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Summary

1. Network analysis is a useful approach for investigating complex and relational data in many fields including

ecology, molecular and evolutionary biology.

2. Here, we introduceenaR , an R package for EcosystemNetworkAnalysis (ENA). ENA is an analytical tool

set rooted in ecosystem ecology with over 30 years of development that examines the structure and dynamics of

matter and energymovement between discrete ecological compartments (e.g. a foodweb).

3. In addition to describing the primary functionality of the package, we highlight several features including a

library of 100 empirical ecosystem models, the ability to analyse and compare multiple models simultaneously,

and connections to other ecological network analysis tools in R.

Key-words: network analysis, ecosystem, open-source software, network environ analysis, ascen-

dency, input–output analysis, foodweb, Ecopath, NETWRK,WAND

Introduction

Network ecology – the study of ecological systems using net-

work models and analyses to characterize their structure, func-

tion and evolution – is a large and rapidly growing area of

ecology (Proulx, Promislow & Phillips 2005). For example,

Ings et al. (2009) discovered that a notable fraction of 2008

publications in 11 select journals were related to food webs

(�2�4%), mutualistic networks (�0�9%) and host-parasitoid

networks (�0�06%). Likewise, Borrett, Moody & Edelmann

(2014) found that the percentage of ecology and evolutionary

biology papers indexed byWeb of Science that could be classi-

fied as network ecology increased from 1�3% in 1991 to more

than 5% in 2012. This rise of network ecology contributes to,

mirrors and builds on the more general growth of network sci-

ences (Wasserman & Faust 1994; Borgatti & Foster 2003;

Newman 2003; Freeman 2004; Barab�asi 2012).

EcosystemNetwork Analysis (ENA) is a branch of network

ecology that has been used to address a range of key ecosystem

questions (Ulanowicz 1986; Fath & Patten 1999; Borrett,

Christian &Ulanowicz 2012). For example, in the food web of

Big Cypress National Preserve (Florida, USA), Bondavalli &

Ulanowicz (1999) found evidence of an indirect mutualism

between the American alligator and some of its prey items.

Applications of ENA have also lead to new insights into the

classic trophic questions of ‘What limits food-chain length?’

(Ulanowicz, Holt & Barfield 2014) and ‘Are food webs modu-

lar?’ (Krause 2004; Allesina, Bodini & Bondavalli 2005; Bor-

rett, Fath & Patten 2007). Hines et al. (2012) used ENA to

quantify the relative importance of coupling between biogeo-

chemical processes (e.g. nitrification) in the Cape Fear River

estuary sedimentary nitrogen cycle. Further, scientists have

used ENA to investigate differences in urban sustainability

(Bodini & Bondavalli 2002; Zhang et al. 2010; Bodini, Bon-

davalli & Allesina 2012; Chen & Chen 2012). Collectively, this

work consistently shows the power of a transactional network

to generate unexpected ecological relationships that then influ-

ence the system function and evolution (Patten 1991; Ula-

nowicz 1997; Jørgensen et al. 2007).

enaR is an open-source software to facilitate ENA. The

currently available ENA software packages (Ulanowicz & Kay

1991; Allesina & Bondavalli 2004; Christensen & Walters

2004; Fath & Borrett 2006; Kazanci 2007) each have critical

limitations, which led us to three primary design objectives for

enaR. The first objective was to collect the major ENA func-

tions into a single software package. While multiple investiga-

tors have contributed to algorithmic development (e.g. Finn

1976; Ulanowicz 1986; Ulanowicz & Kay 1991; Fath & Patten

1999; Allesina & Bondavalli 2003), the broad set of tools is not

available in a single existing software. The second objective

was to increase the availability and extensibility of the soft-

ware. We chose to use R in part because of its increasing popu-

larity as an analytical tool in the biological sciences (e.g. Dixon

2003; Metcalf et al. 2012; Revell 2012). Further, users can

freely download a stable version of the package from the

CRAN website (http://cran.r-project.org/web/packages/

enaR), and the code for every function in R is available from

within R (e.g. edit(function_name)). In addition,
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enaR development is being managed via GitHub (https://

github.com/TheSeeLab/enaR) to encourage collaborative

development. The third design objective was to enable enaR
users access to network analysis tools from other disciplines.

To enable this,enaR was designed to work directly with two

existing R network analysis packages: network (Butts

2008a) and sna (Butts 2008b). In summary, the aim of the

enaR package is to make ENA tools more available and eas-

ier to use, adapt and extend.

In this paper, we present an overview of enaR and high-

light some of its functionality. A full description of the ENA

algorithms and their use and interpretation is beyond the scope

of this short paper, but we refer interested readers to a selection

of reviews as an entry point to ENA (Ulanowicz 1997; Fath &

Patten 1999; Fath & Borrett 2006; Jørgensen et al. 2007; Sch-

ramski, Kazanci & Tollner 2011). For a more comprehensive

description on how to use the enaR package, please refer to

the package vignette: http://cran.r-project.org/web/packages/

enaR/vignettes/enaR-vignette.pdf.

Overviewof enaR

Ecosystem Network Analysis is an agglomeration of algo-

rithms developed to analyse network models of energy or

matter movement in ecosystems (e.g. Hannon 1973; Ula-

nowicz 1986; Fath & Patten 1999), but it can generally be

applied to any Input–Output system that follows a thermody-

namically conserved unit among the compartments. Thus, it

is a family of related algorithms to analyse the ecosystem

from several perspectives including its structure, flow, storage

and utility. Together, these analyses function as a ‘macro-

scope’ to investigate (i) whole system organization, (ii) the

direct and indirect effects among system components and (iii)

the processes that create and sustain ecological systems. In

this section, we provide an overview of the algorithms and

tools included in the enaR software. After describing the

required model information, we highlight the primary ENA

algorithms included in enaR. We then walk through an

example application of the enaR flow analysis.

DATA REQUIREMENTS AND INPUT

Ecosystem Network Analysis is a data-intensive methodology.

The system is modelled as a set of compartments or network

nodes that represent species, species complexes (i.e. trophic

guilds or functional groups) or non-living components of the

system in which energy or matter is stored. These nodes are

connected by a set of direct energy or matter transactions

among the nodes, termed directed edges or links. These models

also have energy–matter inputs into the system and output

losses from the system. In summary, the full set of data required

includes: (i) internal flows, (ii) boundary inputs, (iii) boundary

exports, (iv) boundary respiration, (v) boundary outputs, which

may be the sum of exports and respiration, (vi) biomass or stor-

age values and (vii) designation of living status of each node.

While all seven elements are required for a full analysis, the spe-

cific data requirements vary among the ENAalgorithms.

The primary ENA algorithms in enaR assume the model

data are presented as an R network data object defined in the

network package. Given the data elements, users can use

the pack function to combine the data elements into the R

network data object. While a standard data format for an ENA

model does not yet exist, there are two commonly used for-

mats. First, there is the Scientific Committee for Ocean

Research (SCOR) format that is the required input to NET-

WRK (Ulanowicz & Kay 1991), and the second format is the

Excel sheet formatted data that is the input to WAND (Allesi-

na & Bondavalli 2004). The enaR package includes a

read.scor and a read.wand function to read in

these common data formats (Table 1).

VISUALIZAT ION

Visualization of network models can be an essential analytical

tool (Moody, McFarland & Bender-deMoll 2005; Lima 2011).

Because enaR is built specifically to use the network
package and data type, it is possible to quickly create network

plots of themodel internal structure. Figure 1a shows an exam-

ple visualization of Dame & Patten (1981) oyster reef ecosys-

tem model. The network package includes three network

layout algorithms: circle, Fruchterman–Reingold andKamad-

a–Kawai. The Fruchterman–Reingold algorithm used here is

the default. The R script to generate this visualization is

included in the online supplementary information (Data S1).

ALGORITHM OVERVIEW

enaR includes many of the most commonly used ENA algo-

rithms (Table 2), along with a number of work flow tools and

specialty analyses (Tables 1 and 3). The nine primary ENA func-

tions begin with the prefix ‘ena’ followed by the specific analy-

sis name (see Table 2). There are a total of 34 functions in the

enaR package. Comparison of the enaR package to previ-

ous implementations of ENA algorithms (i.e. NETWRK,

NEA.m, EcoNet) shows high agreement in function output

and significant expansion of the available ENA algorithms

(Table S1).

Scharler & Fath (2009) identify two schools of ENA. The

first school is based on the work of Robert Ulanowicz and col-

leagues at the University ofMaryland (Ulanowicz, 1986, 1997,

2009). Primarily focused on trophic ecology, this approach

uses information theory and the ascendency concept to charac-

terize ecosystem growth and development (Ulanowicz, 1986,

1997). This work is often referred to as ‘Ecological Network

Analysis’ as it predates many other types of network ecology.

The second school is based on the work of Bernard Patten at

the University of Georgia (Patten et al. 1976; Matis & Patten

1981; Patten 1982; Fath & Patten 1999). Steeped in dynamic

equations, simulations and systems analysis, this approach

developed around the environ concept that formalizes the con-

cept of environment (Patten 1978) and has often been referred

to as ‘Network Environ Analysis’. enaR currently captures

all of the Patten School algorithms previously implemented in

NEA.m (Fath & Borrett 2006). Presently, the Ulanowicz
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School algorithms are more limited, including the ascendency

calculations (Ulanowicz 1997) and mixed trophic impacts

analyses (Ulanowicz & Puccia 1990); however, we expect the

package capabilities to continue to grow, especially with the

assistance of new users. This combination of the Patten andU-

lanowicz schools of analyses is rare in existing software.

EXAMPLE APPLICATION

Given a network model, applying ENA algorithms with

enaR is straightforward. We demonstrate how to use the

package with an example flow analysis on Dame & Patten

(1981) model of energy flow in an oyster reef ecosystem. Figure

2 shows the example script. The analysis involves: (i) loading

the model data, (ii) checking and balancing the model if neces-

sary and (iii) inputting the balanced model into the analysis

function. The final step is interpreting the analytical output.

This is a typical workflow for ENA.

After loading the enaR package, the next step is to enter

the model data. Here, we extract the model information from

the paper and create a vector of node names, the flow matrix

(F), inputs (z), outputs (y) and the logical vector indicating

whether or not the nodes are living (Fig. 2). We then use the

pack function to create the required network data object.

The next step is to apply the ssCheck function ensure that

the model is at steady state, which is one of the assumptions of

the flow analysis (Finn 1976; Fath & Borrett 2006). If the

model had not been at steady state, we could have then applied

one of four automated balancing algorithms (AVG, Input–

Output, Output–Input, AVG2; Allesina & Bondavalli 2003) to

force the model into a steady state. We then apply the ena-
Flow function to themodel to perform the desired ENAflow

analysis. As shown with the attributes function, this

analysis returns 4 matrices (G, GP, N, NP) and two vectors

(throughflow, T, and a vector of 20 whole-network statistics,

ns).

Interpreting the ENA results is the final challenge. Here, we

provide a few illustrative interpretations of the flow analysis.

Starting with the whole-network flow statistics, we see that the

total system throughflow (TST) of the oyster reef model is

Table 1. Selected data input, management and export functions inenaR

Function Description Example Reference

pack This function lets users combinemodel elements into a network data object None

unpack Extracts the individual model elements (e.g. flows, inputs, outputs) from the

network data object

None

read.scor Creates a network data object from a SCOR formatted data file Ulanowicz &Kay (1991)

read.wand Creates a network data object from aWAND formatted data file Allesina&Bondavalli (2004)

ssCheck Checks to see if themodel is at steady state None

balance Applies one of four balancing algorithms to amodel not at steady state Allesina&Bondavalli (2003)

force.balance Runs balancing algorithm asmany times as necessary to balance themodel None

write.nea Writes themodel data to the file format used as input forNEA.m Fath&Borrett (2006)
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(a) (b)

(c)
(d)Fig. 1. Example of analysis and visualizations

created with enaR: (a) network digraph of

the internal flows of an oyster reef ecosystem

model (Dame & Patten 1981), (b) network

homogenization statistic for 56 trophic ecosys-

tem models (rank-ordered), (c) scatter plot

showing the relationship between the ascen-

dency-to-capacity ratio and the indirect flow

index for the 56 trophic ecosystem models

included in the package and (d) target plot of

the betweenness centrality from social net-

work analysis calculated for the 36 nodes of

the Chesapeake Bay ecosystem model (Baird

&Ulanowicz 1989).
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83�6 Kcalm�2 d�1. TST is ameasure of the total activity of the

system, which is often referred to as the size or power of the

system. The Finn Cycling Index (FCI) indicates that 11% of

this activity was generated by recycling. Further, the average

path length (APL = 2�02) shows that an average input passes

over two paths before exiting the system, and the ratio of indi-

rect to direct flows (ID.F = 1�58) indicates that the indirect

flow exceeds the direct flow in this system. Together, these

whole-network indicators show the importance of indirect

interactions in the system. A next analytical step might be to

apply the utility or mixed trophic impacts analyses to deter-

mine the net relationships among the ecosystem components

when we consider the direct and indirect interactions, but this

is beyond our analysis here.More detailed guidance for how to

interpret ENA results can be found in previously published liter-

ature (Fath & Borrett 2006; Jørgensen et al. 2007; Schramski,

Kazanci &Tollner 2011).

Value added features

There are several features of the enaR package beyond the

core analyses that add substantive value for users. In this

section, we highlight several of these features including a

library of 100 ecosystem network models, methods for con-

ducting batch analysis (i.e. simultaneous analysis of multiple

models) and connections to other analytical software.

MODEL LIBRARY

To facilitate new systems ecology and network science, we

included a library of 100 previously published ecosystem net-

work models with the enaR package. These models each

trace a thermodynamically conserved unit (e.g. C, N, P)

through a particular ecosystem. The models in this set are

empirically based in that the authors attempted to model a

specific system and parameterized the model to some degree

with empirical estimates. While the library includes models

used previously to test several systems ecology hypotheses

(Borrett & Salas 2010; Borrett, Whipple & Patten 2010; Salas

& Borrett 2011; Borrett 2013), and the set has a 47% overlap

with the set of models previously collected by Dr. Ulanowicz

(http://www.cbl.umces.edu/∼ulan/ntwk/network.html), the

full set has not previously been collected and distributed

together.

Table 2. EcosystemNetworkAnalysis functions inenaR

Function Description Example Reference

enaStructure ENAStructural analysis returns the adjacencymatrix andmultiple common descriptive statistics

(e.g. number of nodes, connectance, pathway proliferation rate)

Borrett, Fath&

Patten (2007)

enaFlow Calculates node throughflow and input- and output-oriented direct and integral flow intensity

matrices. It also returnsmultiple whole-network descriptive statistics including total system

throughflow, FinnCycling Index, and average path length

Finn (1976)

enaAscendency Performs ascendency analysis on themodel flows and returns whole-network statistics including

the averagemutual information, ascendency, capacity and overhead

Ulanowicz (1997)

enaStorage ENAStorage analysis considers how themodel fluxes generate the node storage (e.g. biomass) in

the system. This function returns the input- and output-oriented direct and integral storage

matrices

Matis & Patten (1981)

enaUtility ENAUtility analysis investigates the direct relationships among the network nodes as well

as the integral relationships when all of the indirect interactions are also considered

Patten (1991)

enaMTI Mixed trophic impacts assesses the net relationships among species in a foodweb Ulanowicz &

Puccia (1990)

enaControl Control analysis determines the relative control one node exerts on another through the

transaction network

Dame&Patten (1981)

enaEnviron Returns the n unit and n realized input and output environs of themodel Patten (1978)

Table 3. SelectedenaR auxiliary functions and analyses

Function Description Example Reference

SpecialtyAnalyses

enaAll Runs all of the primary ENAalgorithms None

get.ns Returns the whole-network statistics from enaStructure, enaFlow,

enaAscendency, enaStorage and enaUtility

None

eigenCentrality Calculates the average eigenvalue centrality for any inputmatrix Fann&Borrett (2012)

environCentrality Returns the input, output and average environ centralities for amatrix Fann&Borrett (2012)

TET Returns the total environ throughflows Whipple et al. (2007)

TES Returns the total environ storages Matis & Patten (1981)

Auxiliary Functions

get.orient Determine the orientation of the results (row-to-column vs. School) None

set.orient Set the orientation of the results (row-to-column vs. School) None

mExp This function lets users calculatematrix exponents None

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution
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We tentatively split these models into two classes. The most

abundant class is the trophic network models. These models

tend to have a food web at their core, but also include non-

trophic fluxes generated by processes like death and excretion.

The annual carbon fluxmodel for the mesohaline region of the

Chesapeake Bay is a typical example (Baird & Ulanowicz

1989). The second class of models focuses on biogeochemical

cycling. In contrast to the trophic networks, the biogeochemi-

cal cycling models tend to have more highly aggregated nodes

(more species grouped into a compartment), include more abi-

otic nodes that could represent chemical species (e.g. ammonia

in a nitrogen cycle), have a lower dissipation rate, and there-

fore, they tend to have more recycling (Christian et al. 1996;

Borrett, Whipple & Patten 2010). Christian & Thomas (2003)

models of nitrogen cycling in theNeuseRiver Estuary are good

examples of the class. The package vignette has a full listing of

the models included along with references to their original

publications (Lau, Borrett &Hines 2013).

BATCH ANALYSIS

Advances in ecosystem ecology have been made by comparing

network metrics across multiple ecosystem models. For exam-

ple, Christensen (1995) applied ENA to identify and compare

the maturity of 41 ecosystem models, and van Oevelen et al.

(2011) compared the organicmatter processing of foodwebs in

three sections of the Nazar�e submarine canyon. The enaR
tool simplifies the work flow for these types of comparison.

Given a list of models like the model library, it is possible to

quickly analyse multiple models using R’s lapply function

(see help(’lapply’)). This facilitates the kind of comparative

network analysis often of interest to ecologists (Monaco &

Ulanowicz 1997; Christian et al. 2005;Whipple et al. 2007).

Batch analysis can be used in several additional ways. One

application is for meta-analyses, such as tests of the generality

of hypothesized ecosystem properties like network non-locality

(Salas & Borrett 2011), or to investigate how physical features

might influence ENA results (Niquil et al. 2012). Figure 1b illus-

trates the rank-ordered network homogenization statistic for

the 56 trophic-based ecosystem models in the library. The

homogenization statistic is greater than one in all of thesemod-

els indicating that the network of indirect interactions tend to

more uniformly distribute the resources than is obvious from

the direct interactions, which extends previous results of Bor-

rett & Salas (2010) to include several new models. A second

kind of application is the exploration of new ENA interrelation-

ships.With the collection of algorithms and the library ofmod-

els, we can now investigate possible relationships among ENA

indicators from different schools (Fig. 1c). The R script to

generate Fig. 1 is available as an online enhancement (Data

Fig. 2. Example code for applying enaR
flow analysis to Dame & Patten (1981) oyster

reefmodel.
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S1). A third application of batch analysis is to investigate the

previously unknown empirical ranges of ENA whole-network

statistics, which may be useful for interpreting results from

specific applications. Fig. 3 shows the observed distribution of

values for selected network statistics from the 100 models in

the library easily analysed usinglapply and the associated

enaR functions.

NEW CONNECTIONS

A third advantage of the enaR package design is that it

enables network ecologists easier access to other network tools

and analyses thatmight be useful. TheenaR package uses the

R network data structure defined in the network package

(Butts 2008a). This means that network ecologists using

enaR can also use the network manipulation functions and

visualization features of thenetwork package. Further, the

R Social Network Analysis (SNA) package, sna, (Butts

2008b) also uses this network data object. This means that net-

work ecologists can applymany of the SNAalgorithms directly

to their ecological network models. Fig. 1d illustrates applying

the betweenness centrality function to the Chesapeake Bay tro-

phic model (Baird & Ulanowicz 1989) and visualizing the

results using a target centrality plot (Brandes, Kenis &Wagner

2003). This analysis highlights the central role of Sedimentary

Particulate Carbon and bacteria in the Sediment Particulate

Organic Carbon (POC) in the carbon flux of the estuary.

In addition, enaR can be a starting point for ecosys-

tem network ecologists to use other R network tools. For

example, the iGraph package provides functions to

apply classic graph theory (Csardi & Nepusz 2006). The

limSolve package provides capabilities to infer net-

work model fluxes from empirical data by linear inverse

modelling (Soetaert et al. 2009), which can also be used

for uncertainty analyses of ENA (Kones et al. 2009).

There are a wealth of additional R package that network

ecologists may find useful including bipartite (Dor-

mann, Gruber & Fr€und 2008), vegan (Dixon 2003),

Cheddar (Hudson et al. 2013) and packages in the

statnet family (Handcock et al. 2008).

Conclusion and future development

The enaR package encodes exiting ENA algorithms and is

designed to address limitations of current ENA software and

facilitate wider use and development. It does this by (i) provid-

ing greater accessibility to the code (e.g. free and open-source

software available onmultiple OS), (ii) collecting a broad set of

available ENA algorithms and workflow management func-

tions and (iii) creating the potential for collaborative develop-

ment (via GitHub and CRAN). Further, the software is

extensible for individual needs and it lets users integrate ENA

into a broader workflow in R in a way that is more challenging

when using web based tools like EcoNet (Kazanci 2007; Sch-

n 4 125 15 26·66 1·02

Statistic Min Max Median Mean CVDistribution

C 0·05 0·45 0·22 0·25 0·51

LD 1 16·91 3·14 4·58 0·89

lam1A 0 14·17 3·27 4·27 0·76

FCI 0 0·98 0·26 0·38 0·86

APL 1·37 186·25 3·67 20 1·91

IFI 0·04 0·99 0·53 0·56 0·52

HMG.O 1·04 13·07 1·78 2·3 0·83

AMP.O 0 323 6·5 19·77 1·91

AMI 1 2·25 1·57 1·58 0·21

ASC.CAP 0·25 0·75 0·39 0·42 0·28

synergism.F 2·41 60·51 3·95 5·69 1·1

mutualism.F 0·6 4 1·16 1·43 0·5

Fig. 3. Distributions of selected ENAnetwork

statistics from the 100 empirically based eco-

system models included inenaR. The results
are summarized using a histogram showing

the distribution of the values of each network

statistic between the observed minimum and

maximumvalues. Themedian,mean and coef-

ficient of variation (ratio of standard deviation

and mean) values are also reported. The net-

work statistics are the number of nodes (n),

the connectance (C = L n�2), link density

(LD = L n�1), pathway proliferation rate

(lam1A), Finn Cycling Index (FCI), average

path length (APL), indirect flow intensity

(IFI), output-oriented network homogeniza-

tion ratio (HMG.O), output-oriented network

amplification ratio (AMP.O), average mutual

information (AMI), the ascendency-to-capac-

ity ratio (ASC.CAP), flow-based network syn-

ergism (synergism.F) and mutualism

(mutualism.F).
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ramski, Kazanci & Tollner 2011). Finally, it lets users have

access to other network and statistical analysis tools (e.g. social

network analysis) that are already part of R. These benefits

come at the cost of having a steeper learning curve (e.g. users

must know R), which may make enaR more suited to

advanced practitioners.

In the near future, we anticipate two initial lines of contin-

ued development for the enaR package. The first is to

increase the connections between the enaR package and

other modelling and analytical tools. For example, we are cur-

rently working with colleagues to enable users of Ecopath with

Ecosim (Christensen&Walters 2004) to apply theenaR tools

in a seamless way.We are also developing functions to connect

between enaR and the R limSolve package (Soetaert et al.

2009) for creating models using linear inverse modelling and to

enable uncertainty analysis (Kones et al. 2009). The second

line of development is to extend the package’s capabilities.

While it currently contains most of the many commonly used

ENA algorithms used by ecologists, it is far from complete.

For example, Ulanowicz (1983) decomposition of cycles is not

yet included nor is his construction for the Lindeman trophic

spine (Ulanowicz &Kemp 1979). Networkmodel construction

tools, such as least-inferencemethods for buildingmodels from

empirical data (Ulanowicz & Scharler 2008), and Fath (2004)

algorithm for constructing plausible ecosystems models are

also possible enhancements.

In conclusion, enaR is an R package intended to facilitate

the use and the collaborative development of Ecosystem Net-

work Analysis, a branch of network ecology. This domain is

rapidly growing in part because the tools and techniques let

ecologists address a wide range of relational questions at the

core of ecology. We look forward to seeing new ecological

discoveriesmade through the use ofenaR.
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