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Abstract

The structure of a forest canopy often reflects its disturbance history. Such signatures of past disturbances or legacies can influence how the
ecosystem functions across broad spatio-temporal scales. The 1938 hurricane and ensuing salvage operations which swept through New England
represent the most recent large, infrequent disturbance (LID) in this region. Though devastating (downing ∼70% of the timber at Harvard Forest),
the disturbance was not indiscriminate; it left behind a heterogeneous landscape comprised of different levels of canopy damage. We analyzed
large-footprint LiDAR, from the Prospect Hill tract at Harvard Forest in central Massachusetts, to assess whether damage to the forest structure
from the hurricane and subsequent timber extraction could be discerned after ∼65 years. Differences in LiDAR-derived measures of canopy
height and vertical diversity were a function of the degree of damage from the 1938 hurricane and the predominant tree species which is, in part, a
function of land use history. Higher levels of damage corresponded to slightly shorter canopies with a less even vertical distribution of return from
the ground to the top. In addition, differences in canopy topography as revealed by spatial autocorrelation of canopy top heights were found
among the damage classes. Less disturbed stands were characterized by lower levels of local autocorrelation for canopy height and higher levels of
vertical diversity of LiDAR returns. These differences in canopy structure reveal that the forest tract has not completely recovered from the 1938
LID and salvage regime, which may have implications on arboreal and understory habitat and other ecosystem functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Large, infrequent disturbances (LIDs) bestow spatially
extensive imprints on forested ecosystems that may persist for
decades to centuries (Turner & Dale, 1998). LIDs often vary in
intensity leaving behind differential biotic legacies such as
coarse woody debris, snags, and surviving trees (Keeton &
Franklin, 2005). The ecological consequences of major
disturbances are often misunderstood by policy-makers and
natural resource managers which may yield decisions that
undermine the benefits of processes associated with natural
ecosystem recovery (Lindenmayer et al., 2004). Catastrophic
winds from hurricanes, an example of a LID, create damage
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patterns that are a function of spatially variable abiotic (e.g.,
topographic exposure, soil moisture, wind gradients) and biotic
(e.g., tree species and height distribution) conditions (Boose et al.,
1994, 2001; Foster, 1988; Foster & Boose, 1992; McMaster,
2005) producing structural complexity across the landscape.
Residualsmay influence secondary succession and their diversity,
leading to the generation of additional heterogeneity (Franklin
et al., 2002; Palik&Robl, 1999; Turner et al., 1998). Furthermore,
because tree species are long-lived, the present structure of a
forest may represent single or multiple states of recovery from
prior disturbances (Merrens & Peart, 1992).

The forest canopy serving as the interface between the
atmosphere and the biosphere, has been compared to a mem-
brane (Birnbaum, 2001) functioning as the master regulator of
the forest (Hallé et al., 1978); its structure, in large part, controls
the biophysical environment influencing tree physiology,
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atmospheric exchange and biotic habitat (Frazer et al., 2005;
Nadkarni et al., 1996). Though frequent wind disturbance may
create conditions that mold canopy structure (Foster et al.,
1998), existing canopy structure may also reflect the historical
consequences of infrequent disturbances. The surface topogra-
phy (Cohen et al., 1990; Weishampel et al., 1992) and the
internal structure (i.e., canopy profiles, Aber, 1979; Lefsky
et al., 1999) of the canopy reflect the successional stage of the
forest or the recovery time since disturbance. These canopy
architectural properties, among other things, have been related
to wind flow, sound and radiation transmission, and niche space
(e.g., Hill et al., 2004; MacArthur & MacArthur, 1961; Parker
et al., 2004; Tunick, 2003). In this study, using large-footprint,
LiDAR (Light Detection and Ranging) remote sensing, we
assess whether or not differences in canopy structure have
persisted from decades-old (∼65 years) hurricane damage and
associated salvage logging.

2. Methods

2.1. Harvard Forest study area

The area studied was the Prospect Hill Tract of the Harvard
Forest in the Massachusetts townships of Petersham and
Phillipston centered near 42.54 N, 72.19 W (Fig. 1a). This
∼380-ha tract ranges in elevation from 270 to 420 m a.s.l.
(Harvard Forest LTER, 2005).

Ground topography measured from the laser altimeter
described below revealed a varied terrain that ranged from
263 to 410 m and visually matches the 30 m USGS National
Elevation Dataset available through the Harvard Forest LTER.
Fig. 1. LiDAR-derived measures of (a) ground topography and (b) canopy top heig
Phillipston townships in central Massachusetts (designated by the arrow in the inset
The Prospect Hill Tract is a patchwork landscape that has had
numerous land owners since 1730 and has been subjected to a
complex array of historic agricultural and logging treatments
(Foster, 1992; Motzkin et al., 1999, 2004). These were largely
discontinued by the time it was acquired by Harvard University
as an experimental forest in 1907. Presently, it is predominantly
covered by a maturing forest described as part of the transition
hardwood–white pine (WP; Pinus strobus)–hemlock (Hem;
Tsuga canadensis) vegetation zone of New England (Spurr,
1956a; Westveld et al., 1956). Within this matrix, there are
dispersed red pine (RP; Pinus resinosa) and Norway spruce
(NS; Picea abies) plantations and several bogs. Hardwood
species are primarily Northern red oak (RO; Quercus rubra),
red maple (RM; Acer rubrum), and black oak (BO; Quercus
velutina). Additional dominant conifer species include white
spruce (WS; Picea glauca) which are often planted in this area.

In addition to varied land-use practices, the Prospect Hill
tract has been exposed to wind, fire, ice, snow, and pathogen
disturbances. The most devastating in recent history was the
1938 September 21st hurricane which led to a reduction of 70%
of the standing timber volume at Harvard Forest (Foster, 1988;
Foster & Boose, 1992; Spurr, 1956b). On Prospect Hill there
were different degrees of severity (Table 1), 61% of the tract
area (54% of the stands) lost 1–50% of its overstory while 22%
(31% of the stands) lost N50% (Motzkin et al., 2004). The
severity of impact for particular stands were related to species
composition, height, and topographic position related to wind
exposure (Foster, 1988; Foster and Boose, 1992). Immediately
following the hurricane, to reduce the threat of fire, Harvard
Forest became part of the largest salvage operation in U.S.
history. Damaged and uprooted trees were cut and removed
ht from the Prospect Hill tract of Harvard Forest located in the Petersham and
).



Table 1
Species composition in damage class polygons

Damage
class

Area
(ha)

Stand
count

Footprint count Predominant species (% by area)

BO RM RO Hem NS RP WP WS

Und 42.87 36 2739 5.3 12.4 38.9 1.1 4.5 8.1 19.6 6.0
VSD 52.36 40 2972 0.6 18.3 32.0 7.1 0.8 24.9 5.8 6.8
MD-1 72.72 44 4052 0.0 15.6 41.0 24.1 2.5 6.1 5.6 0.6
MD-2 70.34 46 3778 2.4 19.7 20.3 21.4 0.1 6.2 10.8 0.5
SD-1 32.91 24 2223 11.6 16.6 37.9 14.5 0.4 1.3 15.9 0.1
SD-2 15.66 20 889 0.0 19.3 34.1 4.3 0.0 1.3 27.7 0.2
Des 17.59 32 972 12.7 24.1 31.2 2.3 0.8 0.5 18.2 3.2

Footprint count 754 3222 5914 3185 363 1578 2122 487
Stand count 2 46 59 20 4 27 31 13
Area (ha) 10.7 69.1 104.5 42.6 4.6 26.4 43.5 8.1

Damage and predominant species stand numbers and areas represent polygons that intersect one another from Fig. 3.
Note: black oak (BO), red maple (RM), northern red oak (RO), hemlock (Hem), red pine (RP), white pine (WP), white spruce (WS).
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further opening the forest canopy (Foster et al., 2004). Re-
maining slash was piled and burned modifying the underlying
soil and adding to hurricane effects. Hence, the hurricane can be
equated to a broad-scale logging operation (Foster et al., 1997)
followed by natural restocking and secondary succession
(Spurr, 1956b). Roughly 50 years after the disturbance,
overstory tree composition returned to some semblance of its
pre-hurricane composition (Mabry & Korsgren, 1998). Silvi-
cultural treatments on Prospect Hill subsequent to the hurricane
including thinning, improvement cutting, small clearcutting,
and additional salvage logging from fire and blowdown damage
occurred sporadically and were not very extensive across the
landscape.

2.2. Acquisition of LiDAR data

In July 2003, during the midst of the growing season, roughly
65 years after the 1938 hurricane, NASA's Laser Vegetation
Imaging Sensor (LVIS; Blair et al., 1999) acquired data from
Harvard Forest tracts and adjacent areas in central Massachusetts.
LVIS consists of a scanning airborne laser altimeter combined
with an inertial navigation system and global positioning system
that enables the collection of georeferenced, digitally-recorded
waveforms to simultaneously measure slightly off-nadir-pro-
jected distribution of forest canopy surfaces and ground
topography. For these overflights, the nominal ground footprint
diameter was 20 m. Footprint spacing was contiguous; the center
of each footprint was separated by roughly 20 m both across and
along the flight path. Footprint track widths varied between 1600
and 2000 m depending on aircraft altitude. Several passes were
made to thoroughly blanket the landscape within a 2-km radius
circle centered on the CO2 flux tower in the hemlock stand on the
Prospect Hill tract. As a result, the final coverage in this area was
considerably denser and significantly clustered; average nearest
neighbor distances between footprint centers on the Prospect Hill
tract was 7.1 m. For this study, the data used from this mission
included the longitude and latitude of the footprint center; the
ground elevation and canopy top height within a footprint; and
the vertical distribution of intercepted surfaces within a footprint
(i.e., the waveform) with a vertical resolution of 0.3 m (Blair
et al., 2004).
2.3. Derivation of canopy properties

Though ground topography sometimes can influence large
footprint waveform properties, affecting estimates of canopy
top height (Hofton et al., 2002; Hyde et al., 2005; Lefsky et al.,
2005), the terrain at the Harvard Forest is not sufficiently rugged
to alter the waveform shape appreciably. Canopy top height
(CH; Fig. 1b) was calculated as the height in meters relative to
the mean elevation of the lowest detected mode within the
waveform at which 100% of the waveform energy occurs (see
diagram in Hyde et al., 2005). Previous studies of large footprint
LiDAR show very close agreement with field- and LiDAR-
derived (i.e., LVIS and Scanning LiDAR Imager of Canopies by
Echo Recovery — SLICER) ground elevations (Hofton et al.,
2002) and canopy heights (e.g., Boutet and Weishampel, 2003;
Hyde et al., 2005; Lefsky et al., 1999). For similar New England
forests, a strong correlation (r2 =0.80) between field- and LVIS-
derived heights exists (Anderson et al., 2006).

To further explore potential effects of hurricane disturbance
on vertical canopy structure, we analyzed the waveforms from
the different damage classes. This represents the vertical
organizational patterns below the outer canopy surface found
within a footprint. A canopy height diversity index (CD), which
uses a Shannon index mimicking the foliage height diversity
index (FHD; Aber, 1979; Hashimoto et al., 2004; MacArthur &
MacArthur, 1961; McElhinny et al., 2005) similar to another
canopy height diversity index (CHD; Spies & Cohen, 1992),
was used to measure the distribution of laser returns within the
0.3 m bins from the ground to the canopy top.

CD ¼
Xs

i¼1

pilnpi ð1Þ

where pi is the proportion of return in one of s vertical bins in
which there was a laser return recorded above the background
noise. Because the laser reflects off of the surfaces of all canopy
components (i.e., leaves, twigs, branches, boles, etc.) not just
foliage, the acronym, FHD, was modified following Lefsky
et al. (1999). As FHD tends to be highly correlated with canopy
height (Aber, 1979) or the number of layers or bins (Parker &
Brown, 2000; Unruh, 1991), so should CD. To remove some of



Fig. 2. LiDAR-derived measures of (a) canopy diversity (CD) and (b) canopy evenness (CE) from the Prospect Hill tract at Harvard Forest. Colors are scaled based on
quantiles of the range of measurements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

145J.F. Weishampel et al. / Remote Sensing of Environment 109 (2007) 142–153
these biases, we created a canopy evenness index (CE) which
assumes values between 0 and 1 by dividing CD by the natural
logarithm of s (following ecological measures of species
Fig. 3. (a) Canopy damage class polygons from the 1938 hurricane from the Prospect Hill t
from the Prospect Hill tract from the 1986–1993 survey of Harvard Forest. Wetlands and
evenness, e.g., Smith and Wilson, 1996). This index ranges
between 0 and 1. Measures of CD and CE across the Prospect
Hill landscape are shown in Fig. 2.
ract at Harvard Forest. Open areas are not included. (b) Predominant species polygons
small polygons representing other dominant species are not included.



Fig. 4. LiDAR-derived measures of canopy top height from tall to small for the different (a) damage class and (b) predominant species polygons from the Prospect Hill
tract. Dashed lines represent average values. Solid lines in boxes represent median values. Edges of boxes represent 25th and 75th percentiles. Whisker bars represent
10th and 90th percentiles. Circular markers represent 5th and 95th percentiles. For a given panel, different superscripts adjacent to class label indicate statistically
different values (Pb0.05 based on Duncan's post hoc test).
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2.4. Comparison with GIS datalayers

We compared measures of canopy height, diversity, and
evenness derived with LVIS among different hurricane damage
and predominant species classes using ANOVA and General
Linear Model (GLM) approaches. LiDAR measurements of CH
are typically spatially autocorrelated at fine scales (Boutet &
Weishampel, 2003; Drake & Weishampel, 2000; Weishampel
et al., 2000) and represent organizational patterns at the crown
and crown neighborhood level. Because autocorrelation vio-
lates the assumption of independence among samples, it can
elevate statistical errors (Legendre, 1993; Popescu et al.,
2004). To reduce this effect, we generated a 25 m triangular
Fig. 5. Average vertical distribution of LiDAR returns (above background noise) an
damage classes. Identical superscripts adjacent to means indicate statistically simila
lattice across the study area. Canopy height, diversity, and
evenness, measures from the footprints closest to the lattice
points, were analyzed. This sampling scale was greater than
the footprint diameter of LVIS (∼20 m) and the crown
diameter of trees in this region (Leak, 1983), thus should
prevent repeated sampling of the same tree. This sampling
method resulted in the elimination of about two-thirds of the
footprints.

Hurricane damage assessment data for the forests around
Petersham, Massachusetts were collected between 1939 and
1941 (Rowlands, 1941). The percent of all dominant and co-
dominant trees which were uprooted, snapped, or leaning
sufficiently to prevent saving as part of the residual stand were
d canopy diversity indices with standard errors in parentheses for the different
r values (Pb0.05 based on a Duncan's post hoc test).
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recorded for each stand. These areas representing∼304 ha were
classified into seven canopy damage classes: undamaged (Und),
b11% very slight damage (VSD), 11–25% moderate damage 1
(MD-1), 26–50% moderate damage 2 (MD-2), 51–75% severe
damage 1 (SD-1), 76–90% severe damage 2 (SD-2), and N90%
destroyed (Des). These classes were then mapped, and digitized
into a GIS datalayer of 242 separate stand polygons (Fig. 3a;
Foster and Boose, 1992; Motzkin et al., 1999). To increase
footprint number per damage class, the two classes representing
the least amount of damage (Und and VSD) were combined as
were those representing the most amount of damage (SD-2 and
Des). The predominant species polygons were derived from a
survey of Harvard Forest stands that occurred from 1986 to
1993 (Fig. 3b). Predominant species designations were based on
basal area of living, not moribund, stems. Little change was
expected in the predominant species class a decade later when
the LVIS flights occurred. The proportion of species dominating
a particular damage class is shown in Table 1. GIS datalayers
are available through the Harvard Forest Long Term Ecological
Research (LTER) archives.
Fig. 6. Average vertical distribution of LiDAR returns (above background noise) an
predominant species classes. Identical superscripts adjacent to means indicate statist
2.5. Measures global and local autocorrelation

Though spatial autocorrelation violates assumptions of inde-
pendence for hypothesis testing, it may provide important in-
formation on the structural organization of a system (Legendre,
1993). To quantify differences in canopy topography that may
reflect structural legacies from the 1938 hurricane, we generated
spatial correlograms of CH for the different damage classes.
Measures of autocorrelation such as semivariance are essentially
textural measures (Dale et al., 2002) and have been used to help
visualize and quantify forest canopy structure (e.g., Cohen et al.,
1990; Tian et al., 2002; Weishampel et al., 1992, 2000) and
assess damage (Bowers et al., 1994; Lévesque & King, 1999;
King et al., 2005). As in a previous study (Boutet &Weishampel,
2003), we used Moran's I to quantify autocorrelation globally.
Across a range of lag distances at 10 m intervals, this auto-
correlative measure was used to produce a correlogram using
GS+ v. 7.0 software (Gamma Design, 2005). These results range
between 1.0 and −1.0 and are interpreted in a similar fashion as a
Pearson's Product Moment correlation statistic. We generated
d canopy diversity indices with standard errors in parentheses for the different
ically similar values (Pb0.05 based on a Duncan's post hoc test).
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correlograms for different damage and predominant species
classes with sufficient LiDAR sampling (i.e., the five damage and
five species classes with N1000 footprints) to allow numerous
comparisons across lag scales ranging between 5 and 250 m.

Because global measures of autocorrelation often mask fine-
scale patterns within a single metric or across a given range of
lag distances (Wulder & Boots, 2001), we also used a local
indicator of spatial association (LISA) to quantify autocorrela-
tion at the footprint scale. These local measures provide an
assessment of how each observation contributes to global
autocorrelation measures and can be used to identify pockets
Fig. 7. Correlograms for LiDAR-derived measures of canopy surface topography (C
predominant species (right) polygons from the Prospect Hill tract.
(hotspots) of stationarity and nonstationarity. We used the Local
Moran statistic Ii (Anselin, 1995):

Ii ¼ Zi−Z̄
S2

XN

j¼1

WijðZj−Z̄Þ ð2Þ

where Z̄ is the mean intensity over all observations, Zi and Zj are
the intensities of observations i and j, respectively (where i≠ j),
S2 is the variance over all observations, and Wij is a distance
weight for the interaction between observations i and j (Getis
and Ord, 1996; Levine, 2004). Unlike the global Moran's I, the
H), diversity (CD), and evenness (CE) for the different damage class (left) and
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distribution of Ii is unknown. High positive or negative values
indicate the spatial clustering of similar or dissimilar values,
respectively, within a neighborhood. Though knowledge of the
distribution of LISA measures is incomplete (Boots, 2002), we
ran significance tests as part of exploratory data analysis. For
each polygon designated by damage and dominant species
class, Ii values were averaged. At the polygon level these were
compared to determine whether or not differences exist for
LISA measures using ANOVA and GLM methods.

3. Results

3.1. Differences in canopy architecture

Measures of CH significantly decreased as hurricane impact
increased (Fig. 4a). The tallest canopies were in the aggregated
undisturbed and very slightly disturbed class (z=24.1 m,
SE=0.62), and the shortest canopies were in the aggregated
severely disturbed-2 and destroyed class (z=23.4 m, SE=0.21).
Thus, the difference generated by the 1938 hurricane, though
significant, was b1 m. CH was more dramatically a function of
Fig. 8. Local autocorrelation measures for the different canopy properties for each
species polygon (below). Low values are blue; high values are red. Color classes follo
legend, the reader is referred to the web version of this article.)
predominant canopy species (Fig. 4b). The two plantation
classes, Norway spruce (z=26.2 m, SE=0.73) and red pine
(z=25.9 m, SE=0.27) were significantly taller than the other
classes. Hemlock (z=22.5 m, SE=0.10) and black oak
(z=20.1 m, SE=0.14) stands were the shortest classes. When
considered individually and in combination, the hurricane
damage and predominant species classes contributed to
significant differences (Pb0.01) in CH derived by the LiDAR.

Though differences in the average vertical canopy profiles are
apparent (Fig. 5), the diversity indices are nearly identical among
the damage classes. However, there were significant differences
(Pb0.05) in CD with the more disturbed stands having lower
values than those that experienced less damage. The CE values
were significantly different showing again the more disturbed
stands to have lower values. The waveforms for the different
predominant species classes (Fig. 6) are much more obviously
different than the damage classes. The taller, plantation classes,
Norway spruce and red pine exhibited the highest CD and CE
values. It is interesting to note that an understory in the hemlock
class was not apparent which may reflect the low light
conditions. Though we attempted to remove the canopy height
footprint (above) and average LISA values for each damage class/predominant
w Jenks natural breaks. (For interpretation of the references to color in this figure
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or bin number bias from CD as the diversity index was signifi-
cantly correlated to the number of occupied bins (r2=0.816) and
to a lesser extent height (r2=0.395), CE remained significantly
correlated with CH (r2=0.72). Again when considered separately
or together, the hurricane damage and predominant species
classes contributed to significant (Pb0.05) differences in CD and
CE measures derived by the LiDAR.

3.2. Patterns of global and local autocorrelation

All damage and species classes exhibited non-random
patterns of canopy topography and internal canopy properties
Fig. 9. Average LISA values for damage and predominant species classes by polygo
values. Edges of boxes represent 25th and 75th percentiles. Whisker bars represent 10
given panel, different letters above a tic mark indicate statistically different values (
at lag distances below 100 m (Fig. 7). This scale of auto-
correlation is on the order of those found in pixel to pixel
variation of LAI classes at Harvard Forest by Tian et al. (2002).
Though height differences were more apparent among the
species classes than hurricane damage classes a visual
inspection of the autocorrelation patterns shows the opposite.
The correlogram for the most disturbed class had the highest
autocorrelation values at smaller lag distances (i.e., b150 m)
whereas the least disturbed class had the lowest autocorrelation
values after 40 m (Fig. 7a). The predominant species class
correlograms were more convoluted than the hurricane damage
class correlograms (Fig. 7b). The red pine dominated stands
n. Dashed lines represent average values. Solid lines in boxes represent median
th and 90th percentiles. Circular markers represent 5th and 95th percentiles. For a
Pb0.05 based on Duncan's post hoc test).
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exhibited the highest autocorrelation values which may be
explained by the regular spacing and fairly even aged properties
of the plantation. Global autocorrelation levels were generally
lower for CD and CE measures than CH measures. Patterns for
the hurricane damage classes for CD and CE were somewhat
reversed than found with CH; the least disturbed class had
higher autocorrelation levels for CD and CE than the most
disturbed class. The correlograms were the least smooth for the
most disturbed class. Autocorrelation patterns for CD and CE
were very similar among the dominant species classes.

With the aggregation of the footprint level LISA measures to
the stand polygon level (Fig. 8), one can visualize the “hot
spots” of local autocorrelation. From this, one can see that the
spatial distribution of LISA values for CD and CE are generally
similar, but differ for CH. The mean LISAvalues for the damage
class polygons followed some of the behaviors exhibited among
the correlograms (Fig. 9). For CH, the areas most damaged by
the 1938 hurricane had higher average local autocorrelation
values than the least damaged areas. This pattern was reversed
for the CD and CE average LISA measures. The local auto-
correlation measures did not seem to correspond to the global
autocorrelation measures. Hemlock had higher local spatial
autocorrelation levels with respect to CH than the other species
indicating a consistent height for each hemlock dominated
polygon. For CD and CE, red pine had the highest average
LISA values. This again may relate to the even age properties
and regular spacing of the red pine plantation.

4. Discussion

The subtle, yet significant differences in canopy heights and
vertical profiles of the laser return among the damage classes
suggest the forest canopy on the Prospect Hill tract had not
completely recovered 65 years after the hurricane and the
ensuing salvage operations. This is further evidenced by the
differences in the global and local autocorrelation patterns
among the canopy height measures. These all show the more
severely disturbed stands to be shorter, with a less diverse
vertical distribution of laser backscatter and higher levels of
spatial autocorrelation for CH and lower levels of CD and
evenness. Though not measured here, these changes in LVIS
waveform properties resulting from the disturbance most likely
correspond to different levels of biomass (Anderson et al., 2006)
However, more conspicuous differences in canopy height and
canopy height diversity are found when analyzing the
predominant species classes across this patchy landscape.
This is visually apparent by the diversity of canopy height
profiles for the different predominant species classes.

The lower average canopy heights in the more heavily
damaged stands may reflect the reduction in number or absence
of taller trees or differential growth rates after the hurricane
(Merrens & Peart, 1992). This may also relate to an earlier study
(Motzkin et al., 1999) which found increases in basal area
associated with lower levels of damage. The higher autocorre-
lation patterns below 150 m and the lower CD metrics indicate
that the canopy in the more damaged stands have not differ-
entiated horizontally and vertically as those in the less damaged
stands. It is possible that the less damaged Harvard Forest
canopies from the 1938 hurricane exhibited a more random
spatial distribution of heights across scales b100 m, like the
Duke Forest after the 1996 Hurricane Fran disturbance (Boutet
& Weishampel, 2003), but have since recovered. Thus LiDAR,
in a similar vein as optical and microwave sensors that are able
to detect and age fire (Amiro & Chen, 2003; Bourgeau-Chavez
et al., 2002) and microburst blowdowns (Nelson et al., 1994)
scars was able to distinguish among hurricane damage classes.
This synoptic approach may provide a different, more efficient
approach than ground-based observations of canopy structure
after a disturbance (e.g., Rhoads et al., 2004).

The fact that the canopy has not completely recovered after
65 years in this transition northern hardwood forest may not be
unexpected as canopy structure in a tropical rainforest was
found to recover more slowly than other ecosystem properties
after a hurricane (Beard et al., 2005). The legacy of the
hurricane as reflected by the canopy structure (i.e., CH and
diversity) may have habitat ramifications for arboreal species
notably birds (Hill et al., 2004; MacArthur & MacArthur, 1961)
as it should relate to the foliage-height diversity index as found
with eastern deciduous forests (Harding et al., 2001). As the
canopy dictates other environmental conditions such as light
penetration, differential understory environments should persist
as a result of the hurricane. However, this is not reflected by the
understory floral composition which had since recovered (Mabry
& Korsgren, 1998) to its pre-hurricane state and was found not to
be significantly influenced by the overstory (Motzkin et al.,
1999). Most likely, the understory species composition is more of
a function of microclimate effects that may be masked by the
relatively coarse footprint of this LiDAR. As current understory
composition on Prospect Hill reflects an array of historic land
uses (Motzkin et al., 1999), these may also have contributed to
existing canopy structural differences (Foster, 1992).

Over the last three centuries, the Prospect Hill tract has been
exposed to repeated human- and natural-born disturbances.
Though not examined here, historic agricultural uses have been
shown to affect recovery after a hurricane in a tropical system
(Uriarte et al., 2004). Given the subtle differences in canopy
height, diversity, and evenness attributed to the 1938 hurricane,
it seems unlikely that signs of earlier disturbances could be
detected using this airborne LiDAR. However, the species that
comprise the present Prospect Hill overstory are a function of
18th- and 19th-century land use patterns (see Motzkin et al.,
2004). For example, hemlock dominated stands are found on
sites that were not cleared at least since 1730; red maple stands
are found on sites that were once woodlots and unimproved
pastures; oak–maple associations are found primarily on sites
that were once pastures and tilled fields; pine–oak associations
are found on sites that were pastures and plowed fields. Thus,
there should be indirect relationships among the LiDAR-
derived canopy properties and historic land uses.
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