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Introduction

The middle-Holocene decline of Tsuga canadensis is one of the 
most-studied events in the postglacial vegetation history of east-
ern North America (e.g. Allison et al., 1986; Bennett and Fuller, 
2002; Bhiry and Filion, 1996; Calcote 2003; Davis, 1981; Foster, 
2000; Foster and Zebryk, 1993; Foster et al., 2006; Fuller, 1998; 
Haas and McAndrews, 2000; Hall and Smol, 1993; Heard and 
Valente, 2009; Shuman et al., 2004; St Jacques et al., 2000; Webb, 
1982; Yu and McAndrews, 1994; Zhao et al., 2010). Most research 
has focused on the precipitous drop in Tsuga pollen percentages at 
~5500 calibrated years before present (cal. yr BP), a widespread 
pattern interpreted as an abrupt, range-wide crash in Tsuga popu-
lations (e.g. Bennett and Fuller, 2002; Davis, 1981; Webb, 1982). 
A study by Fuller (1998), however, suggested that Tsuga also 
underwent an earlier, short-lived decline, dated to ~6000 cal. yr 
BP in a high-resolution lake-sediment pollen record from Graham 
Lake, located in southern Ontario, Canada (Figure 1). The earlier 
Tsuga decline has not been documented unambiguously in other 
paleoecological studies in the region, but few pollen records 
 feature the sampling resolution required to detect and define a 
century-scale event.

In this paper we present and discuss a post-glacial pollen 
record from Knob Hill Pond, located in northern Vermont, USA 
(Figure 1), an area of historically high Tsuga canadensis abun-
dance (e.g. Cogbill et al., 2002). Century-scale analysis of the 
middle-Holocene interval of the record allows us to investigate 
whether the ~6000 cal. yr BP decline of Tsuga documented by 
Fuller (1998) occurred elsewhere in eastern North America. We 

also explore the spatial patterns and possible causes of middle-
Holocene vegetation changes across New England.

Study area
Tsuga canadensis is currently found across a large area of eastern 
North America, ranging from the Great Lakes region east to Nova 
Scotia, and south along the Appalachian Mountains to northern 
Georgia and Alabama (Little, 1971; Thompson et al., 1999). 
Tsuga is common in northern Vermont, where it occurs with Acer 
saccharum, A. rubrum, Fagus grandifolia, Betula alleghaniensis, 
B. papyrifera, Pinus strobus, Quercus rubra, Fraxinus ameri-
cana, Picea rubens, Abies balsamea, Larix laricina, and Thuja 
occidentalis (Thompson and Sorenson, 2000). Northern New Eng-
land is characterized by cold winters (mean January temperature is 
−8°C at St Johnsbury, Vermont, for example) and cool summers 
(mean July temperature is 21°C). Mean annual precipitation is 99 
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Abstract
The abrupt, range-wide decline of Tsuga canadensis ~5500 calibrated years before present (cal. yr BP) is one of the most-studied events in North American 
paleoecology. Little attention, however, has been given to an earlier Tsuga decline, dated to ~6000 cal. yr BP in southern Ontario, Canada. To investigate 
whether this event occurred elsewhere in eastern North America, we analyzed the middle-Holocene interval of a lake-sediment record from Knob Hill 
Pond, located in northern Vermont, USA, an area of historically high Tsuga abundance. A dramatic, short-lived drop in Tsuga pollen abundance does 
occur at ~6000 cal. yr BP in the Knob Hill Pond record, indicating that Tsuga populations declined in various parts of its range. We hypothesize that both 
middle-Holocene declines of Tsuga were caused by the deleterious effects of pronounced droughts on this moisture-sensitive tree. Close examination 
of pollen data from a transect of sites across New England reveals that the earlier decline of Tsuga is present in other records, although some aspects of 
the event appear to have varied geographically. While northern and higher-elevation sites exhibit a nearly full recovery of Tsuga populations between the 
two declines, records further to the south are characterized by a stair-step pattern of progressive decline. At sites near its southern range limit, relatively 
warm conditions between ~6000 and 5500 cal. yr BP were apparently not conducive to the reestablishment and survival of Tsuga, and thus it was unable 
to recover between the drought events.
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cm, distributed relatively evenly throughout the year (Easterling 
et al., 1996).

Knob Hill Pond (44.3605°N, 72.3737°W, 370 m elevation) is 
located in the town of Marshfield in northern Vermont, USA 
(Figure 1). The 7.1 ha, 4.2 m deep pond has a single outlet that 
flows west towards the Winooski River. Much of this region was 
cleared for agriculture in the late eighteenth century and has refor-
ested over the last century (Foster, 2002). There remain actively 
used agricultural fields southwest of Knob Hill Pond, whereas the 
landscape northwest of the pond is forested. The pond is located 
on the Waits River Formation, which consists of mica schist and 
phyllite interbedded with crystalline limestone (Doll et al., 1961). 
Soils in the 41 ha Knob Hill Pond watershed have developed on 
thick glacial till. Knob Hill Pond is ~8 km southeast of South 
King Pond, analyzed by Ford (1990) in a study of long-term 
 ecosystem acidification.

Methods

We collected an 857 cm long sediment core from the center of 
Knob Hill Pond (water depth 4.2 m) in August 2001. Upper sedi-
ments, including an undisturbed sediment–water interface, were 
collected with a plastic tube fitted with a piston. The surface core 
was transported to the laboratory and extruded vertically in 1 cm 
segments. Lower sediments were raised in 1 m drive lengths using 
a modified Livingstone piston sediment sampler. Those core seg-
ments were extruded horizontally in the field and wrapped in plas-
tic and aluminum foil. All samples were subsequently refrigerated.

Chronological control is provided by 210Pb analysis of recent 
sediments (Binford, 1990), pollen evidence for European settle-
ment, and accelerator mass spectrometry 14C analysis of nine 
bulk-sediment samples (Table 1). 14C dates were converted to 
calibrated years before present (cal. yr BP) using CALIB 5.0 

Figure 1. (a) Map showing locations of Knob Hill Pond and other key sites mentioned in the text. (b) Map of New England showing site 
locations and pre-settlement relative abundance (percentage values in witness-tree data set) of Tsuga canadensis (Cogbill et al., 2002)

Table 1. Chronological data for the Knob Hill Pond sediment core

Type Depth (cm) 14C lab codea δ13C (‰) 14C date ± 1 SD Cal. age 2σ range  
(cal. yr BP)

Ageb

Surface   0–1 −51
210Pbc  56–57 87
ESHd  90–91 160
14C 115–116 Beta-174850 −26.8 880 ± 80 699–915 794
 143–144 Beta-174851 −27.5 1280 ± 80 1089–1292 1221
 185–186 Beta-174852 −28.1 1840 ± 80 1638–1875 1777
 274–275 OS-52811 −28.1 3180 ± 80 3336–3477 3406
 473–474 OS-52854 −28.0 5050 ± 70 5668–5906 5819
 603–604 OS-52857 −29.1   6740 ± 110 7507–7680 7604
 653–654 OS-52858 −29.6   7770 ± 100 8429–8631 8546
 753–754 OS-52859 −33.7 10 200 ± 130 11 613–12 145 11 899
 803–804 OS-52860 −32.7 11 950 ± 140 13 673–13 981 13 814

aBeta, Beta Analytic, Miami FL, USA; OS, National Ocean Sciences Accelerator Mass Spectrometry Facility, Woods Hole MA, USA.
bMedian calibrated age for 14C dates.
cOldest of 15 210Pb age assignments.
dESH, European settlement horizon.
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(Reimer et al., 2004; Stuiver and Reimer, 1993). Sediment organic 
content was estimated for 1 cm3 samples at selected depths by 
percent weight loss-on-ignition (LOI) at 550°C; we also calcu-
lated accumulation rates (influx; g/cm2 per yr) for the organic and 
inorganic sedimentary fractions. Sediment samples of 1–2 cm3 
were prepared for pollen analysis following standard procedures 
(Faegri and Iversen, 1989), and tablets containing Lycopodium 
spores were added to the samples to estimate pollen accumulation 
rates (influx; Stockmarr, 1971). Pollen residues were mounted in 
silicone oil and analyzed at 400× magnification. At least 450 pol-
len grains and spores of upland plant taxa were counted for each 
sample, and pollen percentages were calculated relative to that 
sum. Low pollen concentrations prevented analysis of samples 
below 823 cm.

Results
The base of the Knob Hill Pond sediment core dates to ~14 000 
cal. yr BP (Figure 2; Table 1). The age–depth model for the record 
involves a third-degree polynomial fit to the 14C dates and linear 
interpolation between the sediment–water interface, the lower-
most 210Pb age assignment, the European-settlement date, and the 
uppermost 14C date (Figure 2). We extrapolate the age–depth 

model beyond the lowermost 14C date (~13 800 cal. yr BP at 803 
cm). The dating of bulk-sediment samples may be complicated by 
carbon-reservoir effects (e.g. Grimm et al., 2009), but comparison 
of our results with other records from New England (e.g. Oswald 
et al., 2007) suggests this age–depth model is reasonable. Sedi-
ments dated to ~14 000–11 500 cal. yr BP have high influx of inor-
ganic material, low organic influx, and low LOI values (0–40%; 
Figures 2–4). LOI is ~50% from 11 500 cal. yr BP to the surface, 
peaking at >65% during ~6200–5800 cal. yr BP. Organic and 
inorganic accumulation rates track each other closely after 11 500 
cal. yr BP, although organic influx values are higher than those of 
the inorganic fraction during the ~6200–5800 cal. yr BP interval 
of elevated LOI (Figures 2–4). We divided the pollen record into 
seven zones and subzones (Figures 3–4); the zones correspond 
with those of Deevey (1939).

Zone A: 14 000–11 500 cal. yr BP

Pollen assemblages in samples dating to ~14 000–13 000 cal. yr 
BP feature Picea (~30%), Pinus (~30%), Betula (~10%), and 
Cyperaceae (~5%; Figure 3). Between ~13 000 and 11 500 cal. yr 
BP, Picea and Cyperaceae pollen percentages decline while 
Alnus, Betula, Quercus, Larix, and Abies percentages increase in 
abundance. Pollen accumulation rates are low (~2000 grains/cm2 
per yr) in Zone A (Figure 4).

Zone B1: 11 500–10 200 cal. yr BP

Picea, Alnus, Larix, and Abies pollen percentages are low after 
~11 500 cal. yr BP (Figure 3). Betula increases abruptly at the 
beginning of Zone B1, peaking at ~40% at 11 200 cal. yr BP. 
Quercus increases gradually during this interval to reach ~20% by 
10 200 cal. yr BP. Pinus pollen percentages increase to ~50%; 
most of the identified Pinus grains are Pinus subgenus Strobus. 
Ulmus pollen is present at low percentages (~3%). Pollen accu-
mulation rates increase to ~10 000 grains/cm2 per yr (Figure 4).

Zone B2: 10 200–8400 cal. yr BP

Pinus remains abundant in Zone B2 (~50%), and as in the previ-
ous zone, the identified Pinus pollen grains are Pinus subgenus 
Strobus (Figure 3). Betula percentages are lower than in Zone B1 

Figure 2. (a) Age–depth model for the sediment core from Knob 
Hill Pond; the 2σ cal. age ranges are plotted for the 14C dates; the 
black diamond is the European settlement horizon and the open 
circle is the lowermost 210Pb age assignment. (b) Organic content 
(percent weight loss-on-ignition; LOI) of the sediment core

Figure 3. Pollen percentage diagram for Knob Hill Pond showing selected taxa; for the Pinus graph, line with symbols = total % of Pinus pollen, 
area with horizontal drop lines = % pollen identified as Pinus subgenus Strobus, and open area = % pollen identified as Pinus subgenus Pinus. 
Organic content (percent weight loss-on-ignition) is also plotted



74  The Holocene 22(1)

(~10%), Quercus remains at ~10%, and Tsuga percentages 
increase gradually, reaching ~40% by ~8400 cal. yr BP. Acer sac-
charum pollen is present at low percentages (<3%). Pollen influx 
values remain at ~10 000 grains/cm2 per yr (Figure 4).

Zone C1: 8400–5500 cal. yr BP

Pinus pollen percentages drop abruptly from >50% to ~20% at 
the beginning of Zone C1, then continue to decline to ~5% by 
~7000 cal. yr BP (Figure 3). Betula, on the other hand, increases 
from ~10% to ~40% between 8400 and 7900 cal. yr BP. Fagus 
pollen is present at <5% after ~8400 cal. yr BP, then increases to 
10–20% between ~7000 and 5500 cal. yr BP. Tsuga abundance is 
relatively high during Zone C1 (20–40%), but declines from 
~35% to ~20% at ~8000–7500 cal. yr BP, and drops precipitously 
to <10% during ~6200–5800 cal. yr BP. Pollen accumulation 
rates fluctuate from ~7000 to 20 000 grains/cm2 per yr during this 
zone (Figure 4). Low Tsuga influx values coincide with the per-
centage declines at ~7700 and 6000 cal. yr BP, and also occur at 
~7000–6600 cal. yr BP.

Zone C2: 5500–4000 cal. yr BP

The pronounced decline of Tsuga pollen percentages (from >25% 
to <1% in <70 years) at ~5500 cal. yr BP marks the beginning of 
Zone C2 (Figure 3). Betula abundance increases to >50% from 
the time of the Tsuga decline to ~4900 cal. yr BP, while percent-
ages of Pinus pollen (mainly Pinus subgenus Strobus) increase 
slightly in the middle of this zone. Fagus pollen percentages 
remain at ~20%, and minor taxa exhibit little variability. Pollen 
accumulation rates reach a peak of 25 000 grains/cm2 per yr at 
5500 cal. yr BP, then decline to ~15 000 grains/cm2 per yr by the 
end of Zone C2 (Figure 4).

Zone C3: 4000–2000 cal. yr BP

Tsuga pollen abundance increases gradually from the end of Zone 
C2 to the end of Zone C3, reaching >15% by ~2000 cal. yr BP 
(Figure 3). Betula pollen percentages decrease slightly during this 

interval, while other taxa have stable percentage values. Pollen 
influx values continue to drop during this zone, declining to 
~10 000 grains/cm2 per yr (Figure 4).

Zone C4: 2000 cal. yr BP to present

Several notable pollen-assemblage changes take place after 2000 
cal. yr BP. Picea pollen percentages increase at the beginning of 
Zone C4, reaching ~10% (Figure 3). Tsuga increases to >20% at 
~900 cal. yr BP, then steadily declines towards the present-day. 
Fagus pollen percentages decrease gradually during Zone C4, 
while Pinus percentages rise slightly after ~700 cal. yr BP. Euro-
pean deforestation and settlement appear clearly in the uppermost 
sediments, where Tsuga, Betula, and especially Fagus decline in 
abundance and herbaceous taxa, including Rumex, Ambrosia, and 
Poaceae, increase sharply. A peak in Alnus pollen coincides with 
the rise in herbaceous taxa, while Pinus percentages increase dur-
ing the twentieth century. Pollen influx declines to ~3500 grains/
cm2 per yr before rising abruptly at the time of European settle-
ment (not shown in Figure 4). We attribute this unrealistic increase 
in pollen influx values to the change in the rate of sedimentation 
during the settlement era (Figure 2).

Discussion
Postglacial ecological and environmental history of 
northern Vermont
The postglacial changes in vegetation revealed by the Knob Hill 
Pond pollen record resemble those seen at other sites in this part 
of northern New England (e.g. Davis et al., 1980; Likens and 
Davis, 1975; Mott, 1977; Shuman et al., 2005; Spear, 1989; Spear 
et al., 1994), including nearby South King Pond (Ford, 1990). 
Boreal forests featuring Pinus banksiana and Picea species 
occurred across the region during the Lateglacial interval (e.g. 
Oswald et al., 2007), with a compositional shift ~13 000 cal. yr BP 
from open-canopy Picea glauca woodland to a denser forest with 
Picea mariana, Alnus, Larix, and Abies (e.g. Lindbladh et al., 
2007). This transition has been attributed to abrupt cooling at the 
beginning of the Younger Dryas event (e.g. Cwynar and Levesque, 
1995; Cwynar and Spear, 2001; Levesque et al., 1993; Mayle  
et al., 1993; Shuman et al., 2002b).

The sharp increase in sediment organic content (LOI) ~11 500 
cal. yr BP marks the beginning of the Holocene and the onset of 
warmer, drier conditions (Cwynar and Spear, 2001; Davis et al., 
1980; Shuman et al., 2005). Summer insolation was high and a 
strong glacial anticyclone prevented moisture from reaching 
northern New England (Shuman et al., 2002a). Pinus strobus 
dominated the regional vegetation between ~11 500 and 8000 cal. 
yr BP, with relatively abundant Quercus at many sites (e.g. Ford, 
1990; Richard, 1978; Spear, 1989; Spear et al., 1994), including 
Knob Hill Pond. Tsuga canadensis expanded gradually after 
~10 000 cal. yr BP, presumably as the influence of the Laurentide 
Ice Sheet weakened and climate ameliorated (Shuman et al., 
2005).

Lake-level studies across the region indicate a rise in moisture 
availability after 8000 cal. yr BP (Almquist et al., 2001; Lavoie 
and Richard, 2000; Muller et al., 2003; Newby et al., 2000; 
 Shuman et al., 2001), presumably due to the collapse of the Hud-
son Bay ice dome at that time and its influence on circulation 
patterns (Barber et al., 1999). At Knob Hill Pond and several other 
sites, Pinus strobus and Quercus are replaced by mesic taxa, 

Figure 4. Pollen accumulation rate diagram for Knob Hill Pond 
showing total influx for upland taxa and selected individual pollen 
types. Influx values for the organic (solid line) and inorganic (dotted 
line) fractions of the core are also plotted. Data for the interval of 
European settlement (<160 cal. yr BP) are not shown; influx values 
increase unrealistically due to the abrupt change in the rate of 
sedimentation during the settlement era (Figure 2)
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including Betula, Tsuga canadensis, Acer saccharum, and Fagus 
grandifolia (e.g. Ford, 1990; Richard, 1978; Shuman et al., 2005; 
Spear et al., 1994). In most pollen diagrams from southern New 
England, Fagus increases sharply at ~8000 cal. yr BP, immedi-
ately reaching levels that would be maintained throughout the 
Holocene (e.g. Oswald et al., 2007; Whitehead and Crisman, 
1978). Fagus was present at Knob Hill Pond beginning at ~8000 
cal. yr BP, but its population levels were relatively low until it 
expanded after ~7000 cal. yr BP. This pattern of late expansion 
appears to have been prevalent across northern New England and 
southern Quebec (e.g. Bennett, 1985).

While Tsuga canadensis experienced a steady increase in 
abundance across the early Holocene, it also exhibits a pro-
nounced decline at ~8000 cal. yr BP in the Knob Hill Pond record. 
After reaching a peak (>35%) at the beginning of Zone C1, Tsuga 
pollen percentages are relatively low (~20–25%) for a period of 
several centuries. This pattern may represent the deleterious 
effects of the cold, dry 8200 cal. yr BP climatic event (e.g. Alley 
and Ágústsdóttir, 2005; Alley et al., 1997; Kurek et al., 2004) on 
Tsuga populations in New England, as was proposed by Shuman 
et al. (2004).

The major decline of Tsuga canadensis at ~5500 cal. yr BP 
occurred rapidly, spanning <70 years at Knob Hill Pond and <10 
years in the pollen record from the laminated sediments of Pout 
Pond, located in central New Hampshire (Allison et al., 1986). 
This event has been attributed to Tsuga mortality caused by a 
pathogen (e.g. Allison et al., 1986; Davis, 1981) or insect pest 
(Bhiry and Filion, 1996), but mounting evidence indicates that 
climate change was likely the primary driver (e.g. Foster et al., 
2006; Haas and McAndrews, 2000; Shuman et al., 2004, 2009; Yu 
et al., 1997; Zhao et al., 2010). In the Knob Hill Pond record, the 
coincident rise in Betula likely represents the replacement of 
Tsuga by the shade-tolerant and long-lived Betula alleghaniensis 
(Fuller, 1998; Thompson and Sorenson, 2000). Early successional 
species such as Betula papyrifera may also have experienced a 
brief, positive response to the decline of Tsuga (Fuller, 1998), as 
has recently been the case in southern New England as Tsuga 
mortality due to Adelges tsugae has favored Betula lenta (e.g. 
Orwig and Foster, 1998). Elevated abundance of Pinus strobus  
during the ~5500–4000 cal. yr BP interval of low Tsuga abundance, 
also observed in New Hampshire (Davis, 1981; M. Lindbladh et al., 
unpublished data, 2011), may be attributable to climatic conditions 
or successional changes (Allison et al., 1986).

Lake-level evidence from across the region suggests that 
moisture availability increased during the late Holocene (Almquist 
et al., 2001; Lavoie and Richard, 2000; Muller et al., 2003; Newby 
et al., 2000; Shuman et al., 2001, 2005), perhaps due to a rise in 
winter precipitation (Carcaillet and Richard, 2000). Cooler and 
moister conditions at Knob Hill Pond likely enabled the increases 
in Tsuga after ~4000 cal. yr BP and Picea after ~2000 cal. yr BP. 
Similar late-Holocene changes have been observed in pollen 
records across northern New England (e.g. Shuman et al., 2005; 
Spear, 1989) and southern Quebec (e.g. Webb et al., 1983). Tsuga 
pollen increases gradually to reach a peak at ~900 cal. yr BP, then 
declines steadily. This also appears to be a region-wide trend, per-
haps attributable to a shift to colder or drier conditions during the 
‘Little Ice Age’ (e.g. Fuller et al., 1998; Gajewski, 1987).

The impacts of eighteenth- and nineteenth-century European 
forest clearance and agricultural activities are clearly evident in 
the sediments of Knob Hill Pond. The declines in Fagus, Betula, 
and Tsuga reflect the widespread logging of the major tree 

species, while the corresponding increases in Rumex, Ambrosia, 
Poaceae, and Alnus indicate open and disturbed vegetation (e.g. 
Brugam, 1978). The uppermost sediments of Knob Hill Pond 
record the establishment of old-field Pinus strobus, which over 
the last century has become more abundant than any time in the 
previous ~7000 years.

Middle-Holocene dynamics of Tsuga canadensis

The brief, pronounced decline of Tsuga canadensis at ~6000 cal. 
yr BP observed by Fuller (1998) in the Graham Lake pollen 
record from southern Ontario also appears in the record from 
Knob Hill Pond. The earlier decline is of the same magnitude 
(>25% drop in Tsuga pollen) as the better-known ~5500 cal. yr 
BP event. Fuller (1998) suggests that, like the ~5500 cal. yr BP 
Tsuga decline, the earlier event was caused by an insect outbreak. 
This interpretation is supported by evidence for two middle-
Holocene defoliation events in Quebec (Bhiry and Filion, 1996). 
However, various studies now suggest that the decline of Tsuga at 
~5500 cal. yr BP was driven by climate (e.g. Foster et al., 2006; 
Shuman et al., 2004; Yu et al., 1997; Zhao et al., 2010), including 
a lake-level reconstruction from New Long Pond, located in 
southeastern Massachusetts (Shuman et al., 2009). In that record, 
middle-Holocene sand layers are thought to represent a series of 
drought events that initiated and then sustained the low abun-
dance of moisture-sensitive Tsuga canadensis from ~5500 to 
4000 cal. yr BP (Shuman et al., 2009). We hypothesize that the 
~6000 cal. yr BP Tsuga decline was also caused by a brief interval 
of dry climate, reflected in the sediments of Knob Hill Pond by 
the peak in organic content at ~6200–5800 cal. yr BP (Figures 
3–4). For a relatively small, shallow lake like Knob Hill Pond, a 
drop in water level might result in increased abundance of near-
shore macrophytes, which in turn would contribute additional 
organic matter to the sediment. On the other hand, there is not a 
corresponding sedimentary change at 5500 cal. yr BP, as might be 
expected if there were two droughts within a few centuries of 
each other. However, the record from Shephard Lake, Ontario 
(Haas and McAndrews, 2000) does feature evidence of two mid-
dle-Holocene drought events that are roughly coincident (~5800 
and 5300 cal. yr BP) with the double Tsuga declines at Knob Hill 
Pond and Graham Lake (Fuller, 1998).

To explore the spatial pattern of the ~6000 cal. yr BP decline 
of Tsuga canadensis in New England, we analyzed pollen data 
from a transect of sites (Figure 1), starting at Knob Hill Pond in 
northern Vermont and moving south along the regional environ-
mental gradient (e.g. Cogbill et al., 2002). Close examination of 
the records from North Pond in the Berkshires of western Mas-
sachusetts (Whitehead and Crisman, 1978), Little Willey Pond in 
southeastern New Hampshire (M. Lindbladh et al., unpublished 
data, 2011), Little Pond in north-central Massachusetts (Oswald et 
al., 2007), and Mohawk Pond in western Connecticut (Gaudreau, 
1986), all of which have middle-Holocene Tsuga pollen percent-
ages >20% and adequate sampling resolution to evaluate fine-
scale changes during that interval, suggests that the ~6000 cal. yr 
BP decline of Tsuga canandensis did occur in other parts of New 
England, although some aspects of middle-Holocene Tsuga 
dynamics appear to have varied geographically (Figure 5). While 
northern and higher-elevation sites, including Knob Hill Pond, 
North Pond (Whitehead and Crisman, 1978), and Graham Lake in 
southern Ontario (Fuller, 1998), exhibit a nearly full recovery of 
Tsuga populations between the ~6000 and 5500 cal. yr BP 
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declines, the sites further to the south are characterized by a stair-
step pattern of decline, with drops in Tsuga pollen percentages at 
~6000 and 5500 cal. yr BP but no intervening increase in Tsuga 
abundance (Gaudreau, 1986; Oswald et al., 2007; M. Lindbladh 
et al., unpublished data, 2011). This spatial pattern suggests vary-
ing responses in Tsuga across the regional environmental gradient 
(e.g. Cogbill et al., 2002). In the northern part of the region where 
climate is relatively cool and Tsuga has been abundant through 
time, Tsuga populations were able to recover rapidly. At sites in 
southern New England, on the other hand, where climate is rela-
tively warm and Tsuga exists at its range limit, conditions between 
~6000 and 5500 cal. yr BP were not conducive to the reestablish-
ment and survival of Tsuga, and thus it was unable to rebound 
between the drought events.

Tsuga dynamics associated with the ~5500 cal. yr BP decline 
exhibit less geographic variability; sites in both northern and 
southern New England experienced the major decline at ~5500 
cal. yr BP and a subsequent ~1500 year interval of low Tsuga 
abundance (Figure 4). Even though we hypothesize that both 

Tsuga declines are attributable to abrupt, short-lived periods of 
dry conditions, some aspect of these droughts must have differed 
so that the geographic pattern present during the ~6000 cal. yr BP 
event was less prominent at ~5500 cal. yr BP. For example, it 
may be the case that the drought at ~5500 cal. yr BP was more 
severe than at ~6000 cal. yr BP, such that Tsuga populations 
across the region, even in the cooler, northern part of New Eng-
land, were unable to recover before the onset of the next drought 
a few centuries later (Shuman et al., 2009). We also recognize 
that there has been little systematic effort to investigate whether 
insect pests played a role in either Tsuga decline (e.g. Bhiry and 
Filion, 1996), and therefore it remains a possibility that biotic 
factors influenced the magnitude and regional details of these 
events.

Conclusions
Analyses of a lake-sediment pollen record from Knob Hill Pond, 
Vermont, USA, provide insights into the postglacial history of 
vegetation in northern New England, including the dynamics of 
Tsuga canadensis during the middle Holocene. In addition to the 
well-known decline of Tsuga at ~5500 cal. yr BP (e.g. Bennett 
and Fuller, 2002), a pronounced, short-lived drop in Tsuga pollen 
abundance also occurs a few centuries earlier, indicating that the 
~6000 cal. yr BP Tsuga decline documented in southern Ontario 
by Fuller (1998) also occurred in other parts of eastern North 
America. Comparison of the Knob Hill Pond pollen record with 
paleoclimatic evidence (e.g. Haas and McAndrews, 2000) sug-
gests that both of the middle-Holocene declines of Tsuga were 
triggered by dry conditions. Earlier, short-lived declines of Tsuga 
canadensis may have taken place across eastern North America in 
response to early-Holocene climatic events (e.g. Futyma and 
Miller, 2001; Toney et al., 2003; Zhao et al., 2010), including the 
~8200 cal. yr BP event (e.g. Alley et al., 1997; Shuman et al., 
2004), but additional records with high sampling resolution are 
needed to better define changes in vegetation during that interval. 
In general, these findings support the hypothesis of Shuman et al. 
(2009) that abrupt changes in climate played a critical role in the 
postglacial history of vegetation in New England. This study also 
highlights the sensitivity of Tsuga candensis to climate and 
 provides long-term context for understanding the present-day 
dynamics of Tsuga as it experiences various stressors, including 
the introduced insect Adelges tsugae (e.g. Albani et al., 2009; 
Orwig and Foster, 1998; Orwig et al., 2002, 2008).
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