

Harvard LTER Schoolyard Program

Teacher Developed Lessons and Documents that integrate Harvard Forest Schoolyard Ecology Themes into curriculum.

• Lesson Title:

Shepley's Hill Vernal Pool

- Teacher/Author: Judy Gibson
- School: Francis Parker Charter Essential School
- Level: Middle School- 7^{th} and 8^{th} Grade
- Date: April 3, 2014

Shepley's Hill Vernal Pool

Ecology unit for 7th and 8th graders at the Francis Parker Charter Essential School

The pool

The students

The focus of the vernal pool unit is observation and making inferences

Collecting data

- Vernal pool unit in the spring every two years
- What happens to the pool the rest of the time?
- How to get data throughout the year?
- The after school group
- Data now from Fall 2009 to present

The after school group

Thursdays through the spring then occasional for the rest of the year.

- Some years we expanded into other science activities during the winter
- Numbers of students have fluctuated-at its height about 10, recently down to one

Winter trips – measuring ice thickness

Two weeks ago! March 17th

Later spring trips, in past years, sampling for organisms

Data collection

We have data on pool depth, diameter, and water and air temperature for 5 years. We also have some data on organisms, such as first sighting of spermataphores, woodfrog and salamander egg masses and presence of larvae. This year we are starting to expand to include presence of different invertebrates.

How to use the data with students?

The data as submitted to Harvard school yard project is not the easiest for middle school students to access.

Too much information in spreadsheet

#4 years ago Seth made a hand drawn graph of the data

	Teacher	Date	Juilan	Dmax	Diam	eter Depth	AirT	WaterT	pre	ecipitation
FPC	Gibson	9/21/0	9 264	264	27.1	9.2	35	19.5	14.5	
50.0	~	9/30/0	9 273	273						33.7
FPC	Gibson	10/20/0	9 293	293	27.1	2.4	4	15.5	9	169.0
FPC	Gibson	11/2/0	9 305	305	27.1	7.7	24 9	10 5	95	100.9
FPC	Gibson	11/10/0	9 314	314	27.1	6.3	16	20	12	
		11/30/0	9 334	334						61.4
		12/30/0	9 364	364						90.4
		1/30/1	0 30	394						68.1
FPC	Gibson	2/18/1	0 49	414	18.5	18.5	104	4 NA		
FDC	Cibeen	2/28/1	0 59	424	10 5	17 5	102	0	2	86.6
FPC	Gibson	3/11/1	0 70	435	18.5	17.5	103	9	2	
FPC	Gibson	3/19/1	0 78	443	18.5	17.3	105	18	9	
FPC	Gibson	3/25/1	0 84	449	18.5	17.6	105	12	11	
		3/30/1	0 89	454						189
FPC	Gibson	4/8/1	0 98	463	18.5	17.6	103	25	20	
FPC	Gibson	4/15/1	0 105	470	18.5	18.5	105	18	13	
500	C 1	4/30/1	0 120	485	10 5			25	10	30.3
FPC	Gibson	5/24/1	0 144	509	18.5	14.2	80	25	18	58.5
		6/30/1	0 150	515						104 7
		7/30/1	0 211	576						78.5
		8/30/1	0 242	607						82.3
FPC	Gibson	9/24/1	0 267	632	18.5	0	0	24 NA		
		9/30/1	0 273	638						76.2
FPC	Gibson	10/7/1	0 280	645	18.5	0	0	14 NA		
FPC	Gibson	10/16/1	0 289	654	18.5	0	0	16 NA		4 5 2 . 0
FDC	Cibeen	10/30/10	0 303	668	10 5	0	0	2 14		153.8
FPC	GIDSOII	11/2//1	0 334	690	16.5	0	U	2 NA		103.4
		12/30/1	0 364	729						76.4
		, ,								
		1/30/1	1 30	395						61.9
FPC	Gibson	2/17/1	1 48	778	18.5 NA		85	12	1	
500	C'1	2/28/1	1 59	789			100	2		103.7
FPC	Gibson	3/3/1	1 62	792	18.5 NA	17.2	100	-3	26	
FPC	Gibson	3/17/1	1 76	806	18.5	17.2	94	14 1	6.1	
FPC	Gibson	3/24/1	1 83	813	18.5	17.7	94	6	7	
		3/30/1	1 89	819						144.7
FPC	Gibson	4/7/1	1 97	827	18.5	17.7	94	12	11	
FPC	Gibson	4/28/1	1 118	848	18.5	17.7	94	26	20	
500	C'1	4/30/1	1 120	850	10 5	17.4		47	10	136.3
FPC	Gibson	5/12/1	1 132	862	18.5	17.4	92	1/	16	
FPC	GIDSON	5/19/1	1 139 1 150	869	18.5	17.7	94	10	15	92.6
		6/16/1	1 167	897	18 5	14.8	68	26	23	92.0
		6/30/1	1 181	911	1010	1.110		20	20	134.4
		7/30/1	1 211	941						57.8
		8/23/1	1 235	965	18.5	1.45	9	21	21	
		8/30/1	1 242	972						271.1
		9/22/1	1 265	995	18.5	14.3	82	21	20	214.1
		9/30/1	1 2/3	1003	10 E	17.1	106	12	12	214.1
		10/6/1	1 303	1009	10.5	17.1	100	15	12	177 1
		11/3/1	1 307	1035	18.5	17.5	115	12	9	1//.1
		11/17/1	1 321	1051	18.5	17.5	115	5	7	
		11/30/1	1 334	1064						100.9
		12/21/1	1 355	1085	18.5	17.5	110	2	0	
		12/30/1	1 364	1094						124.7

water depth over a year

water depth cm

water depth and rainfall over time

month 2009-2011

2 years ago we did a lesson using modified data so we could use it to teach bivariate graphing

Started with picking two columns to compare Line of best fit Introduce clustering, outliers, positive and negative association liner and non linear association

Shepley's Hill Vernal Pool Data 2009-2012								
Date	Julian	Number	Diameter	Depth,	Air	Water	Monthly	
	By	of day	(m)	(mm)	temp.	Temp.	Precipitation	
	year	from			(C)	(C)	(mm)	
		Jan1st						
9/21/09	264	2009	9.2	35	19 5	14 5		
9/30/09	273	273	5.2	55	19.5	14.5	33.7	
10/20/09	293	293	2.4	4	15.5	9		
10/30/09	303	303	7.7	25	13	11	168.9	
11/2/00	200	206	7.0	24.0	10.5	0.5		
11/2/09	214	214	7.8	24.9	10.5	9.5		
11/10/09	224	224	0.3	10	20	12	61.4	
12/20/09	264	264					01.4	
12/30/09	304	504					90.4	
1/30/10	30	394					68.1	
2/18/10	49	414	18.5	104	4	NA		
2/28/10	59	424					86.6	
3/11/10	70	435	17.5	103	9	2		
3/12/10	71	436	17.6	103	5	4		
3/19/10	78	443	17.3	105	18	9		
3/25/10	84	449	17.6	105	12	11		
3/30/10	89	454					189	
4/8/10	98	463	17.6	103	25	20		
4/15/10	105	470	18.5	105	18	13		
4/30/10	120	485					30.3	
5/24/10	144	509	14.2	80	25	18	58.5	
5/30/10	150	515					58.5	
6/30/10	181	546					104.7	
7/30/10	211	576					78.5	
8/30/10	242	607					82.3	
9/24/10	267	632	0	0	24	NA		
9/30/10	273	638					76.2	
10/7/10	280	645	0	0	14	NA		
10/16/10	289	654	0	0	16	NA	152.0	
11/27/10	303	606	0	0	2	NIA	153.8	
11/2//10	334	600	0	0	2	INA	102.4	
12/30/10	364	720					76.4	
12/30/10	504	729					70.4	
1/30/11	30	395					61.9	
2/17/11	48	778	NA	85	12	1		
2/28/11	59	789					103.7	
3/3/11	62	792	NA	100	-3	0		
3/10/11	69	799	17.2	94	2.2	2.6		
3/17/11	76	806	17.7	94	14.1	6.1		
3/24/11	83	813	17.7	94	6	7		

Shepley's Hill Vernal Pool Data 2009-2012 cont									
Date	Julian	Number	Diameter	Depth,	Air	Water	Monthly		
	By	of day	(m)	(mm)	temp.	Temp.	Precipitation		
	year	from			(C)	(C)	(mm)		
		Jan1st							
2/20/11		2009					144 7		
3/30/11	89	819	177	0.4	10		144.7		
4/7/11	9/	827	17.7	94	12	11			
4/28/11	118	848	17.7	94	26	20	126.2		
4/30/11	120	850	174	0.2	17	10	136.3		
5/12/11	132	862	17.4	92	1/	10			
5/19/11	139	869	17.7	94	16	15	02.6		
5/30/11	150	880	14.0	69	26	22	92.6		
6/16/11	10/	897	14.8	68	26	23	124.4		
7/20/11	181	911					134.4		
//30/11	211	941	1 4 5	0	21	21	57.8		
8/23/11	235	905	1.45	9	21	21	271.1		
8/30/11	242	972	14.2	0.2	21	20	2/1.1		
9/22/11	265	995	14.3	82	21	20	214.1		
9/30/11	273	1003	17 1	100	10	10	214.1		
10/6/11	2/9	1009	17.1	106	13	12	177 1		
10/30/11	303	1033	17 5	115	10	0	1//.1		
11/3/11	307	1037	17.5	115	12	9			
11/1//11	321	1051	17.5	115	5	/	100.0		
11/30/11	334	1064	17 5	110	2	0	100.9		
12/21/11	355	1085	17.5	110	2	0	124 7		
12/30/11	364	1094					124.7		
1/30/12	30	1125	1745	110	-	- 1	58.6		
2/2/12	33	1128	17.45	112	T	1			
2/29/12	60	1155					27		
3/2/12	62	1157	17.5	117	0	0			
3/8/12	68	1163	17.5	118	19	11			
3/11/12	71	1166	17.5	118	13	11			
3/16/12	76	1171	17.5	118	5	7			
3/30/12	90	1185							
							23.7		
4/26/12	117	1212	17.5	117	12	14			
4/30/12	121	1216					56		
5/11/12	132	1227	17.5	118	14	12	50		
5/11/12	152	1227	17.5	110	<u> </u>	12			

Massachusetts common core standards for math, March 2011

Students build on their previous work with single data distributions to compare two data distributions and address questions about differences between populations. They begin informal work with random sampling to generate data sets and learn about the importance of representative samples for drawing inferences.

Moving on to embrace the Next Generation Science Standards

http://www.nextgenscience.org/sites/ngss/fil es/MS-LS2 5.24.13with footer.pdf

<u>http://www.nextgenscience.org/sites/ngss/files/MS-LS1 6.18.13with footer.pdf</u>

Science and engineering practices in NGSS

- Asking questions (for science) and defining problems (for engineering)
- * 2. Developing and using models
- * 3. Planning and carrying out investigations
- * 4. Analyzing and interpreting data
- * 5. Using mathematics and computational thinking
- Constructing explanations (for science) and designing solutions (for engineering)
- * 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information

Observations and inferences have been central to this unit in the past. Where do observations come into the standards?

Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.

Ask questions (from NGSS science practices)

- That arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information.
- To identify and/or clarify evidence and/or the premise(s) of an argument.
- To determine relationships between independent and dependent variables and relationships in models.
- To clarify and/or refine a model, an explanation, or an engineering problem.
- That require sufficient and appropriate empirical evidence to answer.
- That can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles.
- That challenge the premise(s) of an argument or the interpretation of a data set.

Key themes that align with the NGSS

- Describing the pool using observations and data(practices: ask questions; analyzing and interpreting data)
- Describing pool organisms using observations(practices: ask questions; connections to nature of science: scientific knowledge assumes a order and consistency in natural systems LS2-3)
- Making inferences about adaptations observed that enable these organisms to survive and breed (*practices: argument with evidence, core ideas:* LS1.B)

 Using observations and research show how organisms are connected in the energy flow among the living and non living parts of the pond- food web (core ideas: cycle of matter and energy transfer in ecosystems LS2-3; interdependent relationships in ecosystems LS2-1; practices: obtaining, evaluating and communicating information)

Making predictions about how the organisms would be affected if the conditions of the pool changed significantly from the norm, for example a particularly dry spring. (core ideas: Ecosystem dynamics, functioning and resilience, LS2-5); practices: engaging in argument from evidence)

How this impacts our teaching of the unit

- Past approach has been to build an understanding of vernal pool and its creatures primarily through observation with some instruction of basic concepts such as lifecycles and food webs
- Students haven't needed much background information to be successful with the main parts of assessment
- New standards necessitate much more background understanding of concepts : oxygen flow through ecosystem, energy, lifecycles, competition for resources, decomposition...
- In addition there is greater emphasis at 6-8grade level on obtaining and analyzing <u>quantitative</u> data
- How to incorporate NGSS and maintain a primarily exploratory/inquiry driven approach within a 6-8 week unit?

Still working on a solution! Things to keep:

- Initial open exploratory visit to pool, observations of pool, sampling and examination of organisms
- Examination of past data on pool (incorporate math assessment on graphing?)
- Choice of which organism(s) to study in depth
- Observational drawings using microscopes
- Some research using guides and internet
- Making inferences based on observations and research

Ideas

- Driving question :Why live in a wicked big puddle? What are the benefits and difficulties of living in a vernal pool?
- Students choose a theme- oxygen; food;
 reproduction/life cycle; surviving dry periods,
- Teacher provides tutorials and research material focused on specific themes so students just access what they need for their choice.
- Assessment includes observations of pool and reference to past data, observations of organism and inferences about adaptations with connections to chosen theme
- Have some sort of class share out of work- workshop style? (we just did an OP)

Don't forget -the most important thing is getting them out into the natural world!

