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Abstract 26 

 27 

Digital repeat photography is becoming widely used for near surface remote sensing of 28 

vegetation. Canopy greenness, which has been used extensively for phenological applications, 29 

can be readily quantified from camera images. Important questions remain, however, as to 30 

whether the observed changes in canopy greenness are directly related to changes in leaf-level 31 

traits, changes in canopy structure, or some combination thereof. 32 

 33 

We investigated relationships between canopy greenness and various metrics of canopy structure 34 

and function, using five years (2008-2012) of automated digital imagery, ground observations of 35 

phenological transitions, leaf area index (LAI) measurements, and eddy-covariance estimates of 36 

gross ecosystem photosynthesis from the Harvard Forest, a temperate deciduous forest in the 37 

northeastern USA. Additionally, we sampled canopy sunlit leaves on a weekly basis throughout 38 

the growing season of 2011. We measured physiological and morphological traits including leaf 39 

size, mass (wet/dry), nitrogen content, chlorophyll fluorescence, and spectral reflectance, and 40 

characterized individual leaf color with flatbed scanner imagery. 41 

 42 

Our results show that observed spring and autumn phenological transition dates are well captured 43 

by information extracted from digital repeat photography. However, spring development of both 44 

LAI and the measured physiological and morphological traits are shown to lag behind spring 45 

increases in canopy greenness, which rises very quickly to its maximum value before leaves are 46 

even half their final size. Based on the hypothesis that changes in canopy greenness represent the 47 

aggregate effect of changes in both leaf-level properties (specifically, leaf color) and changes in 48 
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canopy structure (specifically, LAI), we developed a two end-member mixing model. With just a 49 

single free parameter, the model was able to reproduce the observed seasonal trajectory of 50 

canopy greenness. This analysis shows that canopy greenness is relatively insensitive to changes 51 

in LAI at high LAI levels, which we further demonstrate by assessing the impact of an ice-storm 52 

on both LAI and canopy greenness.  53 

 Our study provides new insights into the mechanisms driving seasonal changes in canopy 54 

greenness retrieved from digital camera imagery. The nonlinear relationship between canopy 55 

greenness and canopy LAI has important implications both for phenological research 56 

applications and for assessing responses of vegetation to disturbances. 57 

 58 

Keywords: near surface remote sensing, digital repeat photography, deciduous forest phenology, 59 

carbon cycling, green chromatic coordinate, PhenoCam, MODIS, ice-storm, greendown 60 

 61 

 62 

63 
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Introduction 64 

 65 

Photosynthesis by terrestrial vegetation represents the primary means by which carbon dioxide 66 

(CO2) is removed from the atmosphere. Vegetation structure and function typically varies 67 

seasonally, controlled in part by the onset and rate of leaf growth and senescence (Lieth 1974). 68 

Such phenological cycles respond directly to climate, serving as indicators of the potential 69 

impacts of climate change (Solomon et al. 2007), and generate feedbacks to the climate system 70 

(Peñuelas et al. 2009, Richardson et al. 2013a). It is therefore important to develop systems 71 

capable of monitoring phenology and the physiological state and function of terrestrial 72 

vegetation. 73 

 74 

Phenology has been an area of active interest for centuries. Observer based records primarily 75 

focused on the timing of bud-burst and flowering, and are now used to quantify long-term 76 

responses of these events to climate change (Aono and Kazui 2008, Thompson and Clark 2008). 77 

In recent decades, ground based techniques (e.g. Smolander and Stenberg 1996, Barr et al. 2004) 78 

have been developed that allow seasonal changes in canopy leaf area to be tracked using site-79 

specific observations made at discrete time intervals. The development of satellite remote 80 

sensing not only allows phenological dates to be estimated on a global scale (e.g. Zhang et al. 81 

2006), but also supports studies examining large-scale temporal changes in vegetation indices 82 

(e.g. Xu et al. 2013). Such global land surface phenology approaches, however, are limited by 83 

the coarse temporal and spatial scale of remote sensing data sets, and by the lack of adequate 84 

ground validation data (White et al. 2009, Hufkens et al. 2012a). 85 

 86 
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Automated near surface remote sensing techniques have recently been developed as a bridge 87 

between ground-based manual observations and satellite remote sensing products (Richardson et 88 

al. 2013b). To accomplish this, imaging sensors or radiometric instruments are mounted above 89 

the canopy to record optical properties of canopy reflectance at a high temporal resolution. Off-90 

the-shelf digital cameras are being increasingly used in this manner as an inexpensive, automated 91 

means by which to quantify temporal changes in canopy optical properties (e.g., Sonnentag et al. 92 

2012). In particular, separate extraction of brightness levels for red, green and blue (RGB) color 93 

channels from camera images allows indices to be calculated that describe changes in ‘canopy 94 

greenness’ over time. 95  96 

The expanding digital image archive (e.g., the PhenoCam network, http://phenocam.sr.unh.edu/) 97 

has been widely used to study temporal changes in vegetation canopies. Phenophase transition 98 

dates of leaf emergence and senescence derived from repeat digital imagery have been shown to 99 

parallel the phenology signal inferred from above- and below-canopy radiometric instruments 100 

(Richardson et al. 2007). Technical issues of camera choice and calibration have been examined, 101 

along with issues of scene illumination (Sonnentag et al. 2012). Phenological transition dates 102 

derived from camera imagery have been used to explain temporal changes in surface-atmosphere 103 

CO2 exchange (Ahrends et al. 2008, 2009, Richardson et al. 2009), improve the parameterization 104 

of phenology models (Migliavacca et al. 2011), and have been compared with satellite-based 105 

land surface phenology products (Hufkens et al. 2012a). Encouraged by their demonstrated 106 

effectiveness for canopy monitoring, automated digital cameras have become an integral part of 107 

continental-scale monitoring networks (e.g. the Integrated Carbon Observation System, and the 108 

National Ecological Observatory Network).  109 
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 110 

Although seasonal cycles in canopy coloration are evident from digital repeat photography 111 

(Sonnentag et al. 2012), open questions remain as to how the information extracted from digital 112 

images corresponds to the seasonal development of canopy structure and function. Changes in 113 

foliage related to phenology and ontogeny, (i.e. developmental stage or age) occur in various 114 

aspects of leaf physiology (e.g. leaf color and pigmentation, leaf mass per unit area, water and 115 

nutrient content, photosynthetic capacity, etc.) over the course of the growing season (Ma et al. 116 

2011, McKown et al. 2012). Although canopy greenness is commonly assumed to be a surrogate 117 

for canopy structure and function, the validity of such assumptions remains untested. For 118 

example, in time series of deciduous forest canopy greenness, a pronounced “spike” often marks 119 

the end of the rapid phase of spring green-up, preceding a gradual decline in greenness over the 120 

course of the summer. Although related to phenology, the mechanisms – physiological, 121 

morphological, or structural – directly responsible for the seasonal dynamics in canopy 122 

greenness have yet to be identified. 123 

 124 

In the present study, we explore relationships among seasonal changes in canopy greenness, 125 

measured using digital repeat photography, seasonal changes in canopy structure, and the 126 

physiological and morphological traits of individual leaves. Specifically, we assess the 127 

relationship between camera-derived canopy greenness and measurements of both canopy- and 128 

leaf-level traits for five years (2008-2012) at Harvard Forest, a temperate deciduous forest in the 129 

northeastern US. We first assess seasonal cycles and interannual variability of camera-derived 130 

greenness (and the related phenological transitions) using ground observations of phenology, leaf 131 

area index, and eddy-covariance CO2 flux measurements. We then use physiological and 132 
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morphological measurements on individual leaves to understand the mechanisms driving the 133 

seasonality of canopy greenness. Our goal is to identify when, and under what circumstances, 134 

information derived from digital repeat photography can be used to draw inferences about 135 

seasonal changes in leaf- and canopy-level traits related to structure and function. 136 

 137 

 138 

139 
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Materials and Methods 140 

 141 

Study site 142 

The study was conducted at the Harvard Forest Environmental Measurement Site (EMS, 143 

42.5378°N, 72.1715°W), located in central Massachusetts, U.S. The site is a temperate forest 144 

dominated by hardwoods including: red oak (Quercus rubra, 36% basal area) and red maple 145 

(Acer rubrum, 22% basal area), with other hardwoods such as yellow birch (Betula 146 

alleghaniensis) also present. The site has annual mean precipitation of 110 cm, distributed fairly 147 

evenly throughout the year, and a mean annual temperature of 7.1 °C.  148 

 149 

Digital camera settings, image acquisition and analysis 150 

Canopy images were collected using an automated and networked digital camera (StarDot 151 

Netcam SC 1.3 MP) mounted on top of a tower 30 m above the surface, with an oblique viewing 152 

angle (20° from horizontal) across the canopy. Minimally compressed JPEG images from the 153 

digital camera were taken at regular intervals (every 30 min between 04:00 and 21:30 local 154 

time), transferred via file transfer protocol (FTP) and stored on the server of the PhenoCam 155 

network (http://phenocam.sr.unh.edu). Automatic white balancing was turned off on the camera 156 

unit to minimize day-to-day variability (Richardson et al., 2007; Richardson et al., 2009). 157 

Aperture size was fixed but the exposure time was adjusted in response to changing light levels. 158 

Canopy greenness was quantified using the green chromatic coordinate (Gcc), which uses red (R), 159 

green (G) and blue (B) digital numbers to calculate the ratio of green within the image 160 

(Gcc=G/(R+G+B)). Gcc was calculated using the PhenoCam Image Processor V1.0 (available for 161 

download: http://phenocam.sr.unh.edu/webcam/tools/). This software tool allows a region of 162 
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interest within the camera field of view to be specified and calculates Gcc based on the method 163 

described by Sonnentag et al. (2012). Phenophase transition dates for spring bud-burst, 164 

maximum greenness, and leaf senescence were estimated using two different approaches: A 165 

curve fitting method (Elmore et al., 2012), and a simple threshold crossing approach. For the 166 

threshold crossing approach, spring and fall transition dates were identified as the point at which 167 

the three-day running mean crossed a threshold value. We used 33% of the annual amplitude as 168 

the threshold for both spring and autumn transition points. For the curve-fitting approach 169 

(Elmore et al. 2012), transition dates were extracted from curve fits by numerically calculating 170 

the dates of extrema in the curvature change rate, following the approach used in the MODIS 171 

phenology product (Zhang et al. 2003). Uncertainty in the extracted transition dates was 172 

estimated using 1000 Monte Carlo samples based on the covariance matrix of parameter 173 

estimates. Five years (2008-2012) of continuous camera imagery were used. 174 

 175 

Canopy structure 176 

Leaf area index (LAI) measurements (Li-Cor LAI-2000) were made weekly during the growing 177 

season for 5 years (2008-2012) at 40 plots, established in 1993 using a stratified-random position 178 

along eight 500 m transects, running SW and NW from the EMS tower along the dominant wind 179 

directions (Barford et al. 2001). 180 

 181 

182 
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Ground observations of spring and autumn phenology (bud break, leaf development, leaf 183 

coloration and leaf fall) for the dominant tree species (red oak, n=4 individuals) were made from 184 

2008 to 2012 at three- to-seven day intervals (Richardson and O’Keefe 2009). These 185 

observations were used to identify the dates of bud-burst, proportional leaf size, and leaf 186 

senescence at 50%, 75% and 95% of maximum. 187 

 188 

Top-of-canopy broadband Normalized Difference Vegetation Index (NDVI) estimates were 189 

made based on measurements of reflected radiation at 400–700 and 305–2800 nm, following 190 

Jenkins et al. (2007). Specifically, upwelling and downwelling PAR and solar radiation were 191 

measured at 30-minute intervals using upward and downward pointing Kipp and Zonen CMP 3 192 

thermopile pyranometers and LI-COR (LI190SB-L) quantum radiation sensors on a walk-up 193 

tower located adjacent to the EMS tower.  194 

 195 

To estimate LAI from the radiation measurements, gap fraction (P) was first calculated as P = 196 

Qt/Qo, where Qo is incident solar photosynthetic photon flux density (PPFD) measured above 197 

the canopy and Qt is the PPFD measured below the canopy. Measurements of P were used when 198 

the solar zenith angle was closest to 57° and LAI was calculated for each sample (LAI = -199 

log(P)/K where K = G(57)/ cos(57)). Measurements at 57 degrees were used because at this 200 

point, all leaf inclination distribution functions (G) converge to 0.5. Daily LAI was then 201 

estimated by averaging the two LAI values per day in order to consider foliar clumping effects 202 

(Ryu et al., 2010), and smoothed with a spline function.  203 

 204 
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Satellite based daily canopy reflectance for the period 2000-2011 was measured using the 205 

Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite (MOD09GA). 206 

Reflectance data were screened for clouds (including cirrus and cloud shadows), high viewing 207 

zenith angle (>60°) and low retrieval quality using standard MODIS Quality Assurance data 208 

layers (Vermote et al. 2011). The screened daily reflectance data was then used to calculate the 209 

Normalized Difference Vegetation Index and the Enhanced Vegetation Index (NDVI, EVI; 210 

Huete et al. 2002). 211 

 212 

Leaf inclination angles of red oak were estimated at monthly intervals in 2011 using the leveled-213 

digital camera approach proposed and evaluated by Ryu et al. (2010) and Pisek et al. (2011), 214 

respectively. In brief, leveled digital images were taken with a Pentax K100D digital single-lens 215 

reflex camera along vertical tree profiles at 2 m height intervals (Pisek et al. 2013). Leaf 216 

inclination angles were estimated using the public domain image processing software ImageJ 217 

(http://rsbweb.nih.gov/ij/) as outlined in Pisek et al. (2013). 218 

 219 

Gross canopy daily ecosystem photosynthesis (GEP) was estimated for 4 years (2008-2011) 220 

using eddy-covariance measurements of net ecosystem CO2 exchange (Urbanski et al. 2007; 221 

Keenan et al., 2012). GEP was calculated on an hourly basis as the difference between ecosystem 222 

respiration and net ecosystem carbon uptake, and integrated to daily sums. 223 

 224 

Leaf physiological and morphological traits 225 

Leaf samples were collected from upper-level canopy leaves of three dominant red oak (Quercus 226 

rubra) trees surrounding a walk-up tower adjacent to the EMS instrument tower for the entire 227 
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2011 growing season. Each sample consisted of five, non-damaged sunlit leaves collected from 228 

one branch of each tree. Samples were collected every 3-4 days for the first month following 229 

bud-burst, then once per week until leaf abscission in mid-November. All measurements were 230 

made directly after sampling, following a period of dark-adaptation (30 minutes) (Richardson 231 

and Berlyn 2002). 232 

 233 

Spectral measurements of leaf reflectance and transmittance were made using an ASD FieldSpec 234 

3 portable spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA). The spectrometer 235 

was connected to a 5 cm, three-port integrating sphere and a 10 W hemispheric collimated light 236 

source. The sphere had an 8° near-normal incidence port, meaning that reflectance measurements 237 

included spectral and diffuse components. The manufacturer’s RS3 software (Analytical Spectral 238 

Devices Inc.) was used to control the spectrometer. The spectral range measured was 350–2500 239 

nm at 1nm increments. Each recorded spectral measurement consisted of 50 individual scans. A 240 

white Spectralon reference standard was taken for calibration for each leaf measured. Raw 241 

spectral data was processed using ViewSpecPro (Analytical Spectral Devices Inc.). Spectral 242 

measurements were made from day-of-year 157. Spectral indices (ChlNDI: [R750-243 

R705]/[R750+R705], Gitelson et al. (2006, 2009); PRI: [R531-R570]/[R531+R570], Gamon et 244 

al. (1992, 1997); NDVI: [R750-R675]/[R750+R675], Gamon et al. 1997, Gamon and Surfus 245 

(1999); MTCI (Meris Terrestrial Chlorophyll Index), [R753.75-R708.75]/[R708.75+R681.25], 246 

Dash and Curran, 2004) were calculated from the leaf level reflectance for each measurement. 247 

 248 

Chlorophyll fluorescence measurements were made using a hand-held fluorometer (Opti-249 

sciences, OS-30p). Five readings were taken randomly across each dark-adapted leaf to calculate 250 
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the average measurement for the leaf. Measurements were given as the ratio of variable 251 

fluorescence to maximum fluorescence (Fv/Fm). 252 

 253 

To measure “broadband” reflectance in the red, green and blue wavelengths, each leaf was 254 

scanned using a flat-bed scanner (Epson 3170). A paint sample strip, consisting of varying 255 

shades of green progressing from light to dark, was included in each scan as a reference standard. 256 

The scanned images were analyzed to extract leaf area and leaf color (red, green and blue digital 257 

numbers) (Matlab code available on request). 258 

 259 

Leaf fresh weight was measured the day of collection, after which leaves were placed in manila 260 

coin envelopes in an oven at 60°C for 3-5 days to dry before measuring their dry weight. Leaf 261 

fresh and dry weight, in combination with leaf size, were used to calculate leaf mass per unit area 262 

(LMA) and leaf water content. 263 

 264 

At the end of the growing season, the leaf samples were grouped by week for carbon and 265 

nitrogen analysis. The dried leaves were ground using a mortar and pestle, pouring a small 266 

amount of liquid nitrogen over the sample. The mortar and pestle was cleaned using ethanol 267 

between samples to prevent cross-sample contamination. A 3-5 μg sample from the ground 268 

leaves was then microbalanced. The sample was then put in a capsule in preparation for nitrogen 269 

and carbon analysis. Carbon (C) and nitrogen (N) content were measured by flash-270 

combustion/oxidation using a Thermo Finnigan Flash EA 1112 elemental analyzer (0.06% C and 271 

0.01% N detection limits. We express C, N data in terms of concentration (%, g (100 g dry 272 

matter)-1) and content per unit leaf area (g N cm-2). 273 
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 274 

Linear mixing model 275 

Linear mixing models are useful tools for summarizing changes in observations caused by 276 

differences in the proportional contribution of so-called “end-members” (Adams et al. 1995). For 277 

this analysis we used a mixing model with two end members, to test the hypothesis that seasonal 278 

changes in camera-derived greenness could be explained by a combination of canopy LAI 279 

(controlling the relative contribution of leaf vs. background) and seasonal changes in leaf color. 280 

Because the contribution of both these end members is proportional to the leaf area within the 281 

camera field of view, both were modified by a scaling factor dependent on LAI. More formally, 282 

our model is expressed as:  283 

Gcc (t) = (1− Ft )Gcc
B + FtGcc

L (t)    (1) 284 

where Gcc(t) is the camera derived green chromatic coordinate at time t, Gcc
B
cc
L  is the mean 285 

background (winter) camera derived green chromatic coordinate, Gcc
L
cc(t) is the scanner derived 286 

green chromatic coordinate of individual leaves, and Ft is the fraction of the camera field of view 287 

that contains green leaves. Following Beer’s law, Ft is a nonlinear function of LAI and can be 288 

estimated as Ft = 1-exp(-kLAI(t)), where k is an optimized parameter to account for clumping 289 

and the oblique viewing angle of the camera. k is therefore the only free parameter in the model, 290 

and is optimized by minimizing the root mean square error between the model predictions and 291 

the observed camera Gcc values. 292 

 293 
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Results 294 

 295 

Phenology of greenness, leaf area index and gross primary productivity 296 

The characteristic seasonal cycle of camera-derived Gcc (e.g., Sonnentag et al. 2012) was 297 

observed each year (Fig. 1). Typical characteristics of this cycle include a steep rise and clear 298 

peak in spring, followed by a continuous decline over summer and a steep decline during autumn 299 

to a constant minimum in winter.  Spring LAI followed the steep rise in spring Gcc, although LAI 300 

consistently lagged Gcc (Fig. 1). In contrast to the spring peak and subsequent summer decline of 301 

Gcc, LAI continued to increase after peak Gcc, and did not decline until autumn. On average, 302 

declines in autumn LAI lagged declines in autumn Gcc, reflecting changing leaf color before 303 

actual leaf abscission.  304 

 305 

An ice-storm in December 2008 significantly damaged the canopy at Harvard forest and lead to a 306 

22% reduction in mid-summer LAI in 2009 compared to 2008 (Fig. 1). Mid-summer Gcc was 307 

relatively unaffected by this large decline in LAI, suggesting that Gcc is insensitive to changes in 308 

leaf area at high LAI levels. Mean mid-summer LAI increased steadily each year from 2009 309 

through 2012, and had almost recovered to pre-ice-storm levels within four years. 310 

 311 

Daily GEP was highly correlated with both LAI (R2=0.79, p<0.01) and Gcc (R2=0.76, p<0.01). 312 

As with LAI, increases in spring GEP lagged increases in Gcc. The timing and rate of increase in 313 

spring GEP matched the rate of increase in spring LAI in all years except 2008 (Fig. 1). A late 314 

summer decline in GEP was evident in most years, which did not closely match either Gcc or 315 

LAI. In contrast to previous suggestions that Hue is more correlated to GEP and LAI than Gcc 316 
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(Mizunuma et al. 2013), we found no positive correlation between Hue and GEP (R=-0.2, 317 

p=0.03) or LAI (R=-0.3, p<0.01) at our site. Indeed the seasonal cycle of Hue is critically 318 

dependent on the color balance of the camera (Fig. S1), and is thus unlikely to be suitable for 319 

multi-site applications. 320 

 321 

Phenological transitions 322 

Spring bud-burst and autumn coloration dates obtained from the camera images were positively 323 

correlated with the ground observation. Spring bud-burst dates from ground observations varied 324 

by two weeks over the five years (2008-2012), with the earliest bud-burst on day 116, and the 325 

latest on day 128. Bud-burst dates extracted using a greendown sigmoid model (Elmore et al. 326 

2012) correlated well (R2=0.66, p<0.1) with interannual variability in observed bud-burst dates, 327 

with a mean bias of 3.5 days (Fig. 2a). However, dates extracted from the sigmoid model 328 

exhibited lower variance than the field observations. The Elmore model performed poorly at 329 

predicting late springs (Fig. 2a), giving a slope between observed and predicted that differed 330 

significantly from 1.0. A spring bud-burst Gcc threshold of 0.38 (15% of the mean amplitude; 331 

Fig. 2a), identified dates that were more highly correlated to the field observations (R2=0.95, 332 

p<0.01) than those from the greendown model, suggesting that the sigmoid model approach 333 

could potentially be improved. Peak Gcc, estimated by curve fitting, corresponded to the 334 

previously-mentioned spike in greenness that immediately follows the rapid spring green-up. The 335 

timing of peak Gcc corresponded most closely to 50% leaf size, with leaves not reaching their 336 

maximum size until 2-3 weeks later (Fig. 2b). Autumn dates of maximum coloration were 337 

particularly well captured by the greendown sigmoid model (R2=0.84, p<0.1, Fig. 2c). 338 

 339 
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Phenology of leaf-level traits 340 

The measured physiological and morphological leaf traits showed marked seasonal dynamics. In 341 

particular, chlorophyll fluorescence Fv/Fm, area and mass, nitrogen, carbon and water content, 342 

took roughly 35 days from bud-burst to reach their maximum values (Fig. 3). This phenology of 343 

leaf-level traits was not captured by broadband NDVI, camera Gcc, or the MODIS EVI and 344 

NDVI products (Fig. 3). Each of these metrics reached their maximum about two weeks after 345 

bud-burst, about two weeks before the end of spring leaf elongation. Chlorophyll indices (MTCl, 346 

ChlNDI) calculated from leaf-level spectral reflectance indicate that leaf chlorophyll content 347 

increased throughout most of the summer, with declines becoming apparent around day-of-year 348 

(DOY) 240. In contrast, PRI from the leaf level spectra was relatively constant throughout the 349 

season, declining only at the start of leaf coloration in the autumn (Fig. 3). Leaf angle, previously 350 

hypothesized to be a potential cause of changes in canopy greenness (Sonnentag et al. 2012), was 351 

relatively constant throughout the year in our data. It should be noted that leaf angle 352 

measurements directly after bud-burst were not made. 353 

 354 

Linking phenology of leaf color, canopy structure, and camera Gcc 355 

Sampled leaves were scanned on a flatbed scanner and leaf color information (red, green and 356 

blue digital numbers) was extracted from the resulting images. Early season leaves were bright 357 

yellowish-green, leading to high values of scanner derived Gcc (Fig. 4). Green and red declined 358 

sharply throughout spring (and to a lesser extent through summer) until autumn, when red 359 

increased as leaves changed color before senescing. The blue component of leaves gradually 360 

increased throughout the season. The net effect was a steady decline in leaf level Gcc throughout 361 
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summer, with a sharp decline in autumn (Fig. 4), which paralleled patterns observed in the 362 

camera-derived Gcc. 363 

 364 

To test whether seasonal changes in camera Gcc could be explained by a combination of observed 365 

dormant season canopy color, leaf area index and leaf color we used the linear mixing model 366 

defined by Eq. (1). The model, with one free parameter, accurately reproduced the seasonal cycle 367 

of camera Gcc (R2=0.98, p<0.001), including the dynamics of the spring peak green (Fig. 5). This 368 

shows that camera derived canopy greenness is a combination of leaf color and background 369 

color, with the proportional contribution of each being linearly related to gap fraction. Gap 370 

fraction is a non-linear function of leaf area, compounded by the oblique (rather than nadir) view 371 

angle of the camera. 372 

 373 

Scaling from the leaf to the landscape 374 

We used daily MODIS red, green, blue and near-infrared surface reflectance to calculate daily 375 

MODIS Gcc, EVI and NDVI for the study area. The MODIS Gcc closely matched seasonal 376 

dynamics of EVI, showing the same characteristic decline through the summer, while MODIS 377 

NDVI remained relatively invariant during summer months (Fig. 6a). Peak-green (curve-fit 378 

estimate) from the camera-derived Gcc corresponded to the time at which the MODIS derived 379 

indices reached 50% of their amplitude (Fig. 6a). The sharp inflection point apparent in the 380 

autumn NDVI signal suggests it may be a better-constrained metric for estimating autumn 381 

phenology than EVI or Gcc. 382 

 383 
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Discussion 384 

 385 

We used five years of concurrent digital repeat photography, biometric measurements, and eddy-386 

covariance estimates of gross daily ecosystem photosynthesis to assess the relationship between 387 

information extracted from digital repeat photography, canopy structure, and leaf -level 388 

physiological and morphological tratis. The results show that camera-derived canopy greenness 389 

can effectively identify inter-annual variability in spring bud-burst and autumn senescence. That 390 

said, the rate of increase in spring canopy greenness and the date at which peak green is reached 391 

was not a linear function of LAI. On average, peak green occurred two weeks before maximum 392 

LAI, and spring dynamics in physiological and morphological leaf traits (e.g. maximum leaf 393 

area, chlorophyll fluorescence, leaf mass, nitrogen and carbon content), all lagged the timing of 394 

spring peak green from the camera. 395 

 396 

Previous studies have hypothesized that the well defined “spring peak” in canopy greenness 397 

observed at Harvard Forest (and other deciduous-dominated forest sites) is related to changes in 398 

leaf-level traits (e.g. pigmentation and LMA), changes in canopy structure (i.e. leaf size, shape, 399 

orientation), or some combination thereof (e.g. Sonnentag et al. 2012). We show that the spring 400 

peak in canopy greenness, as derived from camera Gcc, does not correspond to abrupt changes in 401 

any single leaf- or canopy-level trait. Rather, our modeling demonstrates that seasonality of 402 

canopy greenness, including the timing and shape of the spring peak, is driven by simultaneous 403 

changes in both leaf color and canopy structure (i.e. seasonality of leaf area index and gap-404 

fraction). The oblique viewing angle of the camera leads to a higher effective LAI within the 405 

camera field of view (i.e., the camera sees more layers of leaves than it would if images were 406 
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taken looking straight down). For spring, this implies a faster increase in canopy greenness than 407 

actual increases in LAI. The oblique viewing angle of the camera thus facilitates identification of 408 

spring bud-burst dates by enhancing the rate of increase in spring Gcc. On the other hand, the 409 

oblique viewing angle leads to saturation of Gcc at relatively low LAI. During summer, declines 410 

in greenness are shown to be linearly related to leaf ontogeny and aging (Jenkins et al. 2007), 411 

and related changes in leaf structure and pigmentation, which together influence leaf color. The 412 

combined changes demonstrate a strong non-linear relationship between canopy greenness, 413 

canopy structure, and leaf physiology. This also suggests that while it is feasible to back-414 

calculate the seasonality of canopy LAI from a seasonal trajectory of canopy greenness, 415 

knowledge of the concurrent changes in the color of individual leaves is needed to do this 416 

accurately.  417 

 418 

Previous studies (e.g. Hufkens et al. 2012b) indicate that digital camera imagery can be used to 419 

detect the impact of disturbances on vegetation. Our results show that Gcc was insensitive to 420 

substantial interannual changes in maximum leaf area index, which were primarily caused by 421 

damage from a winter ice-storm. Other studies have reported similar difficulty in detecting 422 

events that induce defoliation (Mizunuma et al. 2013). Our analysis resolves this apparent 423 

contradiction in the literature. We show that camera-derived greenness is a saturating, non-linear 424 

function that is driven by developmental changes in leaf color and the affect of leaf area index on 425 

the mixing of leaf color with background color showing through gaps in the canopy. Thus, in 426 

order for a disturbance to be detectable, it must either cause a change in leaf color or sufficient 427 

defoliation to create gaps in the canopy. In our study, for example, Gcc was relatively insensitive 428 

to additional increases in leaf area above LAI ~= 2.5. 429 
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 430 

Based on this result we can identify two classes of disturbance: those that induce leaf color 431 

change and canopy gaps (detectable) and those that lower canopy leaf area index but do not 432 

create additional gaps within the camera field of view (non-detectable for non-catastrophic levels 433 

of leaf loss). For example, the ice-storm in the winter of 2008 that led to a 22% reduction in 434 

maximum LAI was not detectable in camera-derived greenness, as no changes in leaf coloration 435 

were induced and a reduction in LAI of 22% was not sufficient to increase the proportion of gaps 436 

in the camera field of view. In contrast, the disturbance event examined by Hufkens et al. 437 

(2012b) induced leaf coloration before leaf abscission, thus generating a detectable signal in 438 

camera derived greenness. It should be noted, however, that even if leaf coloration is induced, it 439 

is possible that a significant proportion of leaves will fall while still green, producing an 440 

undetectable change in leaf area index. Further, when damaged leaves fall from the canopy, 441 

greenness can increase as previously covered green leaves become visible to the camera. Recent 442 

studies have attributed the recovery of greenness post-disturbance to increased leaf area index 443 

due to leaf re-flushing (e.g. Hufkens et al. 2012b). Studies using digital repeat photography to 444 

characterize the effects of disturbance therefore likely underestimate the true magnitude of the 445 

impact of disturbances in closed canopies. 446 

      447 

Multiple models exist for extracting phenological information from time series of remotely 448 

sensed vegetation indices. Simple thresholds are commonly used (e.g. Richardson et al. 2007), 449 

along with curve-fitting techniques such as logistic fits (e.g., Zhang et al. 2003) and more 450 

complex sigmoidal models (Elmore et al. 2012), among others (e.g., White et al. 2009). The 451 

efficacy of any modeling approach will affect the quality of extracted phenological transition 452 
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dates, yet few studies have assessed how any given approach affects the results obtained (but see, 453 

White et al. 2009, Garrity et al. 2010, Cong et al. 2013). In this analysis we show that a fixed 454 

threshold based approach, is more effective for identifying spring bud-burst dates than a 455 

greendown sigmoid model. While appropriate threshold values depend on camera settings 456 

(Sonnentag et al. 2012), the ecosystem or site in question, and may be sensitive to long-term 457 

sensor degradation (Ide and Oguma 2010), our results indicate that using a threshold crossing 458 

approach to phenological date estimation can be more accurate than curve-fitting approaches. A 459 

detailed comparison of different curve-fitting methods, in combination with simple threshold-460 

based approaches, is needed. 461 

 462 

Because autumn phenophase transition dates are much less well defined than spring counterparts, 463 

they have been studied far less. Error estimates of autumn dates extracted from digital images 464 

using the green-down sigmoid curve-fit approach were typically three times higher than those 465 

extracted for spring as shown by the vertical error bars in Fig. 2. Despite this larger uncertainty, 466 

camera-derived autumn dates corresponded closely to ground-based observations of autumn 467 

transitions. The more pronounced inflection in MODIS NDVI time series compared to MODIS 468 

EVI and MODIS Gcc suggests that the NDVI may be a better indicator of autumn transition 469 

points than these other metrics. 470 

 471 

Our results show that automated digital cameras can be very effective for detecting the start and 472 

end of the growing season, with phenological transition dates derived from canopy imagery 473 

corresponding well to direct human observations. However, our results also highlight many 474 

factors that affect the interpretation of changes in canopy greenness during the growing season. 475 
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To maximize the utility of this relatively inexpensive instrument, several developments could be 476 

explored to resolve within-growing-season issues. The use of standard automated digital cameras 477 

in combination with high-quality filters provides an opportunity to isolate different parts of the 478 

leaf reflectance spectrum. This could enable camera-based vegetation indices to be calculated 479 

that are more closely linked to canopy physiology. For instance, near-infrared enabled cameras 480 

could provide an opportunity to calculate various broadband (albedo, NDVI) reflectance indices 481 

(Steltzer and Welker 2006, Higgins et al. 2011), or a pair of narrow-band filters (530±5 and 482 

570±5 nm) could be used to measure PRI. Combining such cost-effective advances in camera 483 

technology with other near-surface remote sensing techniques (e.g. photodiodes (Garrity et al. 484 

2010), light-emitting diodes (Ryu et al. 2010a), spectroradiometers, and commercially available 485 

broadband and narrowband radiometric sensors), have significant potential to advance the field 486 

of near surface remote sensing with automated digital cameras. 487 

 488 

 489 
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Conclusion 490 

 491 

The use of automated digital cameras for monitoring vegetation status is becoming widespread. 492 

Digital repeat photography has been used to characterize the development of leaf area (Garrity et 493 

al. 2011), correlated to canopy CO2 fluxes (e.g., Richardson et al. 2007, 2009, Ahrends et al. 494 

2009, Migliavacca et al. 2011) and compared to satellite based phenology metrics (Hufkens et al. 495 

2012a). The approach has become central to phenological networks around the world 496 

(Richardson et al. 2007, Wingate et al. 2008). Despite the widespread application of automated 497 

digital cameras for phenological research, there has yet to be a critical assessment of the 498 

relationship between color indices extracted from digital repeat photography, leaf physiology, 499 

and canopy structure. 500 

 501 

Here we use five years of ground observations of phenology, and detailed measurements of 502 

canopy structure and leaf physiology, in combination with satellite remote sensing, to show that 503 

observed phenological transitions of bud-burst and leaf senescence can be well characterized by 504 

digital repeat photography. However, the development of canopy leaf area, and key 505 

physiological and morphological leaf traits, lags behind camera-derived green-up in spring. Our 506 

mixing model analysis shows that the seasonal cycle of canopy greenness is driven by the 507 

combined effects of changes in canopy structure (i.e. seasonality of leaf area index) as well as 508 

changes in the color of individual leaves (i.e., ontogeny and associated changes in pigmentation). 509 

We discuss implications for the interpretation of seasonal changes in canopy greenness, and the 510 

use of camera-derived canopy greenness to quantify disturbance impacts. Characterizing the 511 
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relationship between camera greenness, leaf physiology and canopy structure across a variety of 512 

ecosystems will be a valuable focus of future work. 513 

 514 

 515 
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Figure 1. Observations of leaf area index (green), eddy-covariance derived daily gross primary 

photosynthesis (GPP, blue), and camera derived green chromatic coordinate (Gcc, black), for five 

years at Harvard forest, MA, USA. All values are normalized relative to the mean annual 

maximum and minimum values. An ice storm in December of 2008 is indicated, which caused 

severe structural damage to the forest. 

 

Figure 2. Camera derived phenophase transitions (bud-burst, peak green, end of fall) compared 

with ground observations of bud-burst, leaf size and leaf fall color at 50, 75 and 95% of their 

maximum annual value. All phenophase transitions are derived using a ‘greendown’ sigmoid 

curve fit to the camera Gcc data, with the exception of spring bud-burst dates extracted using a 

simple Gcc threshold of 0.38, shown in panel 1. 

 

Figure 3. Measurements of leaf fluorescence (Fv/Fm), spectral indices (PRI, MTCl, ChlNDI), 

leaf area, mass per area (LMA), water content (LWC), % carbon (C), and % nitrogen (N), 

MODIS EVI and NDVI, broadband NDVI (BB NDVI), mean leaf angle, and plant area index 

derived from fPAR (stars) and LAI-2000 (circles). Dashed vertical lines represent ground 

observations of 50% bud-burst, 95% leaf size, 50% leaf color and 50% leaf fall. The solid 

vertical line marks the date of camera-derived peak green. Note that end of autumn near-zero 

values of Fv/Fm are not shown. 

 

Figure 4. Red, Green and Blue digital numbers extracted from scanned Red Oak leaves during 

the growing season of 2011. Reference colors were included in each image (colored dashed 

lines). The extracted digital numbers were used to calculate the green chromatic coordinate for 



each image (black dashed line). Actual leaf colors for each sample date are given as reference 

(filled circles). 

 

Figure 5. Camera Gcc (observed, diamond) and estimated Gcc estimated using a linear mixing 

model of leaf area, gap fraction, and leaf color (closed circles). The inset shows the contribution 

of the two end-members. m1: the contribution of background color extinction (m1=(1-Ft) Gcc
B, 

Eq. 1); m2: the combined contribution of leaf area and color (m2=FtGccL(t), Eq. 1) 

 

Figure 6. (a) Mean daily red, green and blue and near-infrared (NIR) MODIS reflectance, for the 

period 2001-2011, for the pixel centered on the EMS flux tower of the Harvard forest (MA, 

USA), and the derived MODIS Gcc, EVI and NDVI. (b) Mean daily red, green and blue 

Phenocam digital numbers for the period 2008-2012 at the Harvard forest (MA, USA), and the 

derived Phenocam Gcc. Vertical dashed line indicates the mean peak Gcc over all years. 
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