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A B S T R A C T   

Old-growth forests have been widely studied for decades. The extreme diversity of old forest characteristics has 
inspired an equally diverse set of old-growth definitions, and makes mapping old-growth difficult across large 
areas and different forest types. While the use of remote sensing in old-growth research is not new, there is a 
growing need for large scale mapping to improve understanding of old forest processes and to support old-growth 
conservation. Old-growth mapping requires definitions that are ecologically relevant to old forests while also 
transferable to remote sensing data. In this paper we develop a conceptual framework to evaluate three di-
mensions of old-growth—a temporal dimension related to tree ages, a physical dimension related to tree sizes, 
and a functional dimension related to forest processes. In the first part of our analysis, we classify forests 
throughout the eastern US as old or not with respect to each old-growth dimension using existing old-growth 
definitions and data from the US Forest Inventory and Analysis (FIA) program. We estimate the proportion of 
forest classified as old within a hexagon grid, resulting in a unique map of old forest proportion (OFP) for each 
dimension. Subsequently, we use spaceborne lidar data from NASA’s Global Ecosystem Dynamics Investigation 
(GEDI) to reproduce each OFP map in a modeling framework designed to 1) assess the extent to which each 
dimension of forest oldness can be mapped at large spatial scales, and 2) identify biophysical GEDI variables 
related to each dimension of forest oldness. We estimate that only 2% of forest classified as old in any dimension 
satisfied the old criteria in all three dimensions. We found substantial spatial variation in the mapped OFP es-
timates across the three dimensions, highlighting how definition criteria impacts old-growth maps. We also 
found that physically old forests were more effectively mapped using GEDI data than functionally or temporally 
old forests, and that physically old forests were more structurally similar to one another than temporally or 
functionally old forests. Our modeling results indicate that while remote sensing may be best suited to mapping 
physical old-growth characteristics, definitions that rely solely on physical characteristics do not adequately 
represent old forests throughout the eastern US. We propose that future efforts to map old-growth with space-
borne remote sensing data may maximize utility through collaboration between western and indigenous old- 
growth experts to determine broad yet nuanced approaches that are appropriately tailored to the target vari-
able of old forests. These efforts should balance explicit and ecologically relevant old-growth definitions spe-
cifically for mapping that can be linked to remotely sensed data, 2) appropriate spatial resolutions, and 3) 
flexible quantitative frameworks that encompass the complexities and heterogeneity of old forests.   

1. Introduction 

Considerable ecological research has focused on forests that are 
generally referred to as old-growth—forests with relatively old trees and 
characteristics that require a long time to develop (Frelich and Reich, 
2003; Spies, 2004). Early old-growth studies by Western scientists were 

reliant on ground-based observations to analyze a single or small 
collection of sites within a localized region or specific forest type (Davis, 
1996; Gaines et al., 1997; Tyrrell, 1998). Initial attempts to map old- 
growth conditions were also local, utilizing a combination of ground- 
based and remotely sensed data (e.g. Helmer et al., 2000; Falkowski 
et al., 2009; Hansen et al., 2014). As mapping efforts expand in 

* Corresponding author at: 2181 LeFrak Hall, College Park, MD 20740, USA. 
E-mail address: jamis@umd.edu (J.M. Bruening).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2024.111709 
Received 29 November 2023; Received in revised form 23 January 2024; Accepted 5 February 2024   

mailto:jamis@umd.edu
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.111709
https://doi.org/10.1016/j.ecolind.2024.111709
https://doi.org/10.1016/j.ecolind.2024.111709
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2024.111709&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 159 (2024) 111709

2

geographic extent, there is a growing need for data sources and methods 
that can identify old-growth across a variety of forest types and diverse 
environmental conditions at scale. 

The use of spaceborne remote sensing in old-growth mapping is 
limited but evolving (e.g. Spracklen and Spracklen, 2019; Spracklen and 
Spracklen, 2021; Davis et al., 2022; DellaSala et al., 2022). High reso-
lution optical time-series are not long enough to appropriately charac-
terize stand level disturbances and forest longevity on the temporal scale 
of old-growth processes. Mapping efforts have instead used forest 
structure as a proxy for longevity and to identify biophysical conditions 
within known old forests. Presently, forest structure is most effectively 
measured by lidar systems such as airborne laser scanning (ALS) or 
spaceborne waveform lidars (ex. the Global Ecosystem Dynamics 
Investigation (GEDI)), or synthetic aperture radar (SAR) systems (ex. 
TanDEM-X or NISAR) (Krieger et al., 2007; Kellogg et al., 2020). The 
future of large scale old-growth mapping will likely involve multi-sensor 
fusion that merges different types of information related to forest 
structure and functioning derived from lidar, radar, or multispectral, 
hyperspectral, and stereo optical imagery at high spatial resolutions, and 
the integration of these data sets with forest inventory and den-
droecology observations. 

The evolution in old-growth mapping efforts has renewed debate 
over old-growth definitions. In this new context the question becomes: 
what exactly is being mapped? Old-growth cannot be detected directly 
via remote sensing, and instead must be inferred through modeled re-
lationships between remotely sensed biophysical predictor variables and 
a response variable related to old-growth. This method requires the 
response variable to be defined precisely and consistently throughout 
the area being mapped. However, forests age in many different ways. 
Old forests are highly complex and dynamic, composed of gradients and 
interconnected processes with diverse manifestations based on forest 
type, natural disturbance regimes, human legacy on the landscape, site 
quality, topographic position, and climate (Pesklevits et al., 2011). The 
difficulty in appropriately representing old-growth diversity with a 
consistently defined response variable is perhaps the biggest challenge 
to old-growth mapping at large spatial scales (Hirschmugl et al., 2023). 

The diversity of old forests has lead to agreement within the scientific 
community that a single unified old-growth definition is not possible nor 
preferable. There are many ideas regarding how old-growth could be 
defined based on both Western forest science and Traditional Ecological 
Knowledge from indigenous communities (Hilbert and Wiensczyk, 
2007; Wirth et al., 2009). Recently, two different old-growth definitions 
were developed for the US Forest Inventory and Analysis (FIA) network 
that resulted in divergent estimates of how much old-growth exists 
throughout public lands in the US, despite using the same inventory data 
and estimation methods (Pelz et al., 2023; Barnett et al., 2023). These 
studies have advanced old-growth discourse in the US by developing 
standardized definitions that can be applied to FIA data at regional 
scales, and together the results suggest that old-growth amount esti-
mates are highly sensitive to definition criteria. Neither Pelz et al. 
(2023) nor Barnett et al. (2023) released spatially explicit maps of old- 
growth, however one may assume that if produced, such maps would be 
substantially different based on the contrasting definition criteria. 

In general, the inference that old-growth definitions have a large 
impact on old-growth maps is critical if spatially explicit old-growth 
information is used to inform forest management plans, resource 
extraction, or conservation efforts. Multiple old-growth definitions are 
useful to understand and contrast the spatial patterns of old forest 
characteristics as long as the definition differences are understood and 
recognized. Accordingly, a systematic comparison of the Pelz et al. 
(2023) and Barnett et al. (2023) definitions and resultant old-growth 
maps is necessary to contextualize the divergent estimates and to 
inform future old-growth investigations within the US. To do so, we 
propose the following conceptual framework to evaluate old forest 
definitions developed for the FIA network. 

Forest attributes related to old-growth can be grouped into three 

categories, which we refer to as old-growth dimensions:  

1. Temporal: tree ages and overall stand age structure, the number and 
age of cohorts (if applicable)  

2. Physical: the size and shape of trees, stand stem density, basal area, 
biomass, canopy cover and vertical profile, structural complexity  

3. Functional: biogeochemical processes such as net primary or 
ecosystem production (NPP, NEP) or nutrient cycling, etc. 

These forest attributes change constantly over time, dependent on 
demographic processes (e.g. recruitment, growth, mortality) and 
disturbance regimes that shape these processes. Our framework sim-
plifies changes in forest attributes by assuming development over time, 
such as from less to more biomass, or from a younger to an older 
maximum tree age. Forest oldness is then defined as the progression of a 
given attribute’s value over time, and can be independently assessed 
with respect to each dimension (Fig. 1A). In situ forest stands within the 
FIA network can be classified as “old” or not along a given dimension by; 
1) choosing a specific attribute representative of the dimension (ex. 
mean stand age), 2) setting a threshold value along its developmental 
gradient to designate the onset of oldness (ex. 120 years), and 3) 
comparing this value to those from inventoried forest stands (Fig. 1B). 
Importantly, classifications are neither mutually inclusive or exclusive 
across the dimensions. While this method conflicts with views of old- 
growth as a dynamic process instead of a developmental state that can 
be classified (e.g. Spies, 2004; Pesklevits et al., 2011; Barton and Keeton, 
2018), it is useful in contrasting definition criteria, estimating the spatial 
patterns of old forests, and quantifying the extent to which various old- 
growth definitions can be mapped with remote sensing. 

In this paper we contrast old-growth definition criteria from Pelz 
et al. (2023) and Barnett et al. (2023). We then evaluate the definitions 
with respect to old-growth mapping throughout the eastern US using 
data from the GEDI mission as a case study. Our goal is to systematically 
assess the impact of old-growth definition criteria on the amount of old 
forest estimated throughout the eastern US, and the ability to map old 
forests using GEDI data. In achieving this goal we seek to answer the 
following science questions:  

1. What are the spatial patterns associated with eastern old forests and 
how do they vary by dimension?  

2. To what extent can each dimension of old-growth be mapped within 
our framework using GEDI lidar data?  

3. Are there specific structural characteristics associated to each 
dimension of old-growth? 

We hypothesize that definition criteria impacts the extent to which 
an old-growth definition can be predicted and mapped using GEDI data, 
and will evaluate modeling success using normalized prediction error. 
We expect 1) the physical dimension of old-growth will be more effec-
tively mapped with GEDI data than the temporal or function di-
mensions, and 2) that temporally and functionally old forests may also 
possess structural signatures that can be detected and leveraged for 
mapping. We intend the results of this study to inform the definition 
development and theoretical underpinnings of future old-growth map-
ping efforts. 

2. Material and methods 

We begin our analysis (Fig. 2) by integrating the old-growth defini-
tion criteria from Pelz et al. (2023) and Barnett et al. (2023) into the 
forest oldness conceptual framework (Fig. 1), and derived unique tem-
poral, physical, and functional oldness definitions by forest type for the 
eastern US. We then classified every forest stand sampled by the FIA 
network as old or not according to each dimension’s definition. From the 
classifications we produce areal estimates of old forest proportion (OFP) 
for each dimension, which represent the ratio of old forest area to total 
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forest area within an equal-area hexagonal tessellation of the land sur-
face. We then assessed the extent to which each dimension’s OFP esti-
mates can be reproduced using biophysical forest attributes inferred 
from GEDI lidar forest structure measurements. We use regionally cali-
brated regression trees to model the OFP estimates for each old-growth 
dimension as a function of GEDI variables sampled from forested land 
and aggregated to the spatial resolution of the OFP estimates. Lastly, we 
determine which types of aggregated GEDI forest variables were most 
important in predicting each set of OFP estimates. The details of the 
analysis components are described in full in the following sections. 

2.1. National forest inventory data 

The FIA data used in this analysis were obtained from the plot and 
condition tables in the FIA database, for plots sampled between 2010 
and 2022 (Gray et al., 2012). If an individual plot was sampled twice 
during this period, we used the most recent inventory information. Data 
were obtained and analyzed at the stand-level using the ‘rFIA’ package 
in ‘R’ (Stanke et al., 2020; R Core Team, 2022). 

2.2. Old forest definitions 

On April 20th 2023, the United States Forest Service (USFS) released 

Fig. 1. (A) A theoretical framework for quantifying forest oldness along three dimensions: temporal, physical and functional. The red arrow represents how a forest 
stand’s attributes could be mapped onto each dimension, and demonstrates that a stand’s oldness in each dimension may not be equal. Threshold values can be set 
along each dimension (not shown here) to delineate the onset of old-growth characteristics for that dimension. Evaluating data from in situ stands against the 
threshold values results in a binary classification of forest oldness along each dimension, which are neither mutually inclusive nor exclusive. (B) Possible combi-
nations of stand-level old-growth classifications when considering all three dimensions. A stand’s classification in one dimension is independent from the other 
dimensions, in that physical characteristics are not be considered when classifying temporal oldness, and so on. There may or may not be multiple old-growth 
classifications across the dimensions for a given forest stand. 

Fig. 2. Methodological overview: Old forest definitions from Pelz et al. (2023) from Barnett et al. (2023) were standardized within our conceptual oldness 
framework (Fig. 1) and applied to FIA inventory data resulting in binary old forest classifications at the stand-level across the temporal, functional, and physical old- 
growth dimensions. From these classifications, we estimated the old forest proportion as a ratio of old forest area to total forest area for each dimension, using ratio 
estimators adapted from Bechtold and Patterson (2005) applied within a hexagonal tessellation covering the eastern US. The result was three separate maps of OFP 
for eastern US forests. Footprint-level GEDI variables from forested land were then aggregated within the hexagonal grid and used as predictor variables in modeling 
the OFP estimates. Regression tree models were calibrated at the ecoregion level (Fig. 3) for each dimension’s OFP estimates, resulting in GEDI-based prediction maps 
of OFP for each dimension. The variable importance from these models were compared to gain ecological inference about the structural characteristics of each old-g. 
rowth dimension. 
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a national inventory of old-growth and mature forests within US federal 
lands (Barndt et al., 2023). Definitions were developed by USFS foresters 
and ecologists for predominant forest types within each of the nine 
Forest Health Protection regions within the US, and criteria identifying 
old-growth characteristics were set individually for different old-growth 
community types defined as a collection of FIA forest type groups. The 
definitions were designed specifically for FIA data, and an explanation of 
the definition development process is provided by Pelz et al. (2023). 
Here, we used the eastern and southern region definitions (respectively, 
Tables 15–17 in Barndt et al. (2023)) as the foundation for our temporal 
and physical old forest definitions. This required some standardization 
of old growth community types and definition criteria to ensure con-
sistency in the application of old-growth definitions throughout our 
study region, as outlined below. 

First, we standardized definition criteria for old growth community 
types that occurred in both regions (e.g. northern hardwoods). The 
standardization of definition criteria was done to ensure a single set of 
definition thresholds were used for community types that occurred in 
both regions. We also merged community types across the regions when 
the species compositions and definition thresholds were comparable 
based on our informed opinion of forest composition in eastern forests, 
and resulted in the merging of five community types. 

Next, we harmonized the temporal and physical criteria for each 
community type across the regions. The southern and eastern regions 
used identical temporal criteria, in that stand age must exceed a 
threshold value, and we made no further modifications. The physical 
criteria however varied between regions. The eastern region used a 
minimum density of large trees, in which the density (ex. 10 trees per 
acre (0.405 ha)) and diameter of large trees (ex. 20 inches (0.508 m)) 
varied independently by community type. The southern region also 
required a minimum density of large trees, but the density was held 
constant at six trees per acre and while the size threshold for large trees 
was allowed to vary. There were also live basal area and standing dead 

tree criteria included in the southern region definitions from Pelz et al. 
(2023). For simplicity, we opted to use the eastern region’s definition 
criteria of physical forest oldness that only utilized a large tree density 
threshold, ignoring the basal area and standing dead requirements. We 
estimated the appropriate density and large tree threshold values for 
southern region forest types using data from Gaines et al. (1997). The 
result was a set of harmonized temporal (stand age) and physical (large 
tree density) oldness criteria for the old-growth community types set by 
Pelz et al. (2023) in the eastern US (Table 1). 

Functional forest oldness criteria were taken directly from Table 2 in 
Barnett et al. (2023). In that work, the authors implemented a space-for- 
time substitution using FIA plot data to relate carbon accumulation to 
stand age for a combination of FIA forest type group and productivity 
classes, stating that functional old-growth characteristics are reached 
when stand-level aboveground carbon density reaches 95% of a theo-
retical maximum value derived from FIA stand data. The authors fit a 
Chapman-Richards growth model to characterize carbon accumulation 
over time as a function of stand age, and estimated parameters that 
minimized the models’ normalized root mean square error. They then 
calculated the age at which functional old-growth characteristics were 
reached at the stand level for combinations of FIA forest type group and 
productivity class, substituting the estimated parameters into the 
growth equation and setting y equal to 95% of the asymptotic carbon 
density level. For a complete explanation of the functional old-growth 
definition, see Barnett et al. (2023). Here, we use the same exact for-
est types, productivity classes, and age thresholds calculated by Barnett 
et al. (2023) to classify functional oldness within our conceptual 
framework. We also performed a comparison of the mean temporal and 
functional age thresholds for eastern forests to aid in understanding 
estimate differences between the temporal and functional dimensions. 

Table 1 
Old-growth forest types and associated temporal and physical dimension thresholds, adapted from Pelz et al. (2023) and harmonized across the eastern and southern 
regions for consistency.  

Short Name Long Name Region FORTYPCD STDAGE TPA DBH 

Xeric Oak (N) Dry oak north 162, 163, 165, 167, 182, 184, 404, 405, 501, 502, 506, 
507, 509, 510, 513, 515 

100 20 16 

Sub-boreal Spruce/ 
Fir 

Sub-boreal spruce/fir north 122, 125 140 10 12 

N. Pine Northern pine north 101, 102, 103 100 20 12 
Beech/Maple/ 

Basswood 
Beech maple basswood north 805 140 10 16 

Wetland hardwood Wetland hardwood both 600, 608, 700, 701, 702, 703, 704, 705, 706, 707, 708, 
709, 809, 962 

120 10 18 

Other other both  100 10 14 
N. hardwood Northern hardwood both 517, 520, 800, 801, 802, 809 120 10 15 
Montane Spruce/Fir Montane spruce and spruce-fir both 121, 123, 124, 128, 129, 902 120 10 15 
Mesic Oak Dry-mesic oak (S) + mesic northern oak (N) both 500, 502, 503, 504, 505, 510, 511, 512, 515, 516, 519, 

962 
140 6 20 

Conifer N. hardwood Conifer northern hardwood both 104, 105, 123, 124, 400, 401, 902 140 10 16 
Xeric Pine, Pine/Oak Xeric pine and pine-oak forest and woodland south 162, 163, 165, 167, 171, 400, 402, 404, 405, 409, 500, 

510, 514 
100 10 10 

Xeric Oak (S) Dry and xeric oak forest, woodland, and savanna south 500, 501, 502, 510, 514, 515, 519, 600, 962 90 10 8 
S. wet Pine Southern wet pine forest, woodland, and savanna south 141, 142, 166, 400, 407 80 10 9 
Coastal plain 

hardwood 
Coastal plain upland mesic hardwood forest south 600, 962 120 10 18 

Seasonally wet 
hardwood 

Seasonally wet oak-hardwood woodland south 500, 504, 520, 600, 962 100 10 16 

Dry-mesic Oak/Pine Dry and dry-mesic oak-pine forest south 161, 162, 163, 400, 404, 405, 406, 409 120 10 15 
Mesophytic Mixed mesophytic and western mesophytic forest south 500, 506, 511, 516, 517, 800, 801, 805, 962 140 10 22 
Longleaf/Slash Pine Upland longleaf and south Florida slash pine forest, 

woodland, and savanna 
south 141, 400, 403 80 10 13 

Floodplain 
hardwood 

River floodplain hardwood forest south 500, 508, 600, 601, 602, 605, 705, 706, 708, 962 100 10 14 

Eastern riverfront Eastern riverfront forest south 600, 700, 702, 703, 704, 705, 709, 962 100 10 20 
Cypress/Tupelo 

swamp 
Cypress-tupelo swamp forest south 607, 609 120 10 8  
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2.3. FIA stand classification 

The temporal, physical and functional old forest definitions were 
applied to FIA inventory data at the stand level based on the FIA forest 
type associated with each stand. For the temporal and physical di-
mensions the forest type assignment is documented in Table 1, while for 
the functional dimension the forest type assignment was based on the 
combination of stand productivity class and FIA forest type group. An 
FIA stand is an identification of specific forest characteristics based on 
land use, reserve status, ownership, regeneration status, tree density, 
forest type and stand size within a plot, and there can be multiple stands 
located on a plot (Bechtold and Patterson, 2005). Each stand is assigned 
an age based on the average age (from tree cores) of two or three 
dominant canopy trees. It has been shown that stand age is not a reliable 
measure of the time since stand replacing disturbance, and should 
instead be interpreted as the mean age of the dominant diameter class 
within the stand (Stevens et al., 2016). In the case of multi-modal age 
distributions, the stand age variable may not appropriately reflect the 
overall stand age structure. This variable served as the basis for the 
temporal and functional old-growth dimensions. We calculated the 
physical old-growth dimension’s large tree density for each stand using 
the tree-level inventory data and associated large tree size and density 
thresholds in Table 1. We then classified each FIA stand as old or not by 
comparing its values to the temporal, physical and functional thresh-
olds. The result was a set of three old forest classifications for each stand. 

2.4. Areal estimation of old forest proportion 

From the binary stand-level old forest classifications, we estimated 
the proportion of old forest land relative to all forest land for each old- 
growth dimension, which we refer to as the old-forest proportion (OFP) 
estimates because values ranged between 0 and 1, inclusive. We adapted 
the ratio-of-means estimator from Section 4.3.4 of Bechtold and Pat-
terson (2005), using the Horvitz-Thompson estimator to estimate both 
the numerator and denominator terms, as follows 

R̂j =
Ŷ j

X̂ j
=

1
nj

∑n

i=1
Yij

1
nj

∑n

i=1
Xij

, (1)  

in which R̂j is the ratio estimate of old-growth forest area to total forest 
area for a given type, Ŷ and X̂ are the Horvitz-Thompson estimates of 
old-growth forest area and all forest area respectively, j is an index 
representing each spatial estimation unit, nj represents the number of 
FIA plots within the spatial estimation unit, i is an index representing 
each individual FIA plot within spatial estimation unit j,Yij represents 
the proportion of each FIA plot that is classified as old-growth forest 
expressed as a unit interval [0,1], and Xij represents the proportion of 
each FIA plot that is classified as forest expressed as a unit interval [0,1]. 

FIA plots frequently contain multiple condition classes, so to properly 
account for this possibility we calculated Yij by summing the plot-area 
proportions of all forested conditions classified as old-growth on each 
plot. Similarly, we calculated Xij by summing the plot-area proportions 
of forested conditions on each plot. 

To estimate the variance associated with R̂j we first calculated the 
variance associated with the Horvitz-Thompson estimates of Ŷj and X̂j as 

σ̂2
Yj
= V̂ar

[

Yj

]

=
1

nj
(
nj − 1

)
∑nj

i=1

(
yij − Ŷ j

)2 (2)  

σ̂2
Xj
= V̂ar

[

Xj

]

=
1

nj
(
nj − 1

)
∑nj

i=1

(
xij − X̂ j

)2 (3)  

along with the covariance of Ŷj and X̂j in the form of 

σ̂2
XYj

= Ĉov

[

XYj

]

=
1

nj
(
nj − 1

)
∑nj

i=1

(

xij − X̂ j

)(

yij − Ŷ j

)

(4)  

in which yij and xij are respective plot level values of proportion old- 
growth forest and total forest for plot i within spatial estimate unit j. 
We then used the variance and covariance to calculate the variance of R̂j 

as 

σ̂2
Rj = V̂ar

[

Rj

]

=
1

X̂
2
j

(
σ̂2

Yj + R̂
2
j × σ̂2

Xj − 2 × R̂j × σ̂2
XYj

)
(5) 

While slightly different from standard estimation procedures with 
FIA data that require post-stratification and strata weights (see Bechtold 
and Patterson (2005, 2018)), ratio estimation using a Horvitz-Thompson 
estimator has been shown to yield highly similar results to the post- 
stratified methods when estimating aboveground biomass density, and 
has the benefit of being easier to reproduce (May et al., 2023). The 
spatial estimation units were delineated by an equal-area hexagon 
tessellation grid covering the Eastern US (Fig. 3). This grid informs the 
FIA sampling design and is the highest spatial resolution for which es-
timates from FIA data should be made using the FIA’s standard esti-
mation methods (Menlove and Healey, 2020). 

2.5. Old forest proportion modeling 

There were two motivations for the second phase of our study 
involving OFP modeling using GEDI data, ordered here by importance; 
1) to determine the extent to which the old forest definitions produced 
OFP estimates that could be modeled using GEDI data, and 2) to identify 
which GEDI variables were important in predicting each dimension’s 
OFP estimates. Producing the most accurate predictions of OFP was not 
an objective, and as such we prioritized interpretability and ecological 
inference over maximizing map accuracy. We trained regression tree 

Table 2 
OFP estimates and 95% confidence intervals for each dimension of old-growth, and all possible dimensional combinations, for all eastern forests and by ecoregion.  

Ecoregion Temporal Functional Physical T&F T&P F&P All  

OFP CI OFP CI OFP CI OFP CI OFP CI OFP CI OFP CI 

all 4.64 0.000733 6.51 0.00084 45.2 0.0017 1.07 0.000359 3.54 0.000648 5.13 0.000758 0.838 0.00032 
Northern Forests (5.23) 5.81 0.00302 1.73 0.00169 37.5 0.00626 1.38 0.00152 3.27 0.00232 1.05 0.00133 0.803 0.00116 
Central Mixedwood 

Plains (8.12) 
3.37 0.00537 1.60 0.00376 40.2 0.0146 0.883 0.00285 2.10 0.00435 1.11 0.00318 0.632 0.00242 

Southeastern Plains 
(8.3) 

2.20 0.00135 10.1 0.00273 44.2 0.00449 0.788 0.000825 2.02 0.00131 8.27 0.00253 0.761 0.000816 

Ozark-Ouachita- 
Appalachian (8.4) 

8.71 0.00428 6.00 0.00344 56.9 0.00726 0.661 0.00122 7.59 0.00402 5.09 0.00322 0.587 0.00116 

Atlantic and Coastal 
Plains (8.5) 

4.13 0.00797 13.7 0.0136 50.1 0.0197 2.54 0.00632 3.39 0.00727 9.88 0.0119 2.090 0.00578 

Temperate Prairies (9.2) 4.00 0.0604 1.69 0.0387 41.4 0.150 0.59 0.0249 2.85 0.0529 0.933 0.0297 0.407 0.0210  
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models using the ‘R’ package ‘rpart’, relating each old-growth di-
mension’s OFP estimates to the aggregated GEDI variables (R Core 
Team, 2022; Therneau and Atkinson, 2022). Model fitting was per-
formed individually within six different ecoregions, informed by the 
level II EPA ecoregion delineations within the Eastern US (Omernik and 
Griffith, 2014) mapped onto the hexagons (Fig. 3). The OFP estimates 
for each dimension of old-growth were the response variables, and the 
predictor variables were hexagon-scale biophysical forest attributes 
aggregated from the GEDI data within each hexagon. For each fitted 
model we summed the variable importance by variable type to deter-
mine an importance hierarchy that characterized which types of GEDI 
forest variables were most important in the models. The following 
subsections explain the steps of our OFP modeling exercise. 

2.5.1. GEDI data 
NASA’s Global Ecosystem Dynamics Investigation is the first space-

borne mission designed to map forest structural attributes (Dubayah 
et al., 2020). GEDI is a multi-beam waveform lidar sensor that directly 
measured forest structure within footprints 25 meters wide, and was 
operational on the International Space Station from April 2019 - March 
2023. GEDI’s sole observable is a returned waveform, and throughout its 
first epoch GEDI is estimated to have collected 90 billion observations 
globally. From the waveform a suite of forest attributes are derived via 
signal processing and modeling, which are grouped into various data 
products. Here, we used GEDI footprint level 2A (L2A, canopy height) 
and 2B (L2B, canopy profile) data products collected between April 
2019 and October 2022 (Dubayah et al., 2021a; Dubayah et al., 2021b). 
The GEDI mission produces a footprint level 4A (L4A, aboveground 
biomass) data product, however a recent analysis produced updated 
footprint level biomass models that produced predictions that were in 
better agreement with estimates from the FIA network, and these models 
were used in place of the official GEDI 4A data product (Bruening et al., 
2023). We filtered the GEDI sample so that only observations over forest 
land were used, selecting only multi-modal waveforms (Hofton et al., 
2019), and those that intersected a 30-meter resolution forest mask 

(Wickham et al., 2021). 

2.5.2. Predictor variables and dimensionality reduction 
Hexagon-level aggregates of the GEDI metrics were used as the OFP 

model predictor variables. For each GEDI metric we calculated the 
mean, standard deviation, 50th, 75th, 95th and 99th percentiles at the 
hexagon level. We used L2A relative height metrics in 10 percentile 
increments from 10% to 90%, and 98%, which is a common proxy for 
maximum canopy height using GEDI data. The L2B canopy profile var-
iables we used were percent canopy cover, plant area index (PAI), plant 
area volume density (PAVD), and foliage height diversity (FHD) (Hofton 
et al., 2019; Tang and Armston, 2019). We calculated partial PAI and 
plant area volume density (PAVD) variables specific to upper canopy 
foliage for each waveform. To calculate these upper-canopy metrics, we 
summed the PAI profiles and averaged the PAVD values for the upper 
half, third, quarter, fifth, and two-fifths of the canopy for each wave-
form, and then aggregated these values in the same manner as the other 
GEDI variables. Additionally, we used the number of modes in each 
waveform as a proxy for the number of canopy layers (Hofton et al., 
2019). Lastly, we generated additional predictor variables for a select set 
of GEDI metrics by calculating the proportion of GEDI observations 
within each hexagon with values above specific threshold values (for 
example, the proportion of waveforms with a maximum canopy height 
above 35 meters). Combined, there were 205 candidate predictor vari-
ables used for model calibration. We organized the predictor variables 
by metric type into eight predictor variable groups for variable reduc-
tion prior to model fitting: biomass, percent canopy cover, FHD, canopy 
height, number of canopy layers, total canopy PAI, upper canopy PAI, 
and upper canopy PAVD. 

GEDI metrics can be highly correlated with one another, and so we 
implemented a dimensionality reduction routine prior to fitting each 
OFP-ecoregion model. This routine minimized multicolinearity and 
decreased the overall number of predictor variables used to fit each 
model, and allowed us to assess which variable group wasmost impor-
tant in predicting the OFP estimates (see Section 2.5.4). We applied the 

Fig. 3. The extent of eastern forests considered in this analysis, and the ecoregion delineations used in model calibration, which are based on the EPA level II 
ecoregions mapped onto the hexagon grid. EPA ecoregions 5.2 and 5.3, and 8.1 and 8.2 were combined based on size and similarity. 
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following procedure to each of the eight variable groups separately. For 
each variable within a group we collected the within-group covariates 
with a correlation above 0.9, and selected the single predictor from that 
collection with the largest correlation to the OFP response variable. This 
process was repeated using the selected predictors within each group 
until all within-group correlations were below 0.9, resulting in a final set 
of variables for each group that minimized within-group correlations 
while maximizing correlations with the response variable. We then took 
the five variables with the strongest correlation to the response variable 
from each final set, to ensure each variable group had the same number 
of predictors allowed in model fitting. We allowed correlations above 
0.9 between predictors in different groups as this information was 
valuable for ecological inference. Exactly 40 variables were used (five 
per group) in calibrating each model. 

2.5.3. Model calibration 
We calibrated 18 individual models based on the combination of old- 

growth dimension (three) and ecoregion (six). We used simple regres-
sion tree models as the outputs are interpretable and the variable 
importance scores are straightforward and comparable between models. 
We did not separate calibration data into testing and training sets, for 
several reasons. Excluding a subset of hexagons during calibration 
would preclude insight into which forest attributes were related to the 
OFP estimates in those hexagons, and generalizability was not a priority 
because the models were not applied to other hexagons not used in 
model training. We calibrated the models using hexagons with a forest 
proportion of at least 0.2 to reduce noise from those with little forest 
cover. Case weights were also assigned based on each hexagon’s pro-
portion forest, to ensure each hexagon’s influence in the model was 
proportional to the amount of forest it contained. We used fivefold cross 
validation during calibration to determine a pruning length for each tree 
that minimized prediction error. We then allowed two additional splits 
in each model to improve the final predictions at the cost of some over- 
fitting. Each calibrated model was then applied to the GEDI aggregates 
to predict OFP for that dimension within each ecoregion. Final predicted 
OFP maps for each old-growth dimension were produced by combining 
the predictions from all six ecoregions. 

2.5.4. Model interpretation and inference 
The ‘rpart’ model’s variable importance measure reflects each pre-

dictor’s ability to explain variation in the response variable (Therneau 
and Atkinson, 2022). We scaled the raw importance scores to assess each 
predictor variable’s importance relative to all predictors in the model 
and summed the scaled scores for each predictor by variable group from 
Section 2.5.2. By limiting each variable group to only five predictors, we 
ensured a fair comparison of importance by group, otherwise groups 
with more than five predictors would have inflated importance mea-
sures relative to the other groups. This resulted in a measure that was 
comparable between old-growth dimensions for a given region, and 
between regions for a given oldness dimension, allowing inference into 
which variable groups were the best identifiers of each oldness di-
mension’s OFP estimates. We also calculated a combined measure of 
variable importance for each old-growth dimension that represented all 
six regions by weighting each region’s importance values by the amount 
of forested land, which allocated appropriate weight to regions with 
different amounts of forest and allowed inference for eastern forests as a 
whole. 

3. Results 

3.1. Old forest estimation and classification 

Estimates of old forest proportion (OFP), derived exclusively from 
the FIA data, varied by dimension throughout eastern forests (Table 2). 
Physically old forests, those with a high density of large trees, were the 
most common at 45.2%. Functionally old forests, in which annual net 

biomass change is presumed to be near zero, were less prevalent at 6.5%. 
Temporally old forests, with a relatively old mean stand age, were least 
common at 4.6%. Only 0.8% of eastern forests qualified as old in all 
three dimensions. The spatial patterns of OFP were mostly different 
between dimensions. The only areas with notable overlap in old forest 
hotspots between the temporal and physical dimensions occurred along 
the spine of the Appalachian Mountains and the Adirondack Mountains. 
Between the physical and functional dimensions, the only overlap 
occurred in the eastern Cross Timbers region(Fig. 4). 

Regional trends in estimated OFP varied by dimension. Temporally 
old forests were most common in the Ozark-Ouachita-Appalachian re-
gion (8.7%) and the Northern Forests region (5.8%) and least common 
in the Southeastern Plains region (2.2%) and the Ozark-Ouachita- 
Appalachian region (3.4%). The southern regions (Southeastern 
Plains, Ozark-Ouachita-Appalachian Mountains, and Alluvial and 
Coastal Plains) combined for more than five times as much functionally 
old forest than the northern regions (Northern Forests, Central Mixed-
wood Plains, and Temperate Prairies), 9.4% compared to 1.7%, despite 
similar temporal (4.5% compared to 4.9%) estimates. A weaker lat-
itudinal trend in physical estimates between the southern and northern 
regions was also present (49.0% compared to 38.7%). 

Regarding old forest classifications, stands that were classified as 
physically old were unlikely to be classified as old in another dimension, 
whereas most stands that were classified as temporally or functionally 
old were likely to classified as old in at least one other dimension Fig. 5. 
When considering overlapping classifications, the likelihood of old for-
est classification increased if a stand was classified as old in another 
dimension, and further increased if that stand was classified as old in 
both other dimensions (Table 3). This effect was consistent across all 
dimensions, for eastern forests as a whole and when ecoregions were 
considered independently. Classification rates were highly variable 
across the old-growth dimensions within any given forest type, as well as 
across forest types within any given dimension (Table 4). Temporal and 
functional old forest rates by forest type were mostly below 10%, while 
physically old rates ranged from 14% to 91%. 

The comparison of temporal and functional oldness age thresholds 
yielded similar mean values for eastern forests as a whole, however 
there were substantial differences by forest type (Table 5). The spatial 
pattern of mean age thresholds within the hexagon grid revealed a slight 
latitudinal trend in the temporal thresholds, and a much larger lat-
itudinal trend in the functional thresholds (Fig. 6). 

3.2. Old forest prediction 

Physical OFP estimates were modeled with the most success (Fig. 7). 
When combining results from the regional models, the difference in 
physical old forest percent between the estimated and predicted values 
(RMSD) was 14.9 (using non-independent validation data), which 
relative to the mean estimate (nRMSE) was 32%, and the GEDI variables 
explained 43% of the variation in OFP estimates. The functional OFP 
models were relatively less successful, with respective RMSD and 
nRMSD values of 7.4 and 119%, and the GEDI variables explained 45% 
of the functional OFP estimate variation. The temporal models had 
respective RMSD and nRMSD values of 6.2 and 148%, and the GEDI 
variables only explained 29% of the variation in OFP estimates. 

Model bias, defined as the mean difference between estimated and 
predicted OFP, for each dimension was near zero (top row in Table 6), 
and the OFP predictions represented large-scale spatial patterns of each 
type of old forests to varying degrees (Fig. 7). However, attenuation bias 
resulted in an inability to predict the magnitude of OFP hotspots, evi-
denced by obvious spatial patterns in the model residuals for each 
dimension. The temporal models exhibited negative bias for large esti-
mates of OFP (Table 6) predominately throughout the Appalachian and 
Adirondack Mountains and Mark Twain National Forest. In contrast, the 
functional OFP models were able to accurately identify some but not all 
hotspots of functionally old forests, most notably the New Jersey Pine 
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Fig. 4. Hexagon-level estimates of temporal (A), functional (B), and physical (C) old-growth proportion [0–1] mapped as a percentage [0–100] across the eastern US.  
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Barrens, Ouachita National Forest, and Choctaw Nation. The physical 
OFP models were most successful in reproducing large-scale spatial 
patterns of physically old forests. These models tended to over-predict 
physical OFP on throughout the Allegheny plateau and western slopes 
of the Appalachian Mountains, the southeastern Peidmont region, and 
northwestern Great Lake states, while under-predicting throughout 
central New England, Adirondack Mountains, and eastern cross timbers 
region. 

The GEDI variable types that best explained physically old forests 
were similar across ecoregions (Fig. 8); GEDI variables of foliage height 
diversity (FHD), a measure of canopy strata represented as a diversity 
index, aboveground biomass, and canopy height were consistently 
important predictors of physical OFP, while other variable types were 
comparatively unimportant. Functional OFP estimates were also best 
explained by variables related to canopy height and FHD, although there 
was not as much differentiation in importance across the variable groups 
as for the physical models. In contrast, temporal OFP model variable 
importance was the least differentiated by variable group for eastern 
forests as a whole, with substantial variation in importance across 
regions. 

4. Discussion 

Our analysis contrasts old forest dimensions and corresponding maps 

of OFP. The OFP mapping results show that definition criteria has a 
strong and direct effect on the total estimates and spatial patterns of old 
forests. This finding helps reconcile estimate differences between Pelz 
et al. (2023) and Barnett et al. (2023). We infer that the spatial mani-
festation of old forest attributes is different for each dimension; in other 
words, large trees are not necessarily old, and old trees are not neces-
sarily large. This inference is supported by relatively little overlap in 
OFP hotspots between the dimensions (Fig. 4) and the result that, as 
defined in this study, most physically old stands were not classified as 
functionally or temporally old (Fig. 5). This is not a new discovery, but 
adds further support to the idea that tree longevity and size are not 
directly related (Piovesan and Biondi, 2021). These results demonstrate 
how multiple definitions are useful in characterizing multifaceted old- 
growth conditions by mapping and contrasting the spatial patterns of 
old forests. 

4.1. Old-growth definitions and mapping 

The OFP modeling exercise revealed a hierarchy with respect to old 
forest mapping using structure derived from remote sensing (GEDI); 
physical OFP maps were modeled with the most success, functional OFP 
maps were modeled with relatively less success, and temporal OFP maps 
were not modeled effectively (Fig. 7). The mapping hierarchy supports 
our hypothesis that definition criteria impacts the extent to which an 

Fig. 5. Euler diagram of in situ old forest classifications at the stand level for all stands in the FIA network considered in this analysis; the empirical counterpart to the 
theoretical Fig. 1B. Percentages sum to 100, and thus represent the percent of stands classified relative to number of total stands with at least one old forest clas-
sification across the three dimensions. 

Table 3 
Stand-level rates of overlapping old-growth classifications (columns with ‘&’), along with baseline rates of classification for each dimension. For example, while 4.2% 
of all plots were classified as temporally old, 14.8% of functionally old plots were classified as temporally old, 7.6% of physically old plots were classified as temporally 
old, and 15.3% of functionally and physically old plots were classified at temporally old.  

Region Temporal T&F T&P T&FP Functional F&T F&P F&TP Physical P&T P&F P&TF 

All 4.20 14.8 7.56 15.3 6.44 22.6 11.8 23.8 40.0 72.0 73.1 75.7 
Northern Forests (5.23) 5.43 79.6 8.89 76.3 1.55 22.7 2.87 24.7 31.9 52.3 59.1 56.7 
Central Mixedwood Plains (8.12) 3.30 51.5 5.22 56.5 1.48 23.1 2.72 29.4 34.8 55.1 63.9 70.0 
Southeastern Plains (8.3) 1.96 7.07 4.35 8.67 9.74 35.1 18.6 37.1 39.3 87.1 75.2 92.2 
Ozark-Ouachita-Appalachian (8.4) 7.76 9.61 12.8 10.3 6.43 7.96 9.74 7.89 51.5 84.7 78.1 83.9 
Atlantic and Coastal Plains (8.5) 3.89 17.7 6.56 20.3 13.5 61.1 20.1 62.1 46.1 77.8 68.8 79.1 
Temperate Prairies (9.2) 3.84 27.3 6.38 33.3 1.76 12.5 2.35 12.3 35.8 59.4 47.7 58.3  
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old-growth definition can be mapped using GEDI data within our 
modeling framework. We expect GEDI’s height, biomass, and foliage 
height diversity (FHD) to be directly related to the density of large trees 
within a stand, so it is not surprising that the physical dimension is 
mapped most effectively and consistently. Relative consistency in vari-
able importance across the regions (Fig. 8) suggests a higher degree of 
structural similarity in physically old forests throughout the eastern US 
than for temporally or functionally old forests. 

In contrast, the temporal OFP models had relatively weak predictive 
power and a large combined nRMSD (Fig. 7), with considerable inter- 
regional differences in variable importance (Fig. 8). From these results 
we infer that temporally old forests do not have a strong and consistent 
structural signature that is different from temporally young forests when 
aggregated across space and forest types, which is contrary to our 
expectation. We propose three related explanations for this finding. 
First, old trees in the eastern US come in many different shapes and sizes 
(Pederson, 2010). The structure of temporally old forest stands likely 
varies spatially within and between these ecoregions, may be specific to 
individual forest types, and could also be dependent on a suite of envi-
ronmental covariates not considered in our analysis. Thus mixing old 
forest classifications across forest types within a hexagon during our 
estimation process may weaken the overall signal between GEDI struc-
tural attributes and old forest prevalence if the structural signatures of 
old forests are different across forest types. Second, the FIA’s stand age 
variable does not reflect the entire age structure of a stand, nor is it 
guaranteed to indicate the time since stand replacing disturbance, which 
may add uncertainty or noise to existing structure-age relationships. 

Third, we speculate that sensitivity to structural attributes of temporally 
old forests is diminished by the spatial scale of our prediction frame-
work, as localized high resolution analyses of old-growth forests have 
identified numerous age-dependent relationships to remote sensing data 
(Falkowski et al., 2009; Kane et al., 2010; Pinto et al., 2012; Martin 
et al., 2021). Our estimation process produces ratio estimates of old 
forests that represent an expanse of forested land that is very large, and 
most hexagons contain very low, if any, ratios of old forest. A smaller 
hexagon grid would result in more variation in the OFP estimate and 
may help to amplify a common structural signal within temporally old 
forests that may by currently overwhelmed within our current frame-
work, however this hexagon grid is finest resolution recommended for 
areal estimation with FIA plot data (Menlove and Healey, 2020). 

The modeling results for functionally old forests were mixed in that 
predictive power was in between that of the physical and temporal 
models, but there was not consistency across ecoregions in the GEDI 
attributes related to functionally old forests. Despite the temporal and 
functional dimensions’ shared usage of stand age as a definition crite-
rion (albeit with different thresholds), GEDI variables were able to 
explain variations in functional OFP more than variations in temporal 
OFP. This suggests a structural signal is at least somewhat present within 
functionally old forests. An explanation for this could be that functional 
oldness—the age at which stand biomass accumulation is presumed to 
be near zero—represents the onset of a forest condition with more 
structural consistency than temporal oldness. A recent analysis of GEDI 
data colocated with FIA plot data indicated both FHD and maximum 
canopy height as strong indicators of carbon storage capacity on FIA 

Table 4 
Stand-level old-growth classification rates for each dimension of old-growth and all possible combinations, grouped by all eastern forests, ecoregion, USFS old-growth 
community type from Pelz et al. (2023), and FIA forest type group from Barnett et al. (2023).   

Group Source Temporal Functional Physical T&P T&F F&P All 

1 all NA 4.2 6.44 40.02 3.02 0.95 4.71 0.72 
2 Northern Forests (5.23) ecoregion 5.43 1.55 31.92 2.84 1.23 0.92 0.7 
3 Central Mixedwood Plains (8.12) ecoregion 3.3 1.48 34.81 1.82 0.76 0.95 0.53 
4 Southeastern Plains (8.3) ecoregion 1.96 9.74 39.29 1.71 0.69 7.32 0.63 
5 Ozark-Ouachita-Appalachian (8.4) ecoregion 7.76 6.43 51.52 6.57 0.62 5.02 0.52 
6 Atlantic and Coastal Plains (8.5) ecoregion 3.89 13.46 46.13 3.03 2.38 9.25 1.88 
7 Temperate Prairies (9.2) ecoregion 3.84 1.76 35.75 2.28 0.48 0.84 0.28 
8 Beech/Maple/Basswood Pelz 2023 0.18 0.09 42.98 0.14 0.05 0.05 0.05 
9 Conifer N. hardwood Pelz 2023 3.97 11.17 63.26 3.67 3.16 10.21 3.01 
10 Cypress/Tupelo swamp Pelz 2023 4.41 4.53 87.34 4.3 1.39 4.41 1.28 
11 Eastern riverfront Pelz 2023 6.52 0 41.3 6.52 0 0 0 
12 Floodplain hardwood Pelz 2023 2.07 0.97 51.57 1.78 0.6 0.89 0.55 
13 Longleaf/Slash Pine Pelz 2023 11.28 1.03 40.51 9.74 1.03 1.03 1.03 
14 Mesophytic Pelz 2023 0.22 0.51 14.16 0.15 0.07 0.22 0 
15 Mesic Oak Pelz 2023 0.7 0.85 39.95 0.6 0.38 0.74 0.33 
16 Dry-mesic Oak/Pine Pelz 2023 0.06 15.53 27.77 0.03 0.05 10.41 0.02 
17 Montane Spruce/Fir Pelz 2023 2.39 1.63 16.74 1.1 1.63 0.91 0.91 
18 N. hardwood Pelz 2023 2.14 0.36 43.88 1.84 0.34 0.31 0.29 
19 N. Pine Pelz 2023 7.43 0.64 42.59 5.29 0.64 0.49 0.49 
20 Other Pelz 2023 7.69 3.7 22.93 3.56 1.78 1.82 1.01 
21 Sub-boreal Spruce/Fir Pelz 2023 1.54 1.98 14.36 0 1.54 0 0 
22 Seasonally wet hardwood Pelz 2023 20.27 0.74 62.43 14.28 0.74 0.59 0.59 
23 Wetland hardwood Pelz 2023 1.65 0.51 20.31 0.55 0.29 0.2 0.07 
24 S. wet Pine Pelz 2023 8.75 33.4 68.79 8.13 8.19 30.6 7.62 
25 Xeric Oak (N) Pelz 2023 23.55 12.7 22.91 9.73 2.37 1.13 0.76 
26 Xeric Oak (S) Pelz 2023 24.29 0.29 91.78 23.87 0.29 0.29 0.29 
27 Xeric Pine, Pine/Oak Pelz 2023 3.81 35.74 75.13 3.56 1.77 30.59 1.67 
28 Aspen/Birch Barnett 2023 0.99 0 17.88 0.74 0 0 0 
29 Elm/Ash/Cottonwood Barnett 2023 2.03 0.36 27.21 0.78 0.3 0.11 0.08 
30 Fir/Spruce/Mountain Hemlock Barnett 2023 0 0 0 0 0 0 0 
31 Loblolly/Shortleaf Pine Barnett 2023 0.65 26.93 31.32 0.43 0.65 18.1 0.43 
32 Longleaf/Slash Pine Barnett 2023 8.29 34.78 67.64 7.67 8.29 31.89 7.67 
33 Maple/Beech/Birch Barnett 2023 2.49 0.31 50.43 2.22 0.3 0.28 0.28 
34 Oak/Gum/Cypress Barnett 2023 2.45 2.08 49.35 2.2 0.99 1.85 0.89 
35 Oak/Hickory Barnett 2023 5.94 0.66 43.37 4.62 0.4 0.52 0.3 
36 Oak/Pine Barnett 2023 2.67 5.6 52.86 2.29 0.97 5.03 0.9 
37 Spruce/Fir Barnett 2023 13.45 4.25 19.18 5.16 4.13 1.96 1.96 
38 Tropical Hardwoods Barnett 2023 2.56 0 38.46 1.28 0 0 0 
39 White/Red/Jack Pine Barnett 2023 7.93 1.97 48.41 6.05 1.73 1.79 1.55  
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Table 5 
Mean temporal and functional old-growth age thresholds and the mean and median difference defined as the temporal threshold minus the functional threshold, by 
ecoregion, and both Pelz et al. 2023 and Barnett et al. 2023 groupings. Values were rounded to the nearest year, resulting in occasional discrepancies in the mean 
difference by one year.  

Group Source Temporal Functional mean difference median difference 

all NA 117 115 1 − 10 
Northern Forests (5.23) ecoregion 117 147 − 30 − 24 
Central Mixedwood Plains (8.12) ecoregion 123 138 − 15 − 15 
Southeastern Plains (8.3) ecoregion 115 89 26 26 
Ozark-Ouachita-Appalachian (8.4) ecoregion 119 124 − 5 − 13 
Atlantic and Coastal Plains (8.5) ecoregion 106 89 17 19 
Temperate Prairies (9.2) ecoregion 117 138 − 21 − 19 
Beech/Maple/Basswood Pelz 2023 140 146 − 6 − 4 
Conifer N. hardwood Pelz 2023 140 114 26 22 
Cypress/Tupelo swamp Pelz 2023 120 121 − 1 − 15 
Eastern riverfront Pelz 2023 100 128 − 28 − 39 
Floodplain hardwood Pelz 2023 100 118 − 18 − 17 
Longleaf/Slash Pine Pelz 2023 80 111 − 31 − 21 
Mesophytic Pelz 2023 140 126 14 8 
Mesic Oak Pelz 2023 140 133 7 8 
Dry-mesic Oak/Pine Pelz 2023 120 50 70 76 
Montane Spruce/Fir Pelz 2023 120 140 − 20 − 14 
N. hardwood Pelz 2023 120 140 − 20 − 24 
N. Pine Pelz 2023 100 129 − 29 − 38 
Other Pelz 2023 100 149 − 49 − 78 
Sub-boreal Spruce/Fir Pelz 2023 140 130 10 6 
Seasonally wet hardwood Pelz 2023 100 133 − 33 − 32 
Wetland hardwood Pelz 2023 120 132 − 12 − 19 
S. wet Pine Pelz 2023 80 47 33 38 
Xeric Oak (N) Pelz 2023 100 125 − 25 − 32 
Xeric Oak (S) Pelz 2023 90 140 − 50 − 42 
Xeric Pine, Pine/Oak Pelz 2023 100 78 22 26 
Aspen/Birch Barnett 2023 103 178 − 75 − 78 
Elm/Ash/Cottonwood Barnett 2023 116 133 − 17 − 19 
Fir/Spruce/Mountain Hemlock Barnett 2023 100 428 − 328 − 326 
Loblolly/Shortleaf Pine Barnett 2023 116 41 76 76 
Longleaf/Slash Pine Barnett 2023 80 42 38 38 
Maple/Beech/Birch Barnett 2023 124 147 − 23 − 24 
Oak/Gum/Cypress Barnett 2023 109 116 − 6 − 15 
Oak/Hickory Barnett 2023 123 133 − 9 − 12 
Oak/Pine Barnett 2023 112 99 13 19 
Spruce/Fir Barnett 2023 118 127 − 9 3 
Tropical Hardwoods Barnett 2023 100 146 − 46 − 46 
White/Red/Jack Pine Barnett 2023 106 130 − 23 − 18  

Fig. 6. Mean stand age threshold values by hexagon for the temporal (A) and functional (B) old-growth definitions.  
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plots (Crockett et al., 2023). These findings corroborate the result that 
FHD and canopy height were somewhat effective predictors of func-
tional oldness (Fig. 8), given that functionally old forests should be near 
the maximum carbon storage capacity (Barnett et al., 2023). However, 
we did not find consistency in variable importance across ecoregions for 
functional OFP prediction, suggesting that while functional old-growth 
characteristics may be detectable via remote sensing, there is not same 
degree of structural consistency throughout functionally old forests as 
there is for physically old forests. 

4.2. Age-based old-growth definitions 

An old-growth definition characterized by near-equilibrium condi-
tions with respect to biomass development is antithetical to views of old- 
growth as a dynamic and cyclical forest process that is “heterogeneously 
heterogeneous”, rather than an end-state (Pesklevits et al., 2011). 
Nonetheless, the functional definition’s age thresholds are valuable for 
identifying forests that are approaching maximum carbon storage ca-
pacity, and we argue a diversity of viewpoints as to what constitutes old- 
growth is beneficial for scientists or land managers defining old-growth 

Fig. 7. OFP model prediction and residual maps and scatter plots of predicted (from GEDI) vs. estimated (from FIA) OFP values, combined across all ecoregions for 
each dimension of old-growth. The OFP prediction map units are percentages, and the residual maps units are the difference in percentage points (not a percent 
difference) between the estimated and predicted value. The solid dashed in the scatter plots is the 1:1 line, and the dark red dotted line is the trend line between the 
estimated and predicted values, the slope of which is reported along with the R2, RMSD and normalized RMSD as a percent of the mean OFP estimate. 

Table 6 
OFP model bias, defined as the mean difference between estimated and pre-
dicted OFP, combined across ecoregions for each dimension. The values are in 
percentage points, so a value of 14.2 means the models under-predicted OFP 
relative to the estimated value by 14.2 points. Bias is reported for all predictions 
in each dimension (top row), as well as segmented by ranges of estimated OFP to 
assess model bias as a function of estimated OFP. The number of model data 
points (hexagons) within each range is represented by N for each dimension.  

OFP range Temporal Functional Physical  

Bias N Bias N Bias N 

0–100% 0.0167 3941 − 0.257 3941 0.313 3941 
0–10% − 1.8 3347 − 2.59 3059 − 21 107 
10–20% 7.76 427 4.48 556 − 16 224 
20–30% 14.2 107 11 176 − 12.3 485 
30–40% 18 36 12.4 86 − 6.19 738 
40–50% 22.3 19 18.3 36 − 0.76 738 
50–60% 28.2 4 20.2 16 4.92 636 
60–70% 60.5 1 36.7 5 10 492 
70–80% - - 35 6 16.5 323 
80–90% - - 37.9 1 30.7 52 
90–100% - - - - 21.5 146  
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Fig. 8. OFP model variable importance scores aggregated by variable type and colored by biophysical attribute category, by ecoregion. The top row is a weighted 
measure of variable importance across all regions based on the ecoregions’ relative proportions of forest. 
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for a specific use case or region, and is especially relevant when 
assessing old-growth dimensions for specific forest types. For example, 
observations of late successional biomass development within tempo-
rally old northern hardwood stands show that functional oldness may 
not be realized until long after temporal and physical oldness (Keeton 
et al., 2011), while surprisingly young ages of functional old growth 
reported by Barnett et al. (2023) demonstrate the opposite may be true 
for longleaf and shortleaf pines and other predominately southern forest 
types (Table 5). The spatial pattern of differences between the temporal 
and functional age thresholds (Fig. 6) explains latitudinal differences 
between the temporal and functional OFP estimates (Fig. 4). However, 
we did not directly investigate reasons for the latitudinal gradient in 
mean onset age of functional oldness. Yet, tree longevity and growth 
rates are known to be inversely related (Körner, 2017), and growth rates 
in lower latitude forests tend to be larger than those in northern latitude 
forests (Gillman et al., 2015). Together, these phenomena could explain 
the latitudinal gradient in mean onset of functional old-growth charac-
teristics and differences relative to the mean temporal age thresholds 
(Fig. 6). 

The temporal and functional age thresholds represent fundamentally 
different forested conditions; the functional thresholds estimate the age 
at which net carbon accumulation is near zero, while the temporal 
thresholds seem to identify a stand age old enough to suggest the 
absence of recent and widespread human activity within the stand. 
However, the FIA’s stand age variable is an imperfect measure of age 
structure, and stands that originated from land use transitions in the 
early 19th century could have a mean stand age value above the tem-
poral oldness thresholds. The nature of the FIA stand age variable pre-
cludes a direct mapping to the age ranges from Gaines et al. (1997) and 
Tyrrell (1998) which underpin the temporal thresholds, and helps 
explain the possibility that temporally old stands could have originated 
from land-use transitions. Furthermore, both the temporal and func-
tional age thresholds appear relatively permissive when compared to 
other age-based definitions; Mosseler et al. (2003) suggest old-growth is 
achieved when the average age of dominant species equals about half its 
maximum longevity, as well as the presence of old trees approaching 
their species’ maximum longevity. Nonetheless, the comparison of 
temporal and functional age thresholds raises an interesting and 
important question; at what point should forests that long ago regen-
erated after human-induced land use transitions be considered within 
old-growth discussions? Such forests are commonly referred to as 
mature, but at what point does a mature stand become eligible for old- 
growth status? According to definitions in which widespread human 
activity precludes old-growth status forever, most of today’s forests can 
never become old-growth. Conversely, Pesklevits et al. (2011) suggest 
that time since disturbance should matter more than the type of 
disturbance, as long as enough time has passed and forest complexity 
and heterogeneity is allowed to develop. In this context, the marriage of 
remote sensing data and forest simulation models that track land use 
transitions and forest regrowth could help identify data driven answers 
to this question and assist in mapping of old forest attributes (Caspersen 
et al., 2000; Hurtt et al., 2011; Ma, 2021). 

4.3. Conclusions and recommendations 

Each dimension of forest oldness attempts to identify a forested 
condition that takes a long time to develop. However, physically old 
stands were far more common than temporally or functionally old 
stands, which suggests that physically old characteristics are achieved 
sooner in stand development than temporally or functionally old char-
acteristics. From this we infer that physical thresholds alone are inef-
fective as an old-growth definition. This inference is in agreement with 
the approach of Pelz et al. (2023), in that both physical and temporal 
criteria were used to define old-growth. An argument could also be made 
that physically-based definition criteria limit the effectiveness of old- 
growth definitions. Old trees are not necessarily large, and definitions 

that reflect a Euro-American colonialist perspective of towering 
“cathedral” forests more than likely ignore other manifestations of old 
forests appreciated by other worldviews (Moore and Nelson, 2023). 
Indeed, many of today’s oldest eastern forests contain trees that are 
relatively short and gnarled in stature, passed over for logging or 
clearing for agricultural due poor site quality and accessibility issues 
(Davis, 1996). Therrell and Stahle (1998) even developed a spatially 
explicit predictive model to map old-growth based on steep and infertile 
soils that was 74% accurate in identifying old-growth stands in the Cross 
Timbers ecosystem in northern Oklahoma. 

In contrast, the physical dimension of oldness as defined may provide 
more utility than the functional or temporal dimension from a strictly- 
mapping perspective. Our modeling results suggest that old-growth 
definitions related to physical oldness may be more effectively map-
ped than definitions that do not incorporate a physically-based 
component. However, in the view that old-growth forests must 
contain very old trees, the temporal dimension alone is the most 
meaningful. In this interpretation, our results suggest a potential trade- 
off with respect to ecological relevance and mapability of old-growth 
definitions: arguably the most important part of any old-growth defi-
nition—the presence of very old trees—is also the most difficult to 
precisely identify across large geographic extents within our prediction 
framework. 

While this trade-off presents a challenge to old-growth mapping, it 
also provides exciting opportunities for discovery and collaboration 
between ground-based forest ecologists, Traditional Ecological Knowl-
edge experts, and remote sensing scientists. Collaborations may be 
particularly helpful in balancing the interactions between components 
of a mapping analysis. It is our view that the challenge of appropriately 
mapping old-growth requires the consideration of at least four interre-
lated factors: 1) clearly stated definitions, 2) remote sensing and other 

Fig. 9. Considerations that must be balanced within old-growth mapping an-
alyses, as each factor necessarily impacts the others. For example, old-growth 
definitions may be developed by blending knowledge from western forest 
ecologists and traditional ecological knowledge from indigenous communities, 
and these definitions may necessitate a specific modeling approach or spatial 
resolution. Alternatively, the spatial resolution of a specific old-growth defini-
tion might impact the quantitative framework used to make predictions or 
identify old-growth conditions, and could impact which remote sensing data 
types were used as predictors. These examples are not exhaustive, and are 
provided to demonstrate the holistic nature of old-growth mapping. 
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spatial predictor data, 3) the spatial resolution at which old-growth 
conditions are mapped, and 4) the inferential framework and quanti-
tative methods used to generate the map. In this conceptual model 
(Fig. 9) each component impacts and depends on the others, necessi-
tating a holistic approach. We recommend that mapping efforts should 
resist the temptation to classify old forests, as this approach reduces 
complexity and introduces arbitrariness (Gray et al., 2023). Instead, 
analytic frameworks should recognize the heterogeneity inherent to old- 
growth structure, function, and composition. Emphasis be placed on 
generating a diverse stack of remotely sensed predictors that incorporate 
other forest attributes in addition to vertical structure. Furthermore, the 
native resolution of many remote sensing instruments is likely too fine to 
adequately characterize old-growth processes that operate at the com-
munity level within forests, as a single individual tree crown could 
feasibly cover the entire area of a Landsat or Sentinel pixel or GEDI 
observations. Instead mapping analyses may consider distributions of 
high-resolution spatial data (meters) within larger areas (hectares to 
square kilometers) that are more relevant to old-growth processes at the 
landscape scale. Such efforts may retain more information about the 
complexity and heterogeneity of forest attributes necessary for inference 
into old forest conditions and processes, compared with high-resolution 
pixel-level classification. Lastly, spatially explicit forest gap models that 
simulate demography and succession constrained by climatic, edaphic, 
topographic, and remotely sensed forest structure data hold great 
promise, as a calibrated simulation environment is well suited for 
investigating the many and diverse manifestations of forest change over 
very long time periods. 
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