

OUR CHANGING FORESTS: AN LTER PARTNERSHIP BETWEEN HARVARD SCIENTISTS, CONSERVATIONISTS, AND GRADE 7-12 TEACHERS AND STUDENTS

MELANIE MCCRACKEN^{1,2}, PAMELA SNOW², EMERY BOOSE², JOSHUA PLISINSKI², CLARISSE HART²

¹Groton-Dustable Regional High School, 603 Chicopee Row, Groton MA 01450 ²Harvard Forest, Harvard University, 324 North Main St., Petersham, MA 01366

OUR IMPACT

We created middle and high school classroom lesson plans to investigate the impacts of forest change in local communities, using a combination of plot-based, student-led field studies, remote sensing maps, and conservation resources.

OUR GOAL

Using field data collected in 10x10m plots and local land-use maps, answer the research questions for the "Our Changing Forests" Schoolyard Ecology project: **How do forests grow** and change over time in response to different environments, land use, and disturbances?

OUR CHALLENGES

We sought to overcome the difficulty of scaling up from plot-level data to the wider context of forest change. Teachers using the lesson plan should keep in mind availability of technology, weather unpredictability, safety issues, and students' math abilities.

OUR APPROACH FIELD DATA COLLECTION & ANALYSIS

Groton-Dunstable High School

Plot 1 Survey 1 (2013)

Ecologist-led workshops trained teachers Teachers and students set up 10m² in the plot-based field protocol. their schools and measured diamet

study plots within walking distance of their schools and measured diameter of all trees.

LOCAL & REGIONAL CONTEXT

Maps produced by Harvard Forest RA Joshua Plisinski showed decades of

Students entered their study plot data into a custom Harvard Forest database developed by Information Manager Emery Boose. Online graphing tools helped them analyze basal area, density, and carbon biomass.

land-cover change in a 1-mile radius around the school and in the surrounding town.

OUR RESULTS - Groton-Dunstable Regional High School

Students explored local land-cover change using HF maps and the aerial map time slider in Google Earth Pro.

Students discovered forest and farmland converted into housing developments, and analyzed whether smart-growth techniques were used.

This year, students will also estimate how much carbon biomass may have

NEXT GENERATION SCIENCE STANDARDS USED HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.

HS-LS2-7. Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

from forest to development.

RESOURCES

Harvard Forest Schoolyard Ecology. 2018. Our Changing Forests. <u>http://harvardforest.fas.harvard.edu/Our_Changing_Forests</u> Plisinski, J. 2018. Land-Use Change Maps. <u>http://harvardforest.fas.harvard.edu/SYLandUseChangeMaps</u> Smart Growth America. 2018. "What Is Smart Growth?" <u>https://smartgrowthamerica.org/our-vision/what-is-smart-growth/</u> Groton municipal map of property information: <u>https://grotonma.mapgeo.io/?latlng=42.616309%2C-71.576977&zoom=12</u>

ACKNOWLEDGEMENTS

The authors would like to thank Jonathan Thompson for intellectual contributions to the project. Funding was provided by Highstead, the

Harvard Forest, and the National Science Foundation's Long-Term Ecological Research Program (DEB #1237491).