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Abstract

Land-cover and land-use change modeling have become increasingly common, and myriad different modeling techniques are
now available. Many techniques assume that the rules of landscape change are the same everywhere within the study area, an
assumption that contrasts with reality in many municipal regions, which have spatially varying development restrictions. In this
paper, we provide a case study from the Raleigh–Durham area of North Carolina (USA) showing the consequences of using
a model with a spatially homogeneous form when the rules of landscape change are spatially heterogeneous. Using classified
Thematic Mapper images of 1990 and 2000, we fit two models relating probability of deforestation to a large set of potentially
explanatory variables. Potential autocorrelation in the error term of our models was avoided by sampling outside the zone of
spatial autocorrelation. The first model, a logistic regression (GLM), was used as an example of a simple, spatially homogeneous
model, where the probability of deforestation is a function of a set of explanatory variables. The second model was a classification
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nd regression tree analysis (CART), a spatially heterogeneous model in which the data were recursively partitioned o
xplanatory variables plus spatially explicit indicator variables, to create a binary decision tree that adequately cap
attern in deforestation. Overall, the CART model (15.2% misclassification rate) performed significantly better than t
odel (33.1% misclassification rate). When the residuals of both models were examined spatially, the CART model a
erform better, more accurately predicting hotspots of development and predicting the baseline proportion of defores
ore accurately. Our results lend support to the importance of spatial heterogeneity in the rules of landscape change,

hat models that attend local variability in the forces driving landscape change can provide more useful predictions th
hat assume these forces operate similarly throughout the landscape.
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1. Introduction

Worldwide, the dramatic expansion of developed
eas has raised concern about the associated loss o
tat (Houghton, 1994). In the United States 19,800,0
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acres were converted into urban or suburban areas
from 1992 to 2001 (USDA, 2003). The most frag-
mented patterns of development have occurred in a
few rapidly growing areas in the Southern and West-
ern US, cities that have primarily developed after
the widespread availability of the automobile made
dispersed development possible (Jenerette and Wu,
2001; Theobald, 2001; Waisanen and Bliss, 2002). In
the Raleigh–Durham–Chapel Hill metropolitan area of
North Carolina, USA (the Triangle), where this study
was conducted, population grew by 38% from 1990
to 2000 (Triangle J Council of Governments, 2003a).
At the same time, analysis of land-cover maps sug-
gests that 20.5% of forested lands have been defor-
ested (unpublished data). Given the likely negative eco-
logical consequences of such widespread deforestation
(cf.,Harrison and Bruna, 1999; Fahrig, 2002; Laurance
et al., 2002), understanding the factors driving sprawl
and their dynamics over time is very important.

One way to understand land-cover and land-use
change is through modeling, where the probability of
development of some region in the study area is repre-
sented as a function of a set of explanatory variables.
While the palette of available model types has increased
dramatically in recent years (Veldkamp and Lambin,
2001), and there has been a tendency towards more
complex modeling frameworks (Parker et al., 2003),
most models have assumed that the functional form of
the model is spatially homogeneous. This has certain
conceptual and statistical implications, some of which
m riv-
i ssi-
fi tive;
d if-
f rely
t exi-
b e
r

1
h

nge
w of
c por-
t step
( in
p and-

cover (e.g., development, from forest to non-forest),
P(d), was constant and equal for all forested sites. Later
models incorporated a set of explanatory variables that
might themselves be spatially patterned, such that:

P(d)i = f (xi) + ε (1)

where (taking the example of a raster lattice) the proba-
bility of development at pixeli is a function of a vector
x of explanatory variables measured at locationi. This
functionf can be as complicated as desired, as can the
explanatory variables contained withinx. For example,
x can contain information on the state of nearby pixels,
such as the proportion of neighboring cells that have
already been deforested, giving the model attributes
of a cellular automata (von Neumann, 1966; Wolfram,
1984; Hogeweg, 1988). In agent-based models, some
of the most mechanistic models available, the decision
function of the agents is analogous to the functionf
above. If different types of agents with different pref-
erences are used, there are, in effect, multiple functions
f, g, h, . . . for different types of agents (Parker et al.,
2003).

All of the models described above are composed of
functions that are spatially homogeneous; the function
f does not vary between different pixelsi. In essence,
while the input into the model varies with space (and
hence the model output varies with space), therules of
landscape change remain spatially constant. However,
many of the rules that govern land-cover and land-use
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cation scheme in the next section is not norma
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erent purposes. Our goal in this paper is thus me
o show that in many cases the degree of spatial fl
ility in the functional form of a model will affect th
esults obtained.

.1. Spatially homogeneous versus spatially
eterogeneous models

Early models of land-cover and land-use cha
ere essentially non-spatial, and the probability
hange for all locations was estimated as the pro
ion of cells that changed state in the last time
e.g.,Johnson, 1977). This describes a Markov-cha
rocess, where the probability of some change in l
hange vary from place to place. For example, zo
n some regions of the landscape is tightly enfor
hile in other regions zoning plays a relatively un
ortant role in controlling development. More gen
lly, the desires of agents often vary between loca
ecause of local interests or cultures. In effect, t
ommonplace examples suggest that the functionf dif-
ers between places: therules of landscape change a
patially heterogeneous.

Insights can be gained by exploring the implicati
f using spatially homogeneous models to descri

and-use change process that is spatial heterogen
ne probable effect is an ‘averaging’ of landscape
amics; in most statistical fitting procedures the fu

ion f will try to accommodate multiple variables th
ay be important in particular spots on the landsc

cf., Chambers and Hastie, 1992). The importance o
ertain variables (e.g., the absolute magnitude of



R.I. McDonald, D.L. Urban / Landscape and Urban Planning 74 (2006) 7–20 9

efficient in a generalized linear model) is therefore un-
derestimated in the particular places where they really
matter and overestimated elsewhere (Vayssieres et al.,
2000; Urban et al., 2002). A related effect is that the
model’s residuals should be spatially autocorrelated
(Legendre and Legendre, 1998). This latter effect may
be difficult to detect, as autocorrelation in residuals can
result from other problems, and is apparent in spatial
examination of residuals in almost all land-cover and
land-use change models (Veldkamp et al., 2001).

Note that the distinction between spatially hetero-
geneous and spatially homogeneous models is fuzzy,
and is really one of degree rather than kind. If the
explanatory variables inx are highly structured spa-
tially, then some of the spatial pattern that occurs in
the actual probability of land-use change will be cap-
tured by the estimate ofP(d)i. In the limit, an ar-
bitrarily complicated transition functionf, combined
with a sufficient set of explanatory variablesx, can be
made to do arbitrarily well in capturing the dynam-
ics of a system. Nevertheless, some modeling frame-
works, such as classification trees (Moore et al., 1991;
De’Ath and Fabricius, 2000) and neural nets (e.g.,
Fletcher and Goss, 1993; Miller et al., 1995), are ex-
tremely flexible in their estimation off. In particular,
if some of the variables inx effectively partition the
study area spatially, then such flexible frameworks are
essentially spatially heterogeneous: therules of land-
scape change may differ between locations. Depending
on the purposes of the land-use change modeling, this
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More broadly, we hope to compare and contrast
these two classes of models, to allow for increased
understanding of the consequences of assuming spa-
tial homogeneity in the functional form of a model.
Specifically, we describe the negative effects of the
spatial ‘averaging’ that occurs with the spatially ho-
mogeneous model. Using a unique method to analyze
the residuals in a spatial manner, we illustrate specific
places where both of our models perform poorly, which
yields insights into processes not adequately captured
in our models.

2. Methods

2.1. Study area

Our study area is the Triangle metropolitan region of
North Carolina, defined here as the three counties that
include the cities of Raleigh, Durham, and Chapel Hill
(Fig. 1). The population of the region has grown rapidly
from 270,000 in the 1950s to greater than 1.5 million at
present. The past decade experienced particularly high
population growth rates of over 40%. The four main
employment centers—Raleigh, Durham, Chapel Hill,
and the Research Triangle Park, a high-technology in-
dustrial zone—are separate from the suburban munic-
ipalities that have experienced the most growth, creat-
ing a patchwork of different regulatory environments.
Research Triangle Park has risen in prominence in re-
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.2. Objectives

In this paper, we offer a comparison between a
ially homogeneous model and a spatially hetero
eous model, by parameterizing both models to r
ate patterns of deforestation (a change in land-co
n the Triangle region of the North Carolina Piedm
rom 1990 to 2000. We model deforestation beca
f its relevance to forest ecologists and ease of m
urement from satellite photos. The models descr
elow will also interest urban planners and other

he Triangle (e.g.,Mansfield et al., 2003). In addition,
hese models will help constrain estimates of suc
ional forest processes discussed in a companion
McDonald and Urban, in preparation).
ent years and now plays a pre-eminent economic
n the region, despite a lack of housing nearby.
ispersed style of development that has resulted
erns regional planners and reflects processes occ
n many other cities in the United States (Triangle J
ouncil of Governments, 2003a).
The physical environment controls and modifies

elopment in the region in a complex manner.
entle rolling topography of the North Carolina Pi
ont presents few direct limitations to deforesta
nd land-use change, although steep slopes in

ered localities limit development. Most municipa
ies limit development within a fixed buffer zone n
treams, defined either by a fixed distance or by fl
lain boundaries. Soils vary widely in plasticity a
ermeability, and thus the cost of building and
ase of installing septic tanks (for areas without se
ervice) can vary considerably (Triangle J Counc
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Fig. 1. Map of three-county study area with inset locator map. Different municipalities are colored differently, to show the diversity of munici-
palities in the region.

of Governments, 2003b). Former agricultural lands are
now dominated by loblolly pine (Pinus taeda), while
forests that were never clear-cut remain dominated by
a complex mix of hardwood species (Oosting, 1942;
Christensen and Peet, 1984). The difference between
these two forest states is not considered explicitly in this
study, as discussions with developers suggested that the
state of the forest played little role in deforestation de-
cisions. A mosaic of protected federal, state, and local
areas exists throughout the region, playing a crucial
role in limiting development in some regions (Triangle
J Council of Governments, 2003b).

The political environment of the region also con-
trols and modifies development patterns. The various
municipalities of the three-county region vary in their
friendliness to development, and the area thus presents
an interesting challenge to modelers. The economy is
driven by high-tech product development and testing
by pharmaceutical and computer companies that exist
in a few centralized zones. However, like many rapidly
growing cities the largest percentage gains in employ-
ment are in the retail and service sectors of the econ-
omy, which tend to be much more dispersed. The lack
of adequate public transit (which, arguably, lowers in-
centive to live near developed areas) and the cheap price
of land outside traditional city centers has caused most

growth in the region to occur in a few municipalities
that, until recently, were considered small towns. The
heterogeneous wants and desires of different munic-
ipalities suggest that the constraints on development
will vary in different locations (Triangle J Council of
Governments, 2003a).

2.2. Data preparation

Two Thematic Mapper images (30 m pixels) of the
region for May 1990 and 2000 were obtained, and
georectified to other geographic data layers to within
10 m accuracy, as assessed with the root mean square
(rms) error tool in Erdas Imagine. Atmospheric cor-
rection was conducted using dark-object subtraction
(Song et al., 2001). The images were classified us-
ing a supervised maximum-likelihood classification in
Erdas Imagine on log-transformed spectral data (to
meet the assumptions of discriminent analysis), based
on a training data set derived from high-resolution
aerial photos. Originally, seven land cover classes were
used (dark water, sediment-laden water, sparse vegeta-
tion, hardwood forest, mixed forest, pine forest, devel-
oped/barren), defined to maximize spectral discrimina-
tion between the classes. For the purposes of this study,
this classification scheme was collapsed into forest ver-
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sus non-forest (excluding water), to simplify the anal-
ysis and to focus most clearly on deforestation events.

Positive spatial autocorrelation is common in envi-
ronmental datasets (Legendre and Fortin, 1989), and
poses a problem for statistical testing because it tends
to inflate the significance of most test metrics (Dale,
1999). The probability of deforestation in any pixel
of our land-cover map can be seen as a function of a
set of explanatory variables and the local small-scale
autocorrelation in the process of deforestation. The au-
tocorrelation in the process (i.e., the size of the average
deforestation event) would be of interest if one wanted
to model all the dynamics of land-cover change, but
we chose not to fit this autocorrelated error term here
because our interest for this study was to highlight
the relationship between the explanatory variables and
the probability of deforestation. Thus, we took the ap-
proach of estimating the scale of spatial autocorrelation
of development events, and then made sure the samples
used for statistical modeling are beyond the zone of au-
tocorrelation (i.e., are statistically independent).

We sampled 10,000 pixels in areas that were forested
in 1990, and assigned a 1 if theychanged to another
land cover type and 0 if they did not. Following the
method ofSokal and Oden (1978), we calculated the
number of similar states (joint-counts) between pairs
of pixels at various distances from one another (0–300,
300–600 m, etc.). We tested the significance of any de-
partures from the null expectation of no spatial auto-
correlation (Sokal and Oden, 1978). As each distance
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Table 1
Explanatory variables used in both classes of models

Variables Units

Driving time to UNC, Duke, Raleigh, and
RTP

Minutes

Slope Degrees
Distance to stream Meters
TCI Unit-less index of

soil moisture
Proportion sparse vegetation cells within:

30, 60, 120, 240, 480 and 960 m
Proportion

Proportion development cells within: 30,
60, 120, 240, 480 and 960 m

Proportion

was extracted using GIS, as well as a set of potential
explanatory variables (Table 1). Explanatory variables
were included that accounted for several major fac-
tors that impact the probability of development. The
county and municipality (1990 maps) of each sample
point were recorded as a discrete variable, as differ-
ent municipalities might have different probabilities
of deforestation. A discrete variable, PROTECTED,
was created, with a value of 1 if the sampling point
fell into a protected area (e.g., State Park, conservation
easement) and a 0 if it did not. Given information on
the road (TIGER data) and stream (USGS data) net-
work, we calculated the Euclidean distance to a road or
stream, as a proxy for ease of development. To gain a
more useful picture of how location might influence the
probability of deforestation, we calculated the driving
time from every sample point to the centers of Raleigh,
Durham, Chapel Hill, and the Research Triangle Park,
using the network functions of ArcGIS. Soil plastic-
ity index for the B-horizon for each sample point was
extracted from digitized soil survey maps (SSURGO
data) and associated attribute databases available via
the USDA Natural Resources Conservation Service,
as a proxy for ease of construction and permeability
for septic lines. Using a digital elevation model from
the SRTM dataset (NASA), we calculated slope using
predefined functions in ArcGIS. A topographic conver-
gence index (TCI,Beven and Kirkby, 1979) was also
calculated as an index for hydrologic inflow of water,
as a proxy for soil wetness and site suitability for de-
v ells
t m-
p 480
a f the
lass involves a separate statistical test, and we w
o avoid the pitfalls of multiple statistical tests, we u
he progressive Bonferroni correction ofLegendre an
egendre (1998). Note that the correlogram approa
sed here is unlikely to reach the strict requirem
f second-order stationarity (Legendre and Legendr
998), and so statistical tests should be interpreted
aution, although the approach has been widely us
imilar situations and should be adequate to delin
he zone of spatial autocorrelation.

After determining the range of spatial autocorre
ion, we randomly selected 1500 points (i.e., pix
ithin the study region using a sequential interfere
esign to exclude points within the zone of autoco

ation, with the constraint that all sample points m
ave been forested in 1990 (i.e., we are not cons

ng deforestation events prior to this period). At e
oint, the value of the dependent variable (CHANGE
elopment. Finally, the proportion of developed c
hat within a series of circular buffers from the sa
led cell (0–30, 30–60, 60–120, 120–240, 240–
nd 480–960 m) was calculated, as a measure o
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spatial contagion of the process of development (i.e.,
are forested areas near developed areas more likely to
be developed in the future than forested areas far from
developed areas). Similarly, the proportion of sparse
vegetation within the same sets of buffer zones was
calculated.

2.3. Generalized linear model

The probability of development was modeled with
a logistic regression:

ln

(
p

1 − p

)
= β0 + βx + ε

wherep is the probability of development, andx is
the vector of explanatory variables. A logistic regres-
sion is a specific form of a generalized linear model
(GLM), an example of a spatially homogeneous model:
the per-unit effect of the explanatory variables is con-
stant across the landscape. Of course, given spatially
structured explanatory variables and numerous inter-
action terms, it is possible to achieve a degree of spa-
tial heterogeneity in the rules of landscape change in
a GLM. In practice, however, the search for a parsi-
monious set of explanatory variables means that most
GLMs are mostly spatially homogeneous in the rules
of landscape change.

The explanatory variables used here are a mix of
continuous and discrete variables (Table 1). All Pear-
son’s correlation coefficients between explanatory vari-
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predicted to have changed (P̂> b) or to have remained
forested (̂P< b), whereb is some threshold constant.
The best value ofb was determined for our data using
receiver–operator characteristic (ROC) curves (Pearce
and Ferrier, 2000). After classifying the training data,
the accuracy of the classification was calculated using
the Kappa statistic and a measure of available mutual
information (AMI,Wilkie and Finn, 1996). This statis-
tic calculates the increased information available from
the classification scheme, relative to a null model of
random classification.

Of potentially more interest for land-cover change
modeling is examiningwhere on the landscape the
model does well and where it fails. This is challenging
because the observed change between 1990 and 2000
is binary (deforestation either occurred, or it did not)
while the predicted value from the model is a proba-
bility. Moreover, observed values that are close to one
another have a tendency to be similar due to the small-
scale spatial autocorrelation of the process of develop-
ment, which we are not modeling here. To overcome
this, we calculated for each pixel on the landscape the
proportion of forested cells within a 1.5 km radius that
were deforested. The distance 1.5 km was chosen to be
twice the distance of significant spatial autocorrelation
in the process (see below), and is somewhat arbitrary,
although analyses using different ranges do not change
the results significantly. This strategy scales the ob-
served values from 0 to 1, and makes sure that the pat-
t orre-
l ted
p ion
o the
r
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on-
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d eous
w opti-
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T ally
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bles are less than 0.5, with the exception of the t
riving time variables, which are moderately correla

or driving-times to UNC, Duke, and RTP (R ∼ 0.8
n all cases). In addition, there is moderate corr
ion (R < 0.7 in all cases) for the circular buffer c
ulations when two buffers are of similar sizes (e
–30 and 30–60 m). To avoid multicollinearity pro

ems, we used stepwise regression to select the
ignificant variables (Sokal and Rohlf, 1981). The lin-
arity assumption implicit in this approach was ex

ned graphically, and no major departures from this
umption were found. As the use of the logit link fu
ion here was arbitrary, we also examined the pr
nd complementary log–log link functions, but fou
o substantial differences between the models.

After fitting the logistic regression using SPLUS
Insightful Corporation), the overall fit of the mod
as evaluated by classifying the training data as e
ern displayed smoothes over the small-scale autoc
ation (see Section3). We then subtracted the predic
robability of development from the actual proport
f the forest developed, and graphically examined
esiduals.

.4. Classification tree model

Classification tree models (CART) are a n
arametric approach that recursively partition
ataset into subsets that are increasingly homogen
ith regard to a response variable, based on an
al binary split on one of a set of explanatory v
bles (Moore et al., 1991; Vayssieres et al., 200).
his recursive partitioning means that with spati
artitioned explanatory variables, CART becomes
entially spatially heterogenous in the rules of la
cape change. It should be noted that several othe
istical techniques (e.g. neural nets) could have



R.I. McDonald, D.L. Urban / Landscape and Urban Planning 74 (2006) 7–20 13

been used as an example of a spatially heterogeneous
model; CART was chosen for its simplicity and ease of
presentation.

To avoid overfitting the CART model (i.e., mak-
ing it too sensitive to variation peculiar to the sample
dataset), trees are usually pruned (the number of binary
decisions is reduced) to find a consistent set of rules
that has meaning beyond the specific sample used to
create it. We used a 10-fold cross-validation to find an
optimal level of complexity for our CART model. We
tested other forms of cross-validation, and found that
the final form of the tree was insensitive to the form
of cross-validation. After the final form of the CART
model was decided, we examined surrogate variables
(i.e., explanatory variables that would have reduced de-
viance almost as much at a given split in the tree), to
gain insight into other forms of the tree that would have
similar values of reduction of deviance.

The deviance at each step is reduced as much as pos-
sible by a binary division of the data. Note that this is not
the exact same form of the deviance statistic typically
used in the GLM model, which makes model compari-
son difficult. As CART automatically generates classi-
fication of the training data, there was no need for the
ROC curves optimization as described above with the
GLM model. A Kappa statistic and AMI were calcu-

lated comparing predicted versus actual deforestation
events. The results between the CART and GLM mod-
els are thus directly comparable by comparing their
Kappa statistics.

As with the GLM model, a graphical comparison
of residuals is often more interesting than global met-
rics of fit. We used the same smoothed observed data
described above to summarize the actual deforesta-
tion events that occurred, and the proportion of sample
points that were developed in each node as a continu-
ous measure of probability of development. The resid-
ual then was calculated as predicted minus observed,
and the results examined graphically. The spatial pat-
tern between the residuals was thus easily comparable
between the GLM and the CART models, and any ar-
bitrariness in smoothing of empirical maps is at least
equally arbitrary for both models.

3. Results

3.1. Autocorrelation

There is significant positive spatial autocorrelation
in the process of deforestation between points that are
closer than 750 m (Fig. 2). In the first two distance

F estation s in various
d ne poin ates the null
e

ig. 2. Scale of spatial autocorrelation in the process of defor
istance classes. A pair of points is considered discordant if o
xpectation (see text).
, as measured by joint-count statistics between pairs of point
t was deforested and the other was not. The dotted line indic
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classes tested (i.e., pairs of points less than 750 m), the
proportion of sample pairs that were discordant (i.e.,
one sample point was deforested while the other was
not) was significantly less than that expected if the pro-
cess of deforestation was distributed at random. The
proportion of sample pairs that were discordant for all
other distance classes was not significantly different
from the null hypothesis. However, the proportion dis-
cordant remains below that expected under a random
spatial process, so some slight spatial autocorrelation
seems to persist at larger spatial scales. One interpreta-
tion of our results is that the intense, small-scale pos-
itive spatial autocorrelation is the zone of autocorre-
lation in the deforestation process (i.e., the size of the
deforestation patch), while the slight, large-scale posi-
tive autocorrelation is due to the slow gradient change
in spatially patterned explanatory variables (Legendre
and Fortin, 1989).

3.2. GLM

The overall logistic regression equation derived
from stepwise regression is shown inTable 2. The first

variable to enter the stepwise regression is the factor
municipality, and it is highly significant (P < 0.0001).
The probability of deforestation varies widely in dif-
ferent municipalities. For example, a sampling point in
the town of Apex is twice as likely to be deforested
as a point in an unincorporated area, while a sampling
point in the town of Chapel Hill is five times less likely
to be deforested. The next variable to enter into the
stepwise regression was the driving time to Durham
(P < 0.0001), where a 10% increase in drive time from
the baseline case increases the probability of deforesta-
tion by 8.0%. This result is counterintuitive, as we ex-
pected sites close to a city to be more likely to be defor-
ested. However, the remaining patches of forest cover
near cities appear less likely to be deforested than forest
patches in suburban regions further from the city cen-
ter, perhaps because of different land-use regulations.
Another important variable is the level of conserva-
tion protection; protected sites are 34.3% less likely to
be deforested than the baseline case (P = 0.0023). The
remaining variables that entered into the stepwise re-
gression show lower sensitivities, but are in some cases
highly statistically significant.

Table 2
Regression coefficients from the GLM model, as well as the sensitivity of each coefficient

Variable Coefficient Sensitivity (%) d.f. Deviance Residual deviance P

Intercept −1.7160 −12.6 1 NA 1250.8 NA
M 1
A
B
C
C
C
D
G
H
M
R
W
F
H
D 1
S
S
P
D
D
D

S

unicipality
pex 1.0178 97.5
utner 0.6770 61.4
arrboro 0.1119 8.9
ary 0.0804 6.4
hapel Hill −0.2916 −20.7
urham −0.0846 −6.4
arner −0.0987 −7.4
illsborough 0.0754 5.9
orrisville 0.0776 6.1
aleigh −0.0721 −5.6
ake Forest −0.1183 −8.8
uqay-Varina −0.0464 −3.5
olly Springs −0.0636 −4.8
riving time-duke 0.0375 8.0
V within 30 m −2.3382 −1.1
lope −0.3999 −3.2
rotected −0.5177 −34.4
evelopment within 120 m −1.5056 −0.5
evelopment within 30 m −3.4191 −0.4
istance to road 0.0007 1.2

ee text for details.
13 57.7 1193.1 <0.000

1 29.7 1163.4 <0.000
1 14.1 1149.3 0.0002
1 12.3 1137.0 0.0005
1 9.3 1127.8 0.0023
1 7.9 1120.0 0.0050
1 4.0 1115.9 0.0463
1 2.6 1113.3 0.1052
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Fig. 3. Graphical representation of the CART tree. At each node, the relevant decision is shown, with the length of each vertical bar proportional
to the proportion of the deviance explained by that split. Percentages are the proportion of cells in the training sample that are deforested at this
point in the tree. For example, a terminal node with 61% signifies a branch of the tree in which 61% of the training cells were deforested.

3.3. CART

The first split in the CART model is on munici-
pality, with Apex, Butner, Carrboro, Cary, Hillsbor-
ough, Knightdale, and Wake Forest having a higher
proportion of sample points deforested than in sample
points in unincorporated lands or in other municipali-
ties (Fig. 3). Within this selected group of municipal-
ities, the only remaining factor in the CART model is
distance to stream, with sites close to rivers less likely
to be deforested. In unincorporated lands or other mu-
nicipalities, the next split is the drive time to Chapel
Hill, with sites close to Chapel Hill having a lower
proportion of sample points deforested than sites far-
ther away. For sites relatively close to Chapel Hill, the

next split is on distance to road, with sites close to a
road having a lower probability of deforestation. For
sites relatively far from Chapel Hill, the next split is on
municipality again; Durham and Morrisville have rela-
tively high probabilities of development, while outside
these two municipalities probability of deforestation is
lower. The final two splits are on TCI and the proportion
of sparse vegetation within a 30 m buffer.

As with the GLM model, municipality is very im-
portant, and no other variable would be a good surro-
gate for the first split of the tree. Throughout the tree,
distance to stream can be replaced by TCI, and visa
versa, with only a small loss in deviance explained.
The split on driving time to UNC can be replaced with
a split on driving time to RTP or Durham with lit-
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tle loss in deviance explained; all variables partition
off the eastern portion of the study area. The propor-
tion of sparse vegetation in a 30 m buffer can be ade-
quately replaced by other small-scale (60 and 120 m)
buffers of sparse vegetation, but not by large-scale
buffers of sparse vegetation or any scale of buffers of
development.

3.4. Comparison of the two models

Overall, the CART model does better at predict-
ing deforestation events than does the GLM model
(Table 3). The ROC-optimized GLM model predicts
66.9% of samples correctly (κ = 0.213, AMI = 58.91),
while the CART model predicts 84.8% of samples
correctly (κ = 0.252, AMI = 66.4). An examination of
Table 3shows that, on average, the GLM overpredicts
deforestation events, while the CART model underpre-
dicts deforestation events.

Mapping the predicted probability of deforestation
reveals interesting trends over the study area (Fig. 4).
The GLM model predicts the highest rates of deforesta-
tion in the eastern portion of Wake County, presumably

Table 3
Confusion matrix for the GLM and CART techniques

Model prediction True value

Deforested Not deforested Predicted totals

Deforested
GLM 150 (10.8%) 379 (27.2%) 529 (38.0%)
CART 48 (3.5%) 29 (2.1%) 77 (5.5%)

Not deforested
GLM 81 (5.8%) 781 (56.1%) 862 (62.0%)
CART 183 (13.2%) 1131 (81.3%) 1314 (94.5%)

Observed totals
GLM 231 (16.7%) 1160 (83.3%) 1391 (100%)
CART 231 (16.7%) 1160 (83.3%) 1391 (100%)

Whole numbers are the number of training pixels that fell into that
cell in the table, while numbers in parentheses are the percentage of
the training pixels that fell into that cell in the table.

because the time it takes to drive to Duke becomes quite
high in this region of the map, and hence the predicted
probability of development (Fig. 4a). A closer exami-
nation of the map reveals several other places where the
form of the GLM models is too inflexible. In contrast,
the map of predicted probability of deforestation from
the CART model shows localized hotspots of defor-

F for bot restation
f probab
ig. 4. Two panel figure of predicted probability of deforestation
or the GLM model, while the right-hand panel is the predicted
h models. The left-hand panel is the predicted probability of defo
ility of deforestation for the CART model.
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Fig. 5. Two panel figure of residuals (predicted minus actual) for both models. The left-hand panel is the residuals for the GLM model, while
the right-hand panel is the residuals for the CART model.

estation based on municipalities and distance to stream
(Fig. 4b).

The residuals from the model (Fig. 5) generally are
positive, implying that large areas of the landscape
are less prone to deforestation than predicted by ei-
ther model. The problem is most severe for the GLM
model (Fig. 5a), where deforestation outside of the city
centers is overpredicted by 10–30%. The GLM model
underpredicts development slightly in South Durham,
Southern Chapel Hill, and in areas near the RDU air-
port. The CART model, in contrast, overpredicts de-
forestation outside of city centers by less than 10%,
and underpredicts deforestation in some of the same
hotspots of development that are problematic for the
GLM model.

4. Discussion

4.1. Processes driving development in the Triangle

Both the GLM and the CART model confirm that
differences between municipalities are one of the domi-

nant sources of variance in the probability of deforesta-
tion. First, this result is partly a reflection of the highly
fragmented nature of this metropolitan region, and it
is not clear if different regions with a more spatially
homogeneous political structure would have similar
results. For at least this study area however, this re-
sult is reasonable, as each of the myriad municipalities
has different goals and desires regarding development.
Second, there are circular processes at work that may
cloud the detection of municipality-level differences.
The boundaries of municipalities change over time in
response to development pressure, so that land that is
very likely to be developed is just within the municipal
boundaries. This trend will tend to cloud the signal of
deforestation risk in unincorporated land near the cur-
rent municipal boundaries, and future modeling work
in the region should include some proxy to account for
this process (e.g., distance to municipal boundary).

While both classes of models include one of the
measures of driving time as a significant variable, the
shape of the relationship is in a different direction than
expected. In the classic economics model of city de-
velopment, the spread of development is roughly ra-
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dial, covering larger concentric circles of area over time
(cf., the discussion of land-rent theories inBerry et al.,
1993). This would imply that forested pixels that had
lower driving times to the city center should be more
likely to be developed (i.e., in a GLM the parameter
should have a negative value). However, we find that
the remaining forested areas near cities are less likely
to be deforested, and that deforestation is more severe
far away from cities. In part, this is due to our use of a
land-cover map rather than a land-use map, as forested
pixels within city centers may reflect big trees in the
yards of established neighborhoods, rather than any-
thing that might have the functional properties of an
intact forest stand. However, our results also are in ac-
cord with the more dispersed style of development de-
scribed byJenerette and Wu (2001), and observed by
others throughout the Southeast US (e.g.,Yang, 2002).

Distance to stream (and its partial correlate TCI)
proved to be an important variable in the CART model,
but not the GLM. Intuitively, it seems logical that dis-
tance to stream would be an important variable, as many
developing restrictions occur near streams and in flood-
plains. Therefore, it is surprising that the GLM does not
pick up any relationship with distance to stream. This
failure may be because of the ‘averaging’ phenomenon
discussed previously, where the small proportion of the
landscape in which distance to stream is important is
swamped by the large proportion of the landscape in
which it is not. Alternatively, the failure of the GLM
model may simply be because of the arbitrariness of
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portion of the tree. In both cases, the direction of the
relationship is in the opposite direction expected. In-
stead of being contagious, the process of development
is spatially repulsive at these small scales. This might
occur if setbacks and other zoning regulations discour-
aged deforestation in regions directly adjacent to other
developed or cleared land.

4.2. Spatially homogeneous versus spatially
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Based on an examination of overall error rates, the
CART (16.2% misclassification) seems to do better
than the GLM (34.1% misclassification). The same
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ot accurately predicted by either model. These u
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spatial location of a particular development event, even
one as spatially huge as these hotspots. Secondly, the
failure of both models could also be attributed to the
lack of the relevant explanatory variables in the training
dataset. As these large development decisions are sin-
gular events, they will generally be more idiosyncratic
than a collection of independent smaller development
projects, and may require different explanatory vari-
ables than smaller deforestation events.

Our results suggest that a relatively simple, spatially
heterogeneous model can outperform a relatively sim-
ple, spatially homogeneous model. While our results
strictly only speak to a comparison between GLM and
CART models, we believe that the general principle
will hold in many cases of land-use change modeling.
We recognize that spatially heterogeneous models of
land-cover change will not (and should not) replace
other modeling techniques that have a proven ability
to address other issues in landscape modeling, espe-
cially models that aim to be more mechanistic. Never-
theless, it appears that, for our case study, accounting
for spatial heterogeneity in the rules of development is
important, and could arguably be more important than
accounting for other variation in the agents of develop-
ment (i.e., the different preference functions sometimes
used in agent-based models). We believe, therefore,
that models that explicitly quantify and explore spa-
tial heterogeneity in the rules of land-cover and land-
use change are a useful supplement to more traditional
models.
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change modeling if spatial heterogeneity is utilized,
and highlight the overall importance of spatially het-
erogeneous processes in landscape change. Moreover,
our results suggest that the consequence of ignoring
spatial heterogeneity in the rules of land-use and land-
cover change is a form of ‘averaging’ in the model out-
put, where the probability of change is over-predicted
in most locations and under-predicted in hotspots of
development.
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