution to carbon peaking 
and carbon neutrality of China. 

4.2. Environmental and climatic forcings for carbon density 

We found no significant relationship between vegetation and 
changes in spruce carbon density, which suggests that it is not necessary 
to remove vegetation from the forest to improve the forest carbon 
density. This result indicated that the integrity of forest structure can 
therefore be preserved while also increasing carbon density. Carbon 
density was significantly positively correlated with stand density and 
canopy density, indicating that stand mass has been the main driver for 
carbon density increases in recent years in our study region. There was a 
significant negative correlation between the changes in carbon density 
and the stand age, indicating that carbon sequestration capacity de-
creases as age increases. Soil factors significantly affected the distribu-
tion of, and changes in, the carbon density for spruce expect the changes 
of carbon density in branches and leaves, since deeper soil and humus 
provide more soil nutrients and water, which are benefitted for spruce 
growth. Increases in carbon density were significantly negatively 
impacted by slope, mainly because a high slope gradient weakens the 
soil water retention capacity due to altitude and thus affects spruce 
growth. There were also no significant disturbances in our forests during 
this period, so the trends found here might represent a kind of maximum 
potential. Young stands tend to have strong carbon sequestration ca-
pacity, while forests at the old age group store more carbon and can 
sequester it continuously (Mildrexler et al., 2020; Jiang et al., 2020; 
Stephenson et al., 2014). 

The Qilian Mountains cover a wide range of altitudes, latitudes, and 
longitudes, creating large spatial differences in temperature and 

precipitation, which result in large regional differences for spruce 
biomass and carbon density. In this study, both the correlation and 
linear mixed-effects model showed that MAP was positively correlated 
with changes of carbon density in aboveground carbon pools, such as the 
trunk and bark, whereas there was no significant relationship between 
carbon density and changes in the belowground carbon pools. These 
findings suggest that precipitation may have the strongest effect on 
radial tree growth and little impact on belowground root growth. Many 
tree-ring studies have shown that precipitation is the main factor that 
affects radial spruce growth in this region (Tian et al., 2017; Gao et al., 
2018), but research on the climatic impacts on belowground accumu-
lation in this region are unknown to us. Spruce has the largest distri-
bution area and the widest range of all tree species in the Qilian 
Mountains; its growth depends mainly on water availability, especially 
in drought-restricted areas (Wang et al., 2020). Drought reduces the soil 
moisture and increases the influence of evapotranspiration on spruce 
carbon density in the arid Qilian Mountains (Wu et al., 2015). Addi-
tionally, MAT was also significantly correlated with the changes of 
carbon densities aboveground, indicating that temperature also play an 
important role on the increase of carbon density aboveground. Warm 
temperatures may extend growing season of spruce, resulting in an in-
crease in tree growth in the Qilian Mountains. Gao et al. (2018) found 
that the number of days per year with a daily mean temperature higher 
than 5 ◦C has increased by about 10 days during the past six decades 
over the Qilian Mountains. Yang et al. (2017) found that the onset of the 
growing season has been advanced, and the end of the growing season 
has been delayed of Qilian juniper across the Tibetan Plateau over the 
period 1960–2014, changes that mirror regional climate changes. 
Several studies have shown that the lengthening of the growing season 
will accelerate tree growth in Qilian Mountains (Zhang et al., 2021), and 
high latitude and high elevation forests (Rossi et al., 2016; Huang et al., 
2020). Therefore, we conclude that the changes in above-ground carbon 
density over the past decade may have been influenced by an interaction 
of precipitation and temperature. 

Fig. 8. Total mean carbon density (a) and increase in carbon density (b) between 2006 and 2016 across in regions in the Qilian Mountains. Values bearing the same 
letters above bars are not significantly different at the 0.05 probability level. 
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4.3. Effects of age on carbon density 

Forests continue to accumulate carbon as their age increasing (Eileen 
et al., 2001; Bradford and Kastendick, 2010; Besnard et al., 2018), 
although their growth efficiency appears to decrease (Keith et al., 2009; 
Lewis et al., 2009; Sillett et al., 2015; Musavi et al., 2017). The rate of 
carbon sequestration and carbon storage for a forest cannot reach a 
maximum at the same time (Kurz et al., 2013). Young stands tend to 
have strong carbon sequestration capacity, while forests in the older age 
groups store large amounts of carbon. Our findings for the carbon 
density for spruce forest support these general trends. We found that 
carbon density increased with forest age, but that the carbon seques-
tration rate decreased with increasing forest age. There remains much 
debate over whether old forests are carbon sinks, but we found that the 
carbon density for the mature and old spruce forests in our study are still 
increasing. Our study suggests that it is not appropriate to categorize 
spruce forest that is older than 140 years as unproductive. Others have 
found that a forest may cease to be a carbon sink when they are as old as 
450–500 years (Liu et al., 2014). The average age of spruce forests in the 
Qilian Mountains is <100 years while most forests are middle-age and 
near-mature forests (Table S1). Average tree age in these forests seems to 
influence the rate of carbon sequestration for spruce in the Qilian 
Mountains. Similarly, young forests have higher photosynthetic capacity 
and carbon sequestration rate likely contribute to the difference in trend 
and estimate between our target study and previous work (Musavi et al., 
2017; Zhang et al., 2023). Indeed, a study on the edge of the Negev 
Desert found relatively higher carbon sequestration rates (1–2 Mg C 
ha− 1 yr− 1) in 35-year-old dry forests (Grünzweig et al., 2003). Despite 
the recognized effects of forest age in controlling forest carbon balance, 
there is still debate about the quantitative role of forest age in the 
empirical annual forest carbon estimates (Besnard et al., 2018). In our 
analysis, the rate of carbon density seems to be increasing with tree age. 
While that matches what others have found elsewhere (Pan et al., 2004; 
Bradford and Kastendick, 2010), there is much more to investigate on 
drivers on the rate of carbon density over time. 

4.4. Carbon density spatial variability 

We found no significant difference in carbon density for spruce be-
tween the central and eastern in Qilian Mountains. The change in carbon 
density was higher for the eastern Qilian Mountains than central region, 
which means that the spruce growth rate in the eastern Qilian Mountains 
is higher than that in the central region due to the influences of the stand 
ages and the climate. In future, the carbon sequestration potential for 
the eastern Qilian Mountains will therefore be greater than for other 
regions of the Qilian Mountains, though a lot of this depends on the 
future disturbance and climate dynamics. 

There are several possible explanations for our geographic results. 
The spruce forests in the eastern Qilian Mountains are younger, and 
therefore have a higher growth rate than the spruce forests in central 
region (J.Z. Zhang et al., 2020). Also, spruce growth is significantly 
affected by precipitation and temperature (Tian et al., 2017; Gao et al., 
2018; Wang et al., 2020) and both the temperature and precipitation are 
significantly higher in the eastern Qilian Mountains than in the central 
(Xu et al., 2013; Qiang et al., 2016). 

4.5. Caveats and a larger context for our study 

The carbon that accumulates in the forest through CO2 absorption 
via photosynthesis is mainly stored in the aboveground biomass, 
belowground biomass, soil organic carbon, dead wood, and in the litter 
(FAO, 2020). Deforestation causes some of the accumulated carbon to 
leave the forest ecosystem in the form of timber products. However, 
ecological forest projects such as Natural Forest Protection Project, have 
led to deforestation being banned in the Qilian Mountains since 1998 
(Zhang et al., 2000). Therefore, in our study, we did not consider any 

changes in carbon that were due to deforestation and focused mainly on 
the carbon pool stored in the aboveground and belowground biomass. 
The aboveground biomass carbon pools were considered separately for 
the trunk, bark, branches, and leaves. We did not investigate the carbon 
stored in the understory vegetation, surface drops, and soil, and so the 
biomass carbon storage that we calculated includes only the carbon 
stored in standing trees and may not reflect the full extent of the forest 
ecosystem carbon sink. 

Many factors can lead to uncertainty in estimating forest carbon 
sinks (Pan et al., 2011; Sun et al., 2016). Samples with good growth are 
often preferentially selected in studies that use forest sample plots due to 
the subjective choices made by humans, and this can lead to inappro-
priately high estimates of biomass and carbon density (Fang et al., 
1998). In our study, we used the same selection criteria for all survey 
areas, and calculated a large forest inventory that offers improved ac-
curacy over existing estimates of carbon stock changes (Li et al., 2012). 
The different biomass conversion coefficients that are used for different 
forest age groups can also lead to differences in carbon sink estimates 
(Pan et al., 2004). More assessments and further comparative studies are 
needed to improve existing estimates and reduce their uncertainty. 

5. Conclusions 

In this study, we carried out a three-phase forest inventory for 104 
permanent sample plots that cover all areas of the spruce forest distri-
bution in the Qilian Mountains, calculating the inventory every five 
years from 2006 to 2016. These forest inventories allowed us to accu-
rately estimate spruce forest biomass‑carbon density at regional scales 
and to improve predictions of the likely effects of climate change. We 
found that spruce carbon density increased by 17.34 % from 2006 to 
2016 over the Qilian Mountains. Both the precipitation and temperature 
play important roles on the increase of aboveground carbon density. 
Mature and old trees fixed the most carbon during the period of study. 
The most dramatic difference in fixed carbon occurred nearly the first 
four decades of spruce growth. According to our assessment, the carbon 
sequestration rate for spruce in the cold and arid Qilian Mountains is 
significantly higher than the average rates of the national forest parks in 
China, despite the relatively severe growth environment. 
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Bates, D.M., Mächler, M., Bolker, B.M., Walker, S., 2015. lme4: linear mixed-effects 
models using Eigen and S4. R package version 1.1-8. http://CRAN.R-project.org/ 
package=lme4. 

Besnard, S., Carvalhais, N., Arain, M.A., Black, A., de Bruin, S., Buchmann, N., 
Cescatti, A., Chen, J., Clevers, J.G.P.W., Desai, A.R., Gough, C.M., Havrankova, K., 
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