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Introduction
Abrupt climate changes exert significant impacts on natural 
ecosystems and human societies (Overpeck and Cole, 2006). One 
widely proposed mechanism for abrupt climate changes is pertur-
bation of the Atlantic Meridional Overturning Circulation 
(AMOC) (Clark et al., 2002; Overpeck and Cole, 2006), which 
occurred numerous times from the Late Pleistocene to the early 
Holocene as a result of freshwater outbursts from proglacial lakes 
which originated from the melting Laurentide ice sheet (LIS) 
(Clark et al., 2001; Stouffer et al., 2006). The Younger Dryas 
(YD) and the 8.2 ka events are two of the well-known abrupt 
climate events attributed to slowdown in AMOC (Alley and 
Agustsdottir, 2005; Clark et al., 2001, 2002; Clarke et al., 2009; 
LeGrande et al., 2006). However, carbon isotopic ratios of benthic 
foraminifera and glacial landform mapping record multiple epi-
sodes of freshwater outbursts and AMOC changes from the Late 
Pleistocene to the early Holocene (Clark et al., 2001; Teller and 
Leverington, 2004). A few terrestrial and marine records suggest 
the influence of the AMOC on the decadal- to centennial-scale 
climate change in the North Atlantic and neighboring regions 
(Bamberg et al., 2010; Daley et al., 2009). Of particular signifi-
cance is the absence of records of abrupt climate changes in a 
critical region – northeastern North America, which climate 
models indicate is highly sensitive to AMOC. The inconsistency 
between the proposed climate driver (AMOC) and climate records 
may result from (1) the fact that the existing climate records from 
northeastern North America cannot fully capture the relatively 
short scale (decadal to multidecadal) climate variability, either 
because of insufficient temporal resolution or inadequate proxy 
sensitivity; (2) regional climate sensitivity to AMOC differs 
under different climatic boundary conditions, with sensitivity 
being particularly high at the YD and 8.2 events. General  

circulation model simulations predict substantial reductions in 
the strength of AMOC with the ongoing rapid rise in anthropo-
genic greenhouse gases (Schmidt et al., 2005), but inconsistency 
in the paleoclimate records of the North Atlantic and North 
America raises important questions about the climatic sensitivity 
to changes in AMOC. This inconsistency has fueled significant 
debates over the role of AMOC on abrupt climate variability, with 
some arguing a pivotal role (Rhines et al., 2008), whereas others 
a negligible one (Seager and Battisti, 2007).

Here, we present decadal-scale compound-specific hydrogen 
isotope records from Blood Pond, south-central Massachusetts, 
USA (Figures 1 and 2). The D/H ratios of behenic acid (δDBA), 
mainly produced by aquatic macrophytes at Blood Pond (Hou 
et al., 2006), record lake water isotope composition and hence 
precipitation isotopic ratios in a cool and wet region such as New 
England (Hou et al., 2007). We have previously demonstrated that 
the centennial- to millennial-scale δDBA records from Blood Pond 
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Abstract
Climate proxy records and general circulation models suggest that Atlantic Meridional Overturning Circulation (AMOC) plays a key role for global climate 
changes. Paleoceanographic data document multiple episodes of prominent AMOC weakening during the early Holocene. However, proxy records at 
adjacent continents have not been demonstrated to fully capture the climate responses to multiple AMOC variation due to temporal resolution and/
or the proxy sensitivity. Here we present decadal- to multidecadal-resolution hydrogen isotopic records of aquatic biomarkers from Blood Pond, 
Massachusetts during the early Holocene. Our data reveal a full series of prominent and abrupt cooling events centered on 10.6, 10.2, 9.5, 9.2, 8.8 and 8.4 
ka. These abrupt climatic reversals coincide with key intervals of weakened AMOC, suggesting an apparent relationship between AMOC oscillations and 
the abrupt continental climate changes in northeastern North America. The noticeable connection implies that the AMOC variation did play an important 
role in the abrupt climate changes during the early Holocene. Our data also suggest that northeastern North America may experience significant climatic 
variations should the predicted major disturbance of AMOC occur in the coming century as a result of anthropogenic greenhouse gas emissions.
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faithfully capture the regional climate history (Hou et al., 2006, 
2007). The objectives of this study are: (1) to investigate the 
relationship between the decadal- to multidecadal-scale hydrogen 
isotope records during the early Holocene and the reconstructed 
freshwater outbursts from the LIS as well as the inferred AMOC 
changes; (2) to further evaluate the effect of AMOC variations on 
adjacent continental climate changes.

Samples and methods
Blood Pond (42.081°N, 71.961°W, 212.1 m a.s.l.) is a kettle pond 
located in Massachusetts (Figure 1). The lake is mainly recharged 
by groundwater and precipitation, with a southerly overflow out-
let. The sediment core was collected in 2001, and samples for 
isotope analyses were selected at 2 cm intervals. Chronology for 
the core is provided by AMS-14C dating of bulk organic matter 
which were converted to calendar years before present (cal. yr BP) 
using OxCal 3.9 (Hou et al., 2006). The sedimentation rate of 
the early Holocene (11–7 ka) at Blood Pond is ~1.3 cm/10 yr, 
allowing for the evaluation of decadal- to centennial-scale climate 
variation.

The preparation of the samples and the measurement of hydro-
gen isotopes have been described previously (Hou et al., 2006). 
Briefly, lipids were extracted from freeze-dried sediment using an 
Accelerated Solvent Extractor 200 (Dionex). Acid fractions were 
isolated, methylated, and purified. A HP 6890 GC interfaced to a 
Finnigan Delta+ XL stable isotope spectrometer through a high-
temperature pyrolysis reactor was used for hydrogen isotopic 
analysis. The precision (1σ) of triplicate analyses was <±2‰. The 
accuracy was routinely checked by measuring laboratory isotopic 
standards every six measurements. The δD value of the added 
methyl group was determined by acidifying and then methylating 
(along with the samples) the disodium salt of succinic acid with a 
predetermined δD value (using TC/EA-IRMS) (Huang et al., 
2002).

Results and discussion
Early-Holocene climate revealed by Blood Pond δDBA

Our new decadal to multidecadal δDBA record during the early 
Holocene reveals six distinct negative isotopic excursions centered 
at 10.6, 10.2, 9.5, 9.2, 8.8 and 8.4 ka (Figure 2). The largest and 
longest of these isotopic excursions occurs around 9.2–9.3 ka 
with ~ 30‰ δDBA shift, and two significant δDBA shifts (~15‰) 
occur around 10.2 and 8.4 ka. The isotopic shift at 9.2 ka is, 
within the chronological uncertainties, concurrent with changes 
seen in Greenland ice core δ18O (Vinther et al., 2006), European 
lake sediment δ18O (von Grafenstein et al., 1999) and tree ring 
width (Spurk et al., 2002), Baffin Island Chironomid data (Kurek 
et al., 2004), East Asian and Arabian speleothem δ18O records 
(Dykoski et al., 2005; Fleitmann et al., 2008), and Alaskan lake 
biogenic silica (Hu et al., 2003). Recent data from isotopic ratios 
of oxygen gas preserved in the Siple dome ice core display a clear 
9.2 ka shift (Severinghaus et al., 2009), strongly supporting a 
near-global 9.2 ka event (Fleitmann et al., 2008). The freshwater 
input responsible for the 9.2–9.3 ka cooling event might come 
from Lake Superior as lake level rapidly dropped for 45 m at the 
same time, which was delivered into the North Atlantic Ocean via 
Lake Huron–North Bay–Ottawa River–St Lawrence River valleys 
(Yu et al., 2010). Our results are also supported by regional paleo-
climate data from New England (Figure 2). Cooling events in 
the early Holocene inferred by our isotopic records are closely 
associated with overall drier conditions as indicated by shifts in 
sediment facies (increase in grain sizes) at nearby Rocky and 
New Long Ponds, Massachusetts (Newby et al., 2009). A modern 
analog for such a cold-dry scenario is the ad 1962–1965 drought, 
which was the most severe historic drought in the northeastern 
USA (Namias, 1966). During ad 1962–1965 a band of cool sea-
surface temperatures extending from Maine to Ireland severely 
reduced regional summer precipitation by drawing cold Arctic air 
masses into the region. These air masses also led to unusually low 
temperatures, especially during the winter. The cooler and drier 
climate around 9.2 ka, as demonstrated by δDBA data, also coin-
cides with a broad interval of elevated Ambrosia pollen reflecting 

Figure 1. Map showing the location of Blood Pond and other sites 
discussed in the text. Three routes of freshwater outbursts are 
indicated: (A) Hudson Bay (8.2 ka event); (B) North Atlantic Ocean; 
(C) Gulf of Mexico. Key components of the Atlantic Meridional 
Overturning Circulation (AMOC) relevant to this study are also 
shown

Figure 2. Comparison of hydrogen isotope records from Blood 
Pond (71.961°W, 42.081°N) with other terrestrial records. (A) 
Inferred global terrestrial 18O/16O fractionation (ΔεLAND ‰) based 
on δ18O of oxygen gas from the Siple Dome ice core, Antarctica 
(Xu and Liu, 2007). (B) Sediment grain size from Rocky Pond, 
Massachusetts (Kaser et al., 2004). (C) Temperature inferred 
from chironomid assemblages in Lake CF8, Baffin Island (Haeberli 
and Gruber, 2009). (D) Stable hydrogen isotope records of C22 
n-alkanoic acid (δDBA) and inferred temperature variability . 
Chronology of the Blood Pond sediment core is defined by a total 
of 15 accelerator mass spectrometry radiocarbon dates (5 AMS 
dates for the study section in this study)
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more open land in northeastern North America (Faison et al., 
2006).

Correlation with AMOC variability
The abrupt climate reversals revealed at Blood Pond correspond 
strongly to the early-Holocene AMOC changes inferred from 
foraminifera δ13C values as well as detrended atmospheric Δ14C 
record from tree rings (Stuiver et al., 1998) (Figure 3). The benthic 
foraminifera δ13C values at site VM29-191 essentially reflect the 
convective overturning rate of AMOC, with lower δ13C implying 
reduced overturning (Bond et al., 1999; Clark et al., 2001). The 
definitive identification of a 10.2 ka climate excursion at Blood 
Pond, which coincides with the most severe lake low stand at 
Rocky Pond (Newby et al., 2009), is particularly important, 
because the 10.2 ka δ13C change at VM29-191 is as large as 0.6‰, 
accounting for ~70% amplitude of the δ13C excursions during the 
YD and suggesting substantial AMOC reductions. The increase in 
Δ14C at the abrupt climate reversals could also indicate AMOC 
slowdowns during the early Holocene (Clark et al., 2001). The 
fact that all the abrupt hydrogen isotopic excursions during the 
early Holocene at Blood Pond have counterparts within the δ13C 
and/or Δ14C data suggests a consistent, causal relationship 
between AMOC strength and climate variability in New England. 
Likewise, the evidence for cool, dry climate in New England 
when AMOC slowed is consistent with historic responses to 
North Atlantic conditions (Namias, 1966).

The 10.2 and 9.2 ka events
Blood Pond provides the first isotopic record from North America 
to register abrupt climatic changes at 9.2 and 10.2 ka. However, 
directly applying the δDBA–temperature relationship (δDBA = 
4.3T −208.4‰) (Hou et al., 2006) established from a transect of 
eastern North American lakes yields an unexpectedly large 

maximum temperature drop of nearly ~7°C around 9.2 ka, only 
slightly smaller than that estimated for the YD (Hou et al., 2007). 
It is thus unlikely that the isotopic shift at 9.2 kyr BP represents 
mean annual temperature change alone. Precipitation seasonality 
must have also changed, with an increase in the ratio of cool to 
warm season precipitation. This is consistent with early-Holocene 
lake-level low stands in New England, which have been attributed 
to reduced summer precipitation and relatively high winter 
precipitation (Shuman and Donnelly, 2006). The modern-day 
precipitation δD values at Blood Pond are ~ −40‰ for June to 
August and ~ −82‰ for November to January, with precipitation 
amounts evenly distributed throughout the year (Bowen and 
Revenaugh, 2003). A 20% decrease in summer relative to winter 
precipitation would produce a ~13‰ reduction in the δD values 
of mean annual precipitation. Likewise, the historic analog to 
these events produced a severe reduction in summer precipitation 
(Namias, 1966). If temperature declines were primarily a wintertime 
feature, as models have inferred for AMOC induced temperature 
decreases (Seager and Battisti, 2007), the lower δD values of 
the colder winter precipitation will further reduce annual mean 
precipitation D/H ratios. Therefore, temperature derived from 
δDBA changes should be more appropriately defined as precipitation-
weighted temperature (PWT), taking into consideration seasonal 
shifts in precipitation and temperature. Moreover, the large size 
of the Laurentide Ice Sheet at 9.2 ka (two times the modern 
Greenland) (Dyke and Prest, 1987) and relative proximity to our 
study site may have been particularly important for the very 
different seasonality in precipitation and unusually large 9.2 ka 
isotope excursion.

The 8.2 ka and other events
In addition to 9.2 and 10.2 ka climatic reversals, the δDBA 
record also shows a clear abrupt decrease from 8.45 to 8.3 kyr BP 
(Figure 2), with a ~3–4°C decline in PWT change. This tempera-
ture shift slightly precedes the well-known 8.2 ka event in the ice 
cores and speleothems by about 200 years (Alley and Agustsdottir, 
2005). Currently, it is unclear whether the timing discrepancy 
results from chronological inaccuracies or actual difference in 
timing of the continental climatic response. We adopted a linear 
interpolation between the neighboring 14C ages to assign the ages 
of individual samples during the early Holocene. The sedimentation 
rate might have changed between the two neighboring 14C ages, 
which would cause the small age offsets. However, the timing of 
the negative δDBA shift between 8.45 and 8.3 kyr BP is consistent 
with climatic and ecological records from northeastern North 
America (Kurek et al., 2004; Lutz et al., 2007; Shuman et al., 
2002). Ellison et al. (2006) suggest the presence of two distinct 
cooling events centered at 8.5 and 8.1 kyr BP, respectively, in the 
subpolar North Atlantic Ocean (Ellison et al., 2006). The chrono-
logical uncertainties of the Blood Pond sediment core make it 
difficult to assign the δDBA shift between 8.45 and 8.3 kyr BP to 
one of these two events. Aditionally, the precipitation seasonality 
during the 8.2 ka event may differ from that during the 9.2 ka 
event because of the final collapse of Laurentide Ice Sheet. The 
collapse of the LIS may have resulted in a more evenly distributed 
precipitation throughout the year, which may explain the rela-
tively small δDBA shift during the 8.2 ka event. At 10.6 ka, δDBA 
decreased by ~ 10‰ with a duration of about a century, which 
corresponds to a similar δ13C variation (Clark et al., 2001). In 
addition to the above four clearly identified century-scale climatic 
reversals, we also found two relatively short-lived δDBA excur-
sions at 8.8 and 9.5 ka, lasting only a couple of decades. Of these 
brief excursions, only the one at 8.8 ka has a corresponding 
carbon isotopic excursion in VM29-191. Definitive identification 
of abrupt climate events of such short duration will require higher 
resolution isotopic records.

Figure 3. Comparison of Blood Pond δDBA records with records 
inferring changes in the AMOC. (A) Freshwater release to North 
Atlantic Ocean (Teller and Leverington, 2004). (B) Detrended Δ14C 
from tree rings (Stuiver et al., 1998). (C) δ13C records from VM29-
191 (Bond et al., 2001) and Blood Pond δDBA records. The climate 
reversals at Blood Pond are strongly correlated with inferred 
AMOC changes, possibly induced by freshwater outbursts from 
Laurentide Ice Sheet
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Comparison with global climate records
The abrupt climate reversals revealed in the Blood Pond records 
can also be tentatively found in other high-resolution proxy 
records of climate around the globe (Figures 4 and 5). Other than 
the Greenland ice cores, most other quantitative climate records 
are derived from speleothem δ18O values. To improve the 
comparability with our hydrogen isotopic records, we converted 
the δDBA excursions at Blood Pond into oxygen isotopic varia-
tions using the slope of the global meteoric water line (i.e. δD= 
8δ18O+10) (Craig, 1961), and plotted the scale of isotopic 
changes from all sites in Figure 5. Interestingly, except for the 
8.2 ka event, the isotopic excursions in New England appear to 
display the largest signal in the world, especially for the largest 
and longest 9.2 ka and 10.2 events when the isotopic changes in 
New England are several times greater than corresponding 
changes in Greenland, Asia and Europe. The isotopic signal of 
the 8.2 ka event in New England is modest compared with other 
records, which may be related to the different routing (i.e. 
Hudson Bay) of freshwater outburst at the final collapse of the 
LIS. The high amplitude of climate response to AMOC changes 
in eastern north America is consistent with model results 
(Shindell et al., 1999).

Summary
The variability of decadal- to multidecadal-scale hydrogen  
isotope records from the northeastern USA coincides with key 
intervals of weakened AMOC, demonstrating the profound 
impact of AMOC oscillations on the abrupt continental climate 
changes in eastern North America. Our high resolution hydrogen 
isotopic records indicate that New England is highly sensitive  
to AMOC variations, and thus likely to experience significant 
climatic variations should the predicted major disturbance of 
AMOC occur in the coming century due to anthropogenic gas 
emissions.
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solid circles represents the amplitude of isotope reversal of individual records. Open circles represent non-isotope records
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